植物生态学报 ›› 2008, Vol. 32 ›› Issue (4): 900-907.DOI: 10.3773/j.issn.1005-264x.2008.04.019
收稿日期:
2007-03-02
接受日期:
2008-01-11
出版日期:
2008-03-02
发布日期:
2008-07-30
通讯作者:
万方浩
作者简介:
*E-mail:wanfangh@public3.bta.net.cn基金资助:
JIANG Zhi-Lin1, LIU Wan-Xue1, WAN Fang-Hao1,*(), LI Zheng-Yue2
Received:
2007-03-02
Accepted:
2008-01-11
Online:
2008-03-02
Published:
2008-07-30
Contact:
WAN Fang-Hao
摘要:
植物对土壤有效养分的影响是植物竞争取胜的重要生态策略之一, 土壤酶活性对土壤有效养分的变化具有重要作用。该文研究了紫茎泽兰(Ageratina adenophora)单种(A)、非洲狗尾草(Setaria sphacelata)单种(S)和两物种混种(A+S)群落4种重要的土壤酶活性和土壤养分的变化及其规律, 并对土壤酶活性与土壤养分进行了相关分析。结果表明: 1)群落S土壤有效氮(NH4+-N和NO3--N)含量高于群落A对应养分含量, 而与群落A+S该养分含量没有显著差异; 群落S土壤有效磷和有效钾含量低于群落A对应指标, 而群落A+S其含量最低。2)群落S、A+S和A土壤蛋白酶和脲酶活性的高低次序分别为S>A+S>A、A+S>S>A; 群落A+S、S和A磷酸酶活性依次升高; 群落A+S、A和S蔗糖酶活性依次降低。3)在生长过程中, 3类群落土壤NO3--N、有效磷和有效钾含量在生长初期(5月)最高, 随后逐渐降低; 土壤NH4+-N含量呈现单峰趋势, 在生长后期(9月)最高。3类群落土壤蛋白酶和蔗糖酶活性随生长时间推移而升高, 在生长末期(11月)最高; 土壤磷酸酶和脲酶酶活性在生长过程中呈现单峰趋势, 在生长旺盛期(7月)最高。3类群落间土壤酶活性与土壤肥力具有较一致的相关性。由此推断, 非洲狗尾草对土壤含氮化合物的活化能力比紫茎泽兰强, 且在种间竞争中能够强烈抑制紫茎泽兰对土壤含磷、含钾化合物的活化能力是其竞争取胜的可能原因; 不同植物群落土壤酶活性的差异是引起土壤有效养分变化的重要驱动机制之一。
蒋智林, 刘万学, 万方浩, 李正跃. 紫茎泽兰与非洲狗尾草单、混种群落土壤酶活性和土壤养分的比较. 植物生态学报, 2008, 32(4): 900-907. DOI: 10.3773/j.issn.1005-264x.2008.04.019
JIANG Zhi-Lin, LIU Wan-Xue, WAN Fang-Hao, LI Zheng-Yue. COMPARATIVE STUDIES ON SEASONAL DYNAMICS OF SOIL ENZYMATIC ACTIVITIES AND SOIL NUTRIENT AVAILABILITY IN MONO- AND MIXED- CULTURE PLANT COMMUNITIES OF AGERATINA ADENOPHORAAND SETARIA SPHACLATA. Chinese Journal of Plant Ecology, 2008, 32(4): 900-907. DOI: 10.3773/j.issn.1005-264x.2008.04.019
图1 3类植物群落土壤有效养分含量及其季节动态 A、S、A+S分别代表紫茎泽兰单种、非洲狗尾草单种和两物种混种群落 A, S, A+S respectively represent monoculture of Ageratina adenophora, monoculture of Setaria sphacelata and mixcultrure of A. adenophora and S. sphacelata a、b、c: 不同字母表示在同一时期3类群落间根系土壤养分的差异显著 (mean±SD, n=5), 采用单方面方差分析Tukey多重比较方法 Different letters mean soil nutrients (mean±SD, n=5) are significantly different among different plant communities for each sampling date at p<0.05 using the Tukey method of One-Way ANOVA
Fig. 1 Soil available nutrient contents and their seasonal dynamics of three plant communities
植物群落 Community | 土壤酶 Soil enzyme | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 有效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
A | 蛋白酶 Protease activity (μg·g-1·h-1) | -0.057 | -0.785** | -0.832** | -0.512* |
S | -0.111 | -0.890** | -0.962** | -0.604* | |
A+S | -0.074 | -0.877** | -0.925** | -0.433 | |
A | 脲酶 Ureae activity (μg·g-1·h-1) | 0.056 | 0.031 | 0.673** | 0.141 |
S | 0.652** | 0.004 | 0.297 | -0.293 | |
A+S | 0.221 | -0.017 | 0.198 | -0.616* | |
A | 磷酸酶 Phosphatase activity (mg·g-1·h-1) | 0.094 | 0.476* | 0.801** | 0.318 |
S | -0.120 | 0.550* | 0.685** | 0.145 | |
A+S | -0.196 | 0.720** | 0.835** | 0.156 | |
A | 蔗糖酶 Invertase activity (ml·g-1·h-1) | -0.155 | -0.766** | -0.697** | -0.365 |
S | -0.613** | -0.578** | -0.789* | -0.388 | |
A+S | -0.381 | -0.682** | -0.746** | -0.218 |
表1 3类植物群落土壤酶活性与土壤养分的相关系数
Table 1 The correlation coefficients of soil enzymatic activities and soil nutrients of three plant communities
植物群落 Community | 土壤酶 Soil enzyme | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 有效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|
A | 蛋白酶 Protease activity (μg·g-1·h-1) | -0.057 | -0.785** | -0.832** | -0.512* |
S | -0.111 | -0.890** | -0.962** | -0.604* | |
A+S | -0.074 | -0.877** | -0.925** | -0.433 | |
A | 脲酶 Ureae activity (μg·g-1·h-1) | 0.056 | 0.031 | 0.673** | 0.141 |
S | 0.652** | 0.004 | 0.297 | -0.293 | |
A+S | 0.221 | -0.017 | 0.198 | -0.616* | |
A | 磷酸酶 Phosphatase activity (mg·g-1·h-1) | 0.094 | 0.476* | 0.801** | 0.318 |
S | -0.120 | 0.550* | 0.685** | 0.145 | |
A+S | -0.196 | 0.720** | 0.835** | 0.156 | |
A | 蔗糖酶 Invertase activity (ml·g-1·h-1) | -0.155 | -0.766** | -0.697** | -0.365 |
S | -0.613** | -0.578** | -0.789* | -0.388 | |
A+S | -0.381 | -0.682** | -0.746** | -0.218 |
[1] | Aerts R (1999). Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. Journal of Experimental Botany, 50,29-37. |
[2] | Alkorta I, Aizpurua A, Riga P, Albizu I, Amezaga I, Garbisu C (2003). Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health, 18,65-73. |
[3] | Asner GP, Beatty SW (1996). Effects of an African grass invasion on Hawaiian shrubland nitrogen biogeochemistry. Plant and Soil, 186,205-211. |
[4] | Bao SD (鲍士旦) (2002). Soil and Agricultural Chemistry Analysis (土壤农化分析) 3rd edn. China Agricultural Press, Beijing. (in Chinese) |
[5] | Briese DT (2004). Weed biological control: applying science to solve seemingly intractable problems. Australian Journal of Entomology, 43,304-317. |
[6] | D'Antonio C, Meyerson LA (2002). Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restoration Ecology, 10,703-713. |
[7] | Ge SJ (葛盛军), Jin HP (金海平), Yang ZD (杨志德), Zhao YH (赵玉华), Liu QY (刘启云), Li CG (李成贵) (2003). Study on control of Eupatorium adenophorum by Pennisetum sinese Poxb . Journal of Sichuan Grassland (四川草原), (2),23-24. (in Chinese) |
[8] | Guan SY (关松荫) (1986). The Soil Enzyme and Its Research Method (土壤酶及其研究方法). China Agricultural Press, Beijing. (in Chinese) |
[9] | He DY (何大愚), Liang JS (梁家社) (1988). Advances in the control research of Eupatorium alenophorum. Advances in Ecology (生态学进展), 5(3),163-168. (in Chinese with English abstract) |
[10] | Hester ES (1999). The initiation of a biological control programme against Macfadyena unguis-cati (L.) Gentry (Bingoniaceae) in South Africa . African Entomology, 2,153-157. |
[11] | Hoddle MS (2004). Restoring Balance: using exotic species to control invasive exotic species. Conservation Biology, 18,38-49. |
[12] | Jiang ZL (蒋智林), Wan FH (万方浩), Liu WX (刘万学), Li ZY (李正跃) (2008). Competition Effects between Ageratina adenophora (Asteraceae) and Setaria sphacelata (Gramineae) . Scientia Agricutura Sinica (中国农业科学), 41,1347-1354. (in Chinese with English abstract) |
[13] | Kluge RL (1991). Biological control of crofton weed, Ageratina adenophora (Asteraceae ), in South Africa. Agriculture, Ecosystems and Environment, 37,187-191. |
[14] | Kourtev PS, Huang WZ, Ehrenfeld JG (1999). Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biological Invasions, 1,237-245. |
[15] | Lao JC (劳家柽) (1988). Manual of Soil Agro-chemistry Analysis (土壤农化分析手册). China Agricultural Press, Beijing. (in Chinese) |
[16] | Li Y, Jia JZ, Wang Y, Wu SZ (1998). Intraspecific and interspecific variation in Setaria revealed by RAPD analysis . Genetic Resources and Crop Evolution, 45,279-285. |
[17] | Liu ZY (刘芷宇), Li LM (李良谟), Shi WM (施卫明) (1997). Research Methods in Rhizosphere (根际研究法). Jiangsu Science and Technology Publishing House, Nanjing. (in Chinese) |
[18] | Lu CY (卢昌义), Hu HY (胡宏友), Zhang MQ (张明强), Zhong YT (钟跃庭), Zheng FZ (郑逢中) (2005). Studies on the control of alien invasive plant Macfadyena unguis-cati with ecological substitution . Plant Protection (植物保护), 31(3),53-56. (in Chinese with English abstract) |
[19] | Lu JZ (陆建忠), Qiu W (裘伟), Chen JK (陈家宽), Li B (李博) (2005). Impact of invasive species on soil properties:Canadian goldenrod ( Solidago canadensis) as a case study . Chinese Biodiversity (生物多样性), 13,347-356. (in Chinese with English abstract) |
[20] | Lugo AE (1997). The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. Forest Ecology and Management, 99,9-19. |
[21] | Meng YL (孟亚利), Wang LG (王立国), Zhou ZG (周治国), Chen BL (陈兵林), Wang Y (王瑛), Zhang LZ (张立桢), Bian HY (卞海云), Zhang SP (张思平) (2005). Effect of the composite root population of wheat-cotton double cropping system on soil enzyme activity and soil nutrient content at the cotton rhizosphere and non-rhizosphere zones. Scientia Agricultura Sinica (中国农业科学), 38,904-910. (in Chinese with English abstract) |
[22] | Perry LG, Galatowitsch SM, Rosen CJ (2004). Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbon-enriched soil . Journal of Applied Ecology, 41,151-162. |
[23] | Qiang S (强胜) (1998). The history and status of the study on crofton weed ( Eupatorium adenophorum spreng. ) a worst worldwide weed . Journal of Wuhan Botanical Research (武汉植物学研究), 16,366-372. (in Chinese with English abstract) |
[24] |
Radin JW, Eidenbock MP (1984). Hydraulic conductance as a factor limiting leaf expansion of phosphorus deficient cotton plants. Plant Physiology, 75,372-377.
DOI URL PMID |
[25] | Shi WM (施卫明) (1993). Root exudates and soil nutrients availability. Soils (土壤), 25,252-256. (in Chinese) |
[26] | Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338,499-500. |
[27] | Suding KN, Larson JR, Thorsos E, Steltzer H, Bowman WD (2004). Species effects on resource supply rates: do they influence competitive interactions? Plant Ecology, 175,47-58. |
[28] | Sun XY, Lu ZH, Sang WG (2004). Review on studies of Eupatorium adenophorum—an important invasive species in China . Journal of Forestry Research, 15,319-322. |
[29] | Suwanketnikom R (1992). Effect of surfactants and temperature on triclopyr activity in Eupatorium adenophorum Kasetsart . Journal of Natural Sciences, 26,195-202. |
[30] | Vitousek PM, Aber CJ, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: causes and consequences. Ecological Applications, 7,737-750. |
[31] | Wan FH (万方浩), Ma J (马骏), Guo JY (郭建英), You LS (游兰韶) (2003). Integrated control effects of Epiblema strenuana (Lepidoptera: Tortricidae) and Ostrinia orientalis (Lepidoptera: Pyralidae) against ragweed Ambrosia artemisiifolia (Compositae) . Acta Entomologica Sinica (昆虫学报), 46,473-478. (in Chinese with English abstract) |
[32] | Wang CY (王重云), Liu WY (刘文耀), Liu LH (刘伦辉), Cui JW (崔建武) (2006). Plant diversity of different replaced communities after Eupatorium adenophorum removal . Chinese Journal of Applied Ecology (应用生态学报), 17,377-383. (in Chinese with English abstract) |
[33] | Wang J (王娟), Gu XJ (谷雪景), Zhao J (赵吉) (2006). Function of soil enzyme activities in indicating soil fertility in Leyluse chinensis steppe . Journal of Agro-Environment Science (农业环境科学学报), 25,934-938. (in Chinese with English abstract) |
[34] | Wang WQ (王文琪), Wang JJ (王进军), Zhao ZM (赵志模) (2006). Seed population dynamics and germination characteristics of Eupatorium adenophorum. Chinese Journal of Applied Ecology (应用生态学报), 17,982-986. (in Chinese with English abstract) |
[35] | Wu BG (武保国) (2003). Setaria grass. Rural Animal-Production Technologe (农村养殖技术), (16),25. (in Chinese) |
[36] | Xiang YX (向业勋) (1991). Distribution and harmfulness of Eupatorium adenophorum and its control . Weed Science (杂草科学), 5(4),10-11. (in Chinese with English abstract) |
[37] | Yao ZH (姚朝晖), Zhang WD (张无敌), Liu ZM (刘祖明) (2003). Control and utilization of the poisonous weed Eupatorium adenophorum. Agriculture and Technology (农业与技术), 23(1),23-28. (in Chinese with English abstract) |
[38] | Yin J (尹俊) (2006). The current status and outlook of Eupatorium adenophorum control in southwest China . Pratacultural Science (草业科学), 23(6),82-85. (in Chinese with English abstract) |
[39] | Zheng HY (郑洪元), Zhang DS (张德生) (1987). The Dynamics Analysis of Soil Biochemistry and Its Research Method (土壤动态生物化学研究法). Science Press, Beijing. (in Chinese) |
[40] | ХазИеВ ΦΧ (Zheng HY (郑洪元), Zhou LK (周礼恺), Zhang DS (张德生)) (1980). Soil Enzymatic Activity(in Russian). Science Press, Beijing. (in Chinese) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[4] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[5] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[6] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[7] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[8] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[9] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[10] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[11] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[12] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[13] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[14] | 邹瓒, 陈劲松, 李洋, 宋会兴. 光合产物传输方向对蓉城竹根际微生物过程的影响[J]. 植物生态学报, 2018, 42(8): 863-872. |
[15] | 魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6): 692-702. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19