植物生态学报 ›› 2006, Vol. 30 ›› Issue (5): 802-809.DOI: 10.17521/cjpe.2006.0102
李传荣1(), 许景伟2, 宋海燕1, 李春艳1, 郑莉1, 王卫东2, 王月海2
收稿日期:
2005-06-14
接受日期:
2006-04-22
出版日期:
2006-06-14
发布日期:
2006-09-30
基金资助:
LI Chuan-Rong1(), XU Jing-Wei2, SONG Hai-Yan1, LI Chun-Yan1, ZHENG Li1, WANG Wei-Dong2, WANG Yue-Hai2
Received:
2005-06-14
Accepted:
2006-04-22
Online:
2006-06-14
Published:
2006-09-30
About author:
First author contact:E-mail: chrli@sdau.edu.cn
摘要:
该文对东营市垦利县柽柳(Tamarix chinensis)林、枣(Ziziphus jujuba)园、旱柳(Salix matsudana)林、刺槐(Robinia pseudoacacia)林、白蜡(Fraxinus chinensis)林、桑(Morus alba)园土壤酶活性及其与土壤化学性质和土壤微生物的关系进行了分析。结果表明:在土壤空间上,脲酶和过氧化物酶活性随土层的增加而减小,多酚氧化酶和过氧化氢酶的活性在土层之间变化不明显。过氧化氢酶与脲酶和多酚氧化酶显著相关,脲酶与多酚氧化酶呈负相关。不同造林模式对土壤过氧化氢酶和过氧化物酶影响不大,对脲酶和多酚氧化活性有显著的影响。各种造林模式增加了脲酶的活性,均高于柽柳林;减小了多酚氧化酶的活性,除刺槐林外,均显著低于柽柳林;而造林模式对过氧化物酶和过氧化氢酶的影响较小。土壤酶活性与土壤养分有一定的相关,其中脲酶与全氮、有机质显著正相关,与速效氮正相关;多酚氧化酶与速效钾正相关,而过氧化氢酶与全氮、速效磷和有机质呈负相关,与土壤pH值相关性不显著;与微生物的相关系数不大,其中脲酶与固氮菌、纤维素分解菌显著正相关,与细菌正相关;多酚氧化酶与固氮菌和细菌负相关;过氧化氢酶与固氮菌显著负相关,与纤维素分解菌负相关。脲酶和多酚氧化酶可以作为滩地土壤质量评价的指标。
李传荣, 许景伟, 宋海燕, 李春艳, 郑莉, 王卫东, 王月海. 黄河三角洲滩地不同造林模式的土壤酶活性. 植物生态学报, 2006, 30(5): 802-809. DOI: 10.17521/cjpe.2006.0102
LI Chuan-Rong, XU Jing-Wei, SONG Hai-Yan, LI Chun-Yan, ZHENG Li, WANG Wei-Dong, WANG Yue-Hai. SOIL ENZYME ACTIVITIES IN DIFFERENT PLANTATIONS IN LOWLANDS OF THE YELLOW RIVER DELTA, CHINA. Chinese Journal of Plant Ecology, 2006, 30(5): 802-809. DOI: 10.17521/cjpe.2006.0102
林型 Type | 株行距(m×m) Row spacing | 树高 Height (m) | 胸径 DBH (cm) | 林龄 Age (a) | 备注 Notes | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
旱柳林 Salix matsudana forest | 3.0×2.5 | 10.8 | 12.9 | 7 | 林下草盖度45% Underground covered by 45% grass | ||||||||||||||||||||||||||||||||
柽柳林 Tamarix chinensis forest | 1.0×1.0 | 1.8 | 50 | 海边,疏于管理 Seaside, loose management | |||||||||||||||||||||||||||||||||
枣园 Ziziphus jujuba forest | 2.0×2.6 | 3.2 | 8.6(Base) | 7 | 未套种,定期翻土 Not interplanting of another plant, spading periodically | ||||||||||||||||||||||||||||||||
刺槐林 Robinia pseudoacacia forest | 2.0×2.0 | 16.5 | 13.1 | 20 | 经过两次间伐,草本植物稀少,地面有腐殖质层,保留680株·hm-2 Intermediate cutting twice, rare herbage, mould cover, 680 plant·hm-2 | ||||||||||||||||||||||||||||||||
白蜡林 Fraxinus chinensis forest | 2.0×3.0 | 5.7 | 7.2 | 7 | 林下草本植物发育 Herbage developed in the underground | ||||||||||||||||||||||||||||||||
桑园 Morus alba forest | 1.0×1.0 | 1.8 | 15 | 漫灌,树上多螳螂卵块 Flood irrigation, a lot of egg mass of mantis on the tree |
表1 林分概况
Table 1 General situation of the forest stands
林型 Type | 株行距(m×m) Row spacing | 树高 Height (m) | 胸径 DBH (cm) | 林龄 Age (a) | 备注 Notes | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
旱柳林 Salix matsudana forest | 3.0×2.5 | 10.8 | 12.9 | 7 | 林下草盖度45% Underground covered by 45% grass | ||||||||||||||||||||||||||||||||
柽柳林 Tamarix chinensis forest | 1.0×1.0 | 1.8 | 50 | 海边,疏于管理 Seaside, loose management | |||||||||||||||||||||||||||||||||
枣园 Ziziphus jujuba forest | 2.0×2.6 | 3.2 | 8.6(Base) | 7 | 未套种,定期翻土 Not interplanting of another plant, spading periodically | ||||||||||||||||||||||||||||||||
刺槐林 Robinia pseudoacacia forest | 2.0×2.0 | 16.5 | 13.1 | 20 | 经过两次间伐,草本植物稀少,地面有腐殖质层,保留680株·hm-2 Intermediate cutting twice, rare herbage, mould cover, 680 plant·hm-2 | ||||||||||||||||||||||||||||||||
白蜡林 Fraxinus chinensis forest | 2.0×3.0 | 5.7 | 7.2 | 7 | 林下草本植物发育 Herbage developed in the underground | ||||||||||||||||||||||||||||||||
桑园 Morus alba forest | 1.0×1.0 | 1.8 | 15 | 漫灌,树上多螳螂卵块 Flood irrigation, a lot of egg mass of mantis on the tree |
脲酶 Urease | 多酚氧化酶 Polyphenol oxidase | 过氧化酶 Peroxidase | 过氧化氢酶 Hydrogen peroxidase | |||||
---|---|---|---|---|---|---|---|---|
活性Activity (N g-1·d-1) | 变异系数 CV (%) | 活性Activity (0.1 mol KMnO4· ml·g-1) | 变异系数 CV (%) | 活性Activity (2 h Galnut mg· g-1) | 变异系数 CV (%) | 活性Activity (0.1 mol KMnO4· ml·g-1·d-1) | 变异系数 CV (%) | |
旱柳林 Salix matsudana forest | 0.018 | 20.00 | 0.542 | 1 | 0.602 | 8.00 | 1.000 | 0 |
柽柳林 Tamarix chinensis forest | 0.155 | 34.00 | 0.120 | 6 | 0.553 | 18.00 | 0.925 | 3.00 |
枣园 Ziziphus jujuba forest | 0.256 | 37.00 | 0.476 | 14 | 0.484 | 25.00 | 0.900 | 6.00 |
刺槐林 Robinia pseudoacacia forest | 0.126 | 63.00 | 0.771 | 32 | 0.543 | 8.00 | 0.993 | 1.00 |
白蜡林 Fraxinus chinensis forest | 0.295 | 17.00 | 0.068 | 30 | 0.569 | 2.00 | 0.938 | 1.00 |
桑园 Morus alba forest | 0.147 | 57.00 | 0.442 | 25 | 0.466 | 12.00 | 0.975 | 3.00 |
空地 Barren | 0.012 | 0.42 | 0.789 | 25 | 0.577 | 1.27 | 1.025 | 3.50 |
均值 Average | 0.166 | 0.38 | 0.403 | 0.18 | 0.536 | 0.12 | 0.955 | 0.02 |
表2 各种类型的酶活性及其变异系数
Table 2 The soil enzyme activities and their coefficient of variation (CV) of different plantations in the lowlands of the Yellow River delta
脲酶 Urease | 多酚氧化酶 Polyphenol oxidase | 过氧化酶 Peroxidase | 过氧化氢酶 Hydrogen peroxidase | |||||
---|---|---|---|---|---|---|---|---|
活性Activity (N g-1·d-1) | 变异系数 CV (%) | 活性Activity (0.1 mol KMnO4· ml·g-1) | 变异系数 CV (%) | 活性Activity (2 h Galnut mg· g-1) | 变异系数 CV (%) | 活性Activity (0.1 mol KMnO4· ml·g-1·d-1) | 变异系数 CV (%) | |
旱柳林 Salix matsudana forest | 0.018 | 20.00 | 0.542 | 1 | 0.602 | 8.00 | 1.000 | 0 |
柽柳林 Tamarix chinensis forest | 0.155 | 34.00 | 0.120 | 6 | 0.553 | 18.00 | 0.925 | 3.00 |
枣园 Ziziphus jujuba forest | 0.256 | 37.00 | 0.476 | 14 | 0.484 | 25.00 | 0.900 | 6.00 |
刺槐林 Robinia pseudoacacia forest | 0.126 | 63.00 | 0.771 | 32 | 0.543 | 8.00 | 0.993 | 1.00 |
白蜡林 Fraxinus chinensis forest | 0.295 | 17.00 | 0.068 | 30 | 0.569 | 2.00 | 0.938 | 1.00 |
桑园 Morus alba forest | 0.147 | 57.00 | 0.442 | 25 | 0.466 | 12.00 | 0.975 | 3.00 |
空地 Barren | 0.012 | 0.42 | 0.789 | 25 | 0.577 | 1.27 | 1.025 | 3.50 |
均值 Average | 0.166 | 0.38 | 0.403 | 0.18 | 0.536 | 0.12 | 0.955 | 0.02 |
脲酶 Urease | 多酚氧化酶 Polyphenol oxidase | 过氧化物酶 Peroxidase | 过氧化氢酶 Hydrogen peroxidase | |
---|---|---|---|---|
脲酶Urease | 1.000 | -0.560* | 0.174 | -0.784** |
多酚氧化酶Polyphenol oxidase | 1.000 | -0.117 | 0.673** | |
过氧化物酶Peroxidase | 1.000 | 0.027 | ||
过氧化氢酶Hydrogen peroxidase | 1.000 |
表3 4种酶之间的相关性
Table 3 The relationships among the four kinds of soil enzymes
脲酶 Urease | 多酚氧化酶 Polyphenol oxidase | 过氧化物酶 Peroxidase | 过氧化氢酶 Hydrogen peroxidase | |
---|---|---|---|---|
脲酶Urease | 1.000 | -0.560* | 0.174 | -0.784** |
多酚氧化酶Polyphenol oxidase | 1.000 | -0.117 | 0.673** | |
过氧化物酶Peroxidase | 1.000 | 0.027 | ||
过氧化氢酶Hydrogen peroxidase | 1.000 |
类型 Type | 层次 Layer (cm) | 全氮 Total N (g·kg-1) | 全磷 Total P (mg·kg-1) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic C (%) | pH |
---|---|---|---|---|---|---|---|---|
旱柳林 Salix matsudana forest | 0~20 | 0.029 | 0.388 | 31.249 | 6.998 | 128.791 | 0.506 | 8.03 |
20~50 | 0.010 | 0.456 | 15.625 | 5.020 | 68.065 | 0.147 | 7.88 | |
柽柳林 Tamarix chinensis forest | 0~20 | 0.034 | 0.309 | 42.067 | 4.533 | 68.065 | 0.350 | 8.32 |
20~50 | 0.010 | 0.420 | 23.437 | 6.141 | 118.670 | 0.197 | 7.86 | |
枣园 Ziziphus jujuba forest | 0~20 | 0.070 | 0.494 | 51.081 | 11.821 | 199.638 | 1.380 | 7.89 |
20~50 | 0.033 | 0.402 | 25.240 | 5.926 | 159.154 | 0.517 | 7.94 | |
刺槐林 Robinia pseudoacacia forest | 0~20 | 0.065 | 0.458 | 52.884 | 5.283 | 230.001 | 0.764 | 8.12 |
20~50 | 0.017 | 0.341 | 27.644 | 3.675 | 149.033 | 0.180 | 8.64 | |
白蜡林 Fraxinus chinensis forest | 0~20 | 0.069 | 0.462 | 57.691 | 7.711 | 149.033 | 0.877 | 8.35 |
20~50 | 0.020 | 0.410 | 27.000 | 5.200 | 132.350 | 0.400 | 8.10 | |
桑园 Morus alba forest | 0~20 | 0.053 | 0.418 | 72.114 | 5.604 | 118.670 | 0.728 | 8.22 |
20~50 | 0.020 | 0.400 | 35.000 | 5.200 | 103.360 | 0.400 | 8.10 |
表4 土壤的养分含量及pH值
Table 4 The contents of soil nutrient and their pH values
类型 Type | 层次 Layer (cm) | 全氮 Total N (g·kg-1) | 全磷 Total P (mg·kg-1) | 速效氮 Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 有机质 Organic C (%) | pH |
---|---|---|---|---|---|---|---|---|
旱柳林 Salix matsudana forest | 0~20 | 0.029 | 0.388 | 31.249 | 6.998 | 128.791 | 0.506 | 8.03 |
20~50 | 0.010 | 0.456 | 15.625 | 5.020 | 68.065 | 0.147 | 7.88 | |
柽柳林 Tamarix chinensis forest | 0~20 | 0.034 | 0.309 | 42.067 | 4.533 | 68.065 | 0.350 | 8.32 |
20~50 | 0.010 | 0.420 | 23.437 | 6.141 | 118.670 | 0.197 | 7.86 | |
枣园 Ziziphus jujuba forest | 0~20 | 0.070 | 0.494 | 51.081 | 11.821 | 199.638 | 1.380 | 7.89 |
20~50 | 0.033 | 0.402 | 25.240 | 5.926 | 159.154 | 0.517 | 7.94 | |
刺槐林 Robinia pseudoacacia forest | 0~20 | 0.065 | 0.458 | 52.884 | 5.283 | 230.001 | 0.764 | 8.12 |
20~50 | 0.017 | 0.341 | 27.644 | 3.675 | 149.033 | 0.180 | 8.64 | |
白蜡林 Fraxinus chinensis forest | 0~20 | 0.069 | 0.462 | 57.691 | 7.711 | 149.033 | 0.877 | 8.35 |
20~50 | 0.020 | 0.410 | 27.000 | 5.200 | 132.350 | 0.400 | 8.10 | |
桑园 Morus alba forest | 0~20 | 0.053 | 0.418 | 72.114 | 5.604 | 118.670 | 0.728 | 8.22 |
20~50 | 0.020 | 0.400 | 35.000 | 5.200 | 103.360 | 0.400 | 8.10 |
pH | 全氮 Total N | 全磷 Total P | 速效氮 Available N | 速效磷 Available P | 速效钾 Available K | 有机质 Organic C | |
---|---|---|---|---|---|---|---|
脲酶 Urease | 0.178 | 0.788** | 0.416 | 0.652* | 0.456 | 0.447 | 0.760** |
多酚氧化酶 Polyphenol oxidase | -0.085 | -0.097 | -0.162 | -0.186 | -0.304 | 0.476* | -0.054 |
过氧化物酶 Peroxidase | 0.129 | 0.277 | 0.143 | 0.182 | 0.165 | -0.330 | 0.140 |
过氧化氢酶 Hydrogen peroxidase | 0.229 | -0.473* | -0.373 | -0.316 | -0.587* | -0. 265 | -0.471* |
表5 酶与土壤养分及pH值的相关性分析
Table 5 The relationships among the soil enzyme activities, soil nutrients and pH values
pH | 全氮 Total N | 全磷 Total P | 速效氮 Available N | 速效磷 Available P | 速效钾 Available K | 有机质 Organic C | |
---|---|---|---|---|---|---|---|
脲酶 Urease | 0.178 | 0.788** | 0.416 | 0.652* | 0.456 | 0.447 | 0.760** |
多酚氧化酶 Polyphenol oxidase | -0.085 | -0.097 | -0.162 | -0.186 | -0.304 | 0.476* | -0.054 |
过氧化物酶 Peroxidase | 0.129 | 0.277 | 0.143 | 0.182 | 0.165 | -0.330 | 0.140 |
过氧化氢酶 Hydrogen peroxidase | 0.229 | -0.473* | -0.373 | -0.316 | -0.587* | -0. 265 | -0.471* |
类型 Type | 层次 Layer (cm) | 固氮菌 Nitrogen fixer (104 cfu·g-1 DW) | 纤维素分解菌 Cellulose decomposer (103 cfu·g-1 DW) | 真菌 Fungi (106 cfu·g-1 DW) | 放线菌 Actinomyce (106 cfu·g-1 DW) | 细菌 Bacteria (108 cfu·g-1 DW) |
---|---|---|---|---|---|---|
旱柳林 Salix matsudana forest | 0~20 | 0.4 | 10 | 2 | 1344 | 10.3 |
20~50 | 0.2 | 5 | 12 | 40 | 0.4 | |
柽柳林 Tamarix chinensis forest | 0~20 | 44.0 | 150 | 18 | 74 | 9.5 |
20~50 | 43.0 | 5 | 6 | 136 | 23.9 | |
枣园 Ziziphus jujuba forest | 0~20 | 170.0 | 50 | 5 | 1 391 | 6.4 |
20~50 | 18.0 | 60 | 2 | 345 | 4.4 | |
刺槐林 Robinia pseudoacacia forest | 0~20 | 21.0 | 40 | 15 | 227 | 25.1 |
20~50 | 17.0 | 5 | 5 | 92 | 2.2 | |
白蜡林 Fraxinus chinensis forest | 0~20 | 230.0 | 1 700 | 5 | 263 | 33.5 |
20~50 | 9.0 | 1 | 5 | 533 | 32.0 | |
桑园 Morus alba forest | 0~20 | 20.0 | 60 | 72 | 413 | 30.5 |
20~50 | 15.0 | 20 | 27 | 25 | 12.5 |
表6 各造林模式的土壤微生物数量
Table 6 The amounts of soil microbes of different plantations
类型 Type | 层次 Layer (cm) | 固氮菌 Nitrogen fixer (104 cfu·g-1 DW) | 纤维素分解菌 Cellulose decomposer (103 cfu·g-1 DW) | 真菌 Fungi (106 cfu·g-1 DW) | 放线菌 Actinomyce (106 cfu·g-1 DW) | 细菌 Bacteria (108 cfu·g-1 DW) |
---|---|---|---|---|---|---|
旱柳林 Salix matsudana forest | 0~20 | 0.4 | 10 | 2 | 1344 | 10.3 |
20~50 | 0.2 | 5 | 12 | 40 | 0.4 | |
柽柳林 Tamarix chinensis forest | 0~20 | 44.0 | 150 | 18 | 74 | 9.5 |
20~50 | 43.0 | 5 | 6 | 136 | 23.9 | |
枣园 Ziziphus jujuba forest | 0~20 | 170.0 | 50 | 5 | 1 391 | 6.4 |
20~50 | 18.0 | 60 | 2 | 345 | 4.4 | |
刺槐林 Robinia pseudoacacia forest | 0~20 | 21.0 | 40 | 15 | 227 | 25.1 |
20~50 | 17.0 | 5 | 5 | 92 | 2.2 | |
白蜡林 Fraxinus chinensis forest | 0~20 | 230.0 | 1 700 | 5 | 263 | 33.5 |
20~50 | 9.0 | 1 | 5 | 533 | 32.0 | |
桑园 Morus alba forest | 0~20 | 20.0 | 60 | 72 | 413 | 30.5 |
20~50 | 15.0 | 20 | 27 | 25 | 12.5 |
固氮菌 Nitrogen fixer | 纤维素分解菌 Cellulose-decomposer | 真菌 Fungi | 放线菌 Actinomyce | 细菌 Bacteria | |
---|---|---|---|---|---|
脲酶 Urease | 0.814** | 0.653** | -0.180 | 0.432 | 0.521* |
多酚氧化酶 Polyphenol oxidase | -0.525* | -0.345 | 0.087 | -0.094 | -0.517* |
过氧化物酶 Peroxidase | 0.135 | 0.163 | -0.094 | 0.357 | 0.107 |
过氧化氢酶 Hydrogen peroxidase | -0.841** | -0.516* | 0.231 | -0.320 | -0.375 |
表7 土壤酶活性与微生物的相关性分析
Table 7 The relationships between soil enzyme activities and microbes
固氮菌 Nitrogen fixer | 纤维素分解菌 Cellulose-decomposer | 真菌 Fungi | 放线菌 Actinomyce | 细菌 Bacteria | |
---|---|---|---|---|---|
脲酶 Urease | 0.814** | 0.653** | -0.180 | 0.432 | 0.521* |
多酚氧化酶 Polyphenol oxidase | -0.525* | -0.345 | 0.087 | -0.094 | -0.517* |
过氧化物酶 Peroxidase | 0.135 | 0.163 | -0.094 | 0.357 | 0.107 |
过氧化氢酶 Hydrogen peroxidase | -0.841** | -0.516* | 0.231 | -0.320 | -0.375 |
第一主成分 1st Component | 第二主成分 2nd Component | 第三主成分 3rd Component | 第四主成分 4th Component | 第五主成分 5th Component | |
---|---|---|---|---|---|
特征根 Eigenvalues | 6.379 | 2.865 | 2.108 | 1.425 | 1.184 |
方差贡献率 Rate of variance | 39.870 | 17.905 | 13.176 | 8.908 | 7.339 |
累积贡献率 Cumulative rate | 39.870 | 57.775 | 70.951 | 79.860 | 87.258 |
表8 不同造林模式的土壤信息系统主成分分析
Table 8 The principal component analysis of soil information system in different plantations
第一主成分 1st Component | 第二主成分 2nd Component | 第三主成分 3rd Component | 第四主成分 4th Component | 第五主成分 5th Component | |
---|---|---|---|---|---|
特征根 Eigenvalues | 6.379 | 2.865 | 2.108 | 1.425 | 1.184 |
方差贡献率 Rate of variance | 39.870 | 17.905 | 13.176 | 8.908 | 7.339 |
累积贡献率 Cumulative rate | 39.870 | 57.775 | 70.951 | 79.860 | 87.258 |
[1] |
Gallo M, Amonette R, Lauber C, Sinsabaugh RL, Zak DR (2004). Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microbial Ecology, 48,218-229.
DOI URL PMID |
[2] | Guan SY (关松荫) (1986). Soil Enzyme and Its Study Methods (土壤酶及其研究方法). China Agriculture Press, Beijing. (in Chinese) |
[3] | Guo YB (郭银宝), Xu XY (许小英) (2005). 3 kinds of soil microbe community quantity distribution in differ vegetable soil. Science and Technology of Qinghai Agriculture and Forestry (青海农林科技), (1),16-18. (in Chinese with English abstract) |
[4] | Hu HB (胡海波), Zhang JC (张金池), Gao ZH (高智慧), Chen SW (陈顺伟), Zang TL (臧廷亮) (2001). Study on quantitative distribution of soil microorganism and relationship with enzyme activity and physical, chemical property of shelter-forest in rocky coastal area. Forest Research (林业科学研究), 15(1),88-95. (in Chinese with English abstract) |
[5] | Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37,1-16. |
[6] | Jiang PK (姜培坤), Jiang QY (蒋秋怡), Dong LG (董林根), Qian XB (钱新标), Jin RG (金荣根) (1995). Comparison of biochemical properties of rhizosphere soil between Chinese fir and Chinese sasafras. Journal of Zhejiang Forestry College (浙江林学院学报), 12,1-5. (in Chinese with English abstract) |
[7] | Jiang PK (姜培坤), Yu YW (俞益武), Zhang LQ (张立钦), Xu XW (许小婉) (2000). Study on enzyme activities of soil under Phyllostachys precox f.prevelnalis . Journal of Zhejiang Forestry College (浙江林学院学报), 17,132-136. (in Chinese with English abstract) |
[8] | Kerstin M, Egbert M (2003). Response of enzyme activities to nitrogen in forest floors of different C-N ratios. Biology and Fertility of Soils, 38,102-109. |
[9] | Li YM (李延茂), Hu JC (胡江春), Wang SL (汪思龙), Wang SJ (王书锦) (2004). Function and application of soil microorganisms in forest ecosystem. Chinese Journal of Applied Ecology (应用生态学报), 15,1943-1946. (in Chinese with English abstract) |
[10] | Lin J (林静) (1999). Study on the relationship between soil enzyme activities and soil fertilities in different red soil ecotypes. Fujian Agricultural Science and Technology (福建农业科技), (Suppl.),23-24. (in Chinese with English abstract) |
[11] | Liu ZX (刘子雄), Zhu TH (朱天辉), Zhang J (张健) (2005). Analysis on communities of soil microbes under forest rehabilitation. Journal of Nanjing Forestry University (Natural Sciences Edition) (南京林业大学学报(自然科学版)), 29(4),45-48. (in Chinese with English abstract) |
[12] | Long J (龙健), Huang CY (黄昌勇), Teng Y (滕应), Yao HY (姚槐应) (2004). The microbial biomass and enzyme activities of reclaimed mine soil in the heavy metal pollution area. Chinese Journal of Eco-Agricuture (中国生态农业学报), 12(3),146-148. (in Chinese with English abstract) |
[13] |
Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2002). In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil . Microbial Ecology, 44,296-305.
DOI URL PMID |
[14] | Qiu LP (邱莉萍), Liu J (刘俊), Wang YQ (王义权), He WX (和文祥) (2004). Research on relationship between soil enzyme activities and soil fertility. Plant Nutrient and Fertilizer Science (植物营养与肥料学报), 10,277-280. (in Chinese with English abstract) |
[15] | Seemen H, Laitamm H, Pikk J (1998). The influence of nutritional conditions on forest-soil microflora. Baltic Forestry, 4,2-7. |
[16] | Sun XS (孙秀山), Feng HS (封海胜), Wan SB (万书波), Zuo XQ (左学青) (2001). Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions. Acta Agronomica Sinica (作物学报), 27,617-621. (in Chinese with English abstract) |
[17] | Wang CQ (王成秋), Wang SL (王树良), Yang JH (杨剑虹), Wei CF (魏朝富), Qu M (屈明), Xie DT (谢德体) (1999). Study on the soil enzyme activity and its affecting factors in Citrus orchard with purple Soil . South China Fruit (中国南方果树). 28(5),7-10. (in Chinese) |
[18] | Xu QF (徐秋芳), Jiang PK (姜培坤) (2000). Effects of fertilizing on biological properties of root region soil under Phyllostachys pubescens forest . Journal of Zhejiang Forestry College (浙江林学院学报), 17,364-368. (in Chinese with English abstract) |
[19] | Zhang M (张猛), Zhang J (张健) (2003). Advance in research on microbe and enzyme activity in forest soil. Journal of Sichuan Agricultural University (四川农业大学学报), 21,347-351. (in Chinese with English abstract) |
[20] | Zhao LS (赵林森), Wang JL (王九龄) (1995). Research on relations between growth effect and soil enzyme activities and soil nutrient factors in mixed polar and black locust plantations. Journal of Beijing Forestry University (北京林业大学学报), 17(4),1-7. (in Chinese with English abstract) |
[1] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[2] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[3] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[4] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[5] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[6] | 王俐爽 同小娟 孟平 张劲松 刘沛荣 李俊 张静茹 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[7] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[8] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[9] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[10] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[11] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[12] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[13] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[14] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[15] | 扈明媛, 袁野, 戴晓琴, 付晓莉, 寇亮, 王辉民. 亚热带人工林乔灌草根际土壤氮矿化特征[J]. 植物生态学报, 2020, 44(12): 1285-1295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19