植物生态学报 ›› 2025, Vol. 49 ›› Issue (6): 965-974.DOI: 10.17521/cjpe.2023.0222 cstr: 32100.14.cjpe.2023.0222
马腾飞1,2,3, 郝杰1,2,3, 刁华杰1,2,3, 宁亚楠1,2,3, $\boxed{\hbox{王常慧}}$1,2,3,*(), 董宽虎1,2,3,*
收稿日期:
2023-08-03
接受日期:
2024-05-06
出版日期:
2025-06-20
发布日期:
2024-05-07
通讯作者:
*董宽虎(dongkuanhu@sxau.edu.cn)基金资助:
MA Teng-Fei1,2,3, HAO Jie1,2,3, DIAO Hua-Jie1,2,3, NING Ya-Nan1,2,3, $\boxed{\hbox{WANG Chang-Hui}}$ 1,2,3,*(), DONG Kuan-Hu1,2,3,*
Received:
2023-08-03
Accepted:
2024-05-06
Online:
2025-06-20
Published:
2024-05-07
Contact:
*(Dong KH, dongkuanhu@sxau.edu.cn)Supported by:
摘要:
土壤无机氮包括铵态氮(NH4+-N)和硝态氮(NO3--N), 是陆地植物生长必需的养分。放牧通过家畜采食、践踏和粪尿归还影响土壤理化性质及微生物活性, 改变土壤无机氮含量, 进而影响植物生产力。然而, 不同放牧强度下, 土壤无机氮季节动态及年际差异尚不清晰。该研究以晋北农牧交错带草地为研究对象, 依托2016年8月建立的不同放牧强度试验平台(不放牧(UG)、轻度放牧(LG, 每生长季2.35羊单位·hm-2)、中度放牧(MG, 每生长季4.80羊单位·hm-2)、重度放牧(HG, 每生长季7.85羊单位·hm-2)), 通过测定2017-2021年生长季(5-9月)土壤无机氮含量的季节变化, 研究不同放牧强度下土壤无机氮季节动态及年际差异特征。结果表明: (1)不同放牧强度对土壤无机氮含量季节均值没有产生显著影响, 然而显著降低植物生物量, 这与生长季不同时期放牧效应的变化有关。(2)土壤无机氮含量在整个生长季呈现出先升高再降低的变化趋势。(3)土壤无机氮含量呈现出显著的年际差异, 这与年际间降水的变化有关。该研究结果表明北方农牧交错带草地土壤无机氮含量对短期不同放牧强度的响应不显著, 季节降水变化是引起土壤无机氮含量年际变异的主要原因, 未来草地管理应该更多地关注降水变化对土壤无机氮的影响。
马腾飞, 郝杰, 刁华杰, 宁亚楠, $\boxed{\hbox{王常慧}}$, 董宽虎. 晋北农牧交错带草地土壤无机氮含量的季节变化及其对放牧强度的响应. 植物生态学报, 2025, 49(6): 965-974. DOI: 10.17521/cjpe.2023.0222
MA Teng-Fei, HAO Jie, DIAO Hua-Jie, NING Ya-Nan, $\boxed{\hbox{WANG Chang-Hui}}$ , DONG Kuan-Hu. Seasonal variations of soil inorganic nitrogen contents and their responses to changing grazing intensity in grasslands of an agro-pastoral ecotone in northern Shanxi, China. Chinese Journal of Plant Ecology, 2025, 49(6): 965-974. DOI: 10.17521/cjpe.2023.0222
图1 2017-2021年生长季气温和降水量。A中每一个数据点是当日观测的平均值。
Fig. 1 Air temperature and precipitation in the growing season from 2017 to 2021. Each data point in A is the average of the dayʼs observations.
图2 2017-2021年生长季土壤温度和含水量。每一个数据点是当月观测的平均值。HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧; UG, 不放牧。
Fig. 2 Soil temperature and moisture content during the growing season from 2017 to 2021. Each data point is the average of the monthʼs observations. HG, heavy grazing; LG, light grazing; MG, moderate grazing; UG, ungrazing.
图3 2017-2021年不同放牧强度下土壤铵态氮(NH4+-N) (A、D),硝态氮(NO3--N) (B、E)和无机氮(C、F)含量的生长季动态变化(平均值±标准误)。HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧; UG, 不放牧。*和**分别表示各处理间在p < 0.05和p < 0.01水平上差异显著。
Fig. 3 Dynamic changes of soil ammonium nitrogen (NH4+-N) (A, D), nitrate nitrogen (NO3--N) (B, E) and inorganic nitrogen (C, F) contents (mean ± SE) in the growing season under different grazing intensities from 2017 to 2021. HG, heavy grazing; LG, light grazing; MG, moderate grazing; UG, ungrazing. * and ** indicated significant differences among treatments at the levels of p < 0.05 and p < 0.01, respectively.
图4 2017-2021年间不同放牧强度下土壤无机氮含量生长季均值(平均值±标准误)。HGNH4+, 重度放牧处理下铵态氮含量; HGNO3-, 重度放牧处理下硝态氮含量; LGNH4+, 轻度放牧处理下铵态氮含量; LGNO3-, 轻度放牧处理下硝态氮含量; MGNH4+, 中度放牧处理下铵态氮含量; MGNO3-, 中度放牧处理下硝态氮含量; UGNH4+, 不放牧处理下铵态氮含量; UGNO3-, 不放牧处理下硝态氮含量。不同小写字母表示同一年份不同放牧强度处理间显著差异(p < 0.05); 不同大写字母表示不同年份间无机氮含量显著差异(p < 0.05)。
Fig. 4 Inorganic nitrogen contents at different grazing intensities from 2017 and 2021 (mean ± SE). HGNH4+, ammonium nitrogen content under heavy grazing treatment; HGNO3-, nitrate nitrogen content under heavy grazing treatment; LGNH4+, ammonium nitrogen content under light grazing treatment; LGNO3-, nitrate nitrogen content under light grazing treatment; MGNH4+, ammonium nitrogen content under moderate grazing treatment; MGNO3-, nitrate nitrogen content under moderate grazing treatment; UGNH4+, ammonium nitrogen content under non-grazing treatment; UGNO3-, nitrate nitrogen content under non-grazing treatment. Different lowercase letters indicated significant differences among different grazing intensity treatments in the same year (p < 0.05); different uppercase letters indicate significant differences in the inorganic nitrogen content among different years (p < 0.05).
铵态氮 NH4+-N | 硝态氮 NO3--N | 无机氮 IN | |
---|---|---|---|
年际 Year (Y) | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.342 | 0.232 | 0.417 |
Y × G | 0.068 | 0.050 | 0.066 |
表1 年际、放牧强度及其交互作用对土壤铵态氮、硝态氮、无机氮含量影响的双因素方差分析(p值)
Table 1 Two way ANOVA of the effects of year, grazing intensity and their interactions on soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) and inorganic nitrogen (IN) contents (p value)
铵态氮 NH4+-N | 硝态氮 NO3--N | 无机氮 IN | |
---|---|---|---|
年际 Year (Y) | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.342 | 0.232 | 0.417 |
Y × G | 0.068 | 0.050 | 0.066 |
2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | |
日期 Date (D) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.256 | 0.144 | 0.283 | 0.426 | 0.141 | 0.870 | 0.075 | <0.050 | <0.050 | 0.347 |
D × G | 0.104 | <0.050 | 0.311 | 0.632 | 0.725 | 0.709 | 0.152 | 0.238 | 0.086 | 0.919 |
表2 取样日期、放牧强度及其交互作用对铵态氮和硝态氮含量的影响(p值)
Table 2 Effects of sampling date, grazing intensity and their interactions on soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) contents (p value)
2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | 铵态氮 NH4+-N | 硝态氮 NO3--N | |
日期 Date (D) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
放牧强度 Grazing intensity (G) | 0.256 | 0.144 | 0.283 | 0.426 | 0.141 | 0.870 | 0.075 | <0.050 | <0.050 | 0.347 |
D × G | 0.104 | <0.050 | 0.311 | 0.632 | 0.725 | 0.709 | 0.152 | 0.238 | 0.086 | 0.919 |
图5 2017-2021年间不同放牧强度与植物地上生物量(A)和地下生物量(B)关系箱型图(平均值±标准误)。HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧; UG, 不放牧。不同小写字母表示同一年份不同放牧强度处理间显著差异(p < 0.05)。
Fig. 5 Box plots of the relationships between aboveground biomass (A) and belowground biomass (B) of plants under different grazing intensities from 2017 to 2021 (mean ± SE). HG, heavy grazing; LG, light grazing; MG, moderate grazing; UG, ungrazing. Different lowercase letters indicate significant differences among different grazing intensity treatments in the same year (p < 0.05).
图6 2017-2021年不同放牧强度下土壤无机氮含量与植物地上生物量(A、B、C)和地下生物量(D、E、F)的线性相关分析。
Fig. 6 Linear correlation analysis of the relationships between soil inorganic nitrogen content and aboveground biomass (A, B, C) and between soil inorganic nitrogen content and belowground biomass (D, E, F) under different grazing intensities from 2017 to 2021. NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen.
图7 铵态氮(NH4+-N)、硝态氮(NO3--N)含量与温度、水分含量的冗余分析。MAP, 年降水量; MAT, 年平均气温; ST, 土壤温度; SW, 土壤含水量。
Fig. 7 Redundancy analysis of soil ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N) contents and air temperature and soil moisture. MAP, mean annual precipitation; MAT, mean annual air temperature; ST, soil temperature; SW, soil moisture.
[1] | A ML, Zhao ML, Han GD, Jia L, Dong T (2011). Influences of grazing intensity on carbon and nitrogen contents in desert steppe. Chinese Journal of Grassland, 33(3), 115-118. |
[阿穆拉, 赵萌莉, 韩国栋, 贾乐, 董亭 (2011). 放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响. 中国草地学报, 33(3), 115-118.] | |
[2] | Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Körner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012). Precipitation manipulation experiments—Challenges and recommendations for the future. Ecology Letters, 15, 899-911. |
[3] | Centeri C (2022). Effects of grazing on water erosion, compaction and infiltration on grasslands. Hydrology, 9, 34. DOI: 10.3390/hydrology9020034. |
[4] |
Connell JH (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
DOI PMID |
[5] | Dai Z, Yu M, Chen H, Zhao H, Huang Y, Su W, Xiao F, Chang SX, Brookes PC, Dahlgren RA, Xu J (2020). Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 26, 5267-5276. |
[6] | Deng X, Xu T, Xue L, Hou P, Xue L, Yang L (2023). Effects of warming and fertilization on paddy N2O emissions and ammonia volatilization. Agriculture, Ecosystems & Environment, 347, 108361. DOI: 10.1016/j.agee.2023.108361. |
[7] | Du ZY, Cai YJ, Wang XD, Zhang B, Du Z (2019). Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 39, 4627-4637. |
[杜子银, 蔡延江, 王小丹, 张斌, 杜忠 (2019). 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 39, 4627-4637.] | |
[8] | Du ZY, Cai YJ, Zhang B, Hong JT, Wang XD (2022). Research progress on livestock excreta returning on soil nitrogen transformation and nitrous oxide emission in grasslands. Acta Ecologica Sinica, 42, 45-57. |
[杜子银, 蔡延江, 张斌, 洪江涛, 王小丹 (2022). 牲畜排泄物返还对草地土壤氮转化和氧化亚氮(N2O)排放的影响研究进展. 生态学报, 42, 45-57.] | |
[9] | Gao XF, Han GD, Zhang G, Zhao ML, Lu P (2007). Effects of grazing on soil microorganisms and their seasonal changes in desert steppe. Chinese Journal of Soil Science, 38, 145-148. |
[高雪峰, 韩国栋, 张功, 赵萌莉, 卢萍 (2007). 放牧对荒漠草原土壤微生物的影响及其季节动态研究. 土壤通报, 38, 145-148.] | |
[10] | Han XL, Huang CG, Zhang YX, Guo JP (2020). nirS-type denitrifiers community composition and function in different riparian vegetation types in upper Wenyuhe watershed. Acta Ecologica Sinica, 40, 1977-1989. |
[韩晓丽, 黄春国, 张芸香, 郭晋平 (2020). 文峪河上游河岸带不同植被类型土壤nirS反硝化菌群结构及功能. 生态学报, 40, 1977-1989.] | |
[11] | Hou JJ, Wang JZ, Sun P, Zhu WY, Xu J, Lu CA (2022). Spatiotemporal patterns in nitrogen response efficiency of aboveground productivity across China’s grasslands. Scientia Agricultura Sinica, 55, 1811-1821. |
[侯将将, 王金洲, 孙平, 朱文琰, 徐靖, 卢昌艾 (2022). 中国草地地上生产力氮素敏感性的时空变化. 中国农业科学, 55, 1811-1821.]
DOI |
|
[12] |
Jiang J, Song MH (2010). Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 34, 979-988.
DOI |
[蒋婧, 宋明华 (2010). 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 34, 979-988.]
DOI |
|
[13] | Jiao YQ (2022). Research status of spatial and temporal changes of soil inorganic nitrogen (ammonium nitrogen, nitrate nitrogen). Modern Salt and Chemical Industry, 49(1), 20-22. |
[焦亚青 (2022). 土壤无机氮(铵态氮、硝态氮)时空变化研究现状. 现代盐化工, 49(1), 20-22.] | |
[14] |
Li CY, Kong XQ, Dong HZ (2020). Nitrate uptake, transport and signaling regulation pathways. Journal of Nuclear Agricultural Sciences, 34, 982-993.
DOI |
[李晨阳, 孔祥强, 董合忠 (2020). 植物吸收转运硝态氮及其信号调控研究进展. 核农学报, 34, 982-993.]
DOI |
|
[15] |
Li T, Zhang Y, Zhao JL, Yan RR, Xin XP, Wang X, Chen JQ, Wu DX, Li LH, Zhao M (2021). Effects of grazing intensity on soil water-heat regime and above-ground biomass in a meadow steppe. Acta Agrestia Sinica, 29, 2577-2582.
DOI |
[李彤, 张宇, 赵晋灵, 闫瑞瑞, 辛晓平, 王旭, 陈金强, 吴冬秀, 李凌浩, 赵曼 (2021). 放牧对草甸草原土壤水热状况和地上生物量的影响. 草地学报, 29, 2577-2582.]
DOI |
|
[16] | Liu H, Zhang A, Liu C, Zhao Y, Zhao A, Wang D (2021). Analysis of the time-lag effects of climate factors on grassland productivity in Inner Mongolia. Global Ecology and Conservation, 30, e01751. DOI: 10.1016/j.gecco.2021.e01751. |
[17] | Lv P, Sun SS, Zhao XY, Li YQ, Zhao SL, Zhang J, Hu Y, Guo AX, Yue P, Zuo XA (2023). Effects of altered precipitation patterns on soil nitrogen transformation in different landscape types during the growing season in northern China. Catena, 222, 106813. DOI: 10.1016/j.catena.2022.106813. |
[18] | Ouyang Y, Evans SE, Friesen ML, Tiemann LK (2018). Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biology & Biochemistry, 127, 71-78. |
[19] | Ren YJ, Liu XL, Wang HL, Diao HJ, Wang CH, Dong KH (2020). Response of soil net nitrogen mineralization rates to different grazing intensities in Leymus secalinus communities of the agro-pastoral ecotone of northern China. Acta Agrestia Sinica, 28, 328-337. |
[任雨佳, 刘夏琳, 王惠玲, 刁华杰, 王常慧, 董宽虎 (2020). 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应. 草地学报, 28, 328-337.]
DOI |
|
[20] | Shan YM, Wen C, Chang H, Zhang PJ, Ye RH, Mu L, Wang CH, Huang JH, Bai YF, Sun HL, Chen HJ (2019). The study on seasonal dynamics of soil nitrogen mineralization under different grazing intensities in desert steppe. Ecology and Environmental Sciences, 28, 723-731. |
[单玉梅, 温超, 常虹, 张璞进, 晔薷罕, 木兰, 王常慧, 黄建辉, 白永飞, 孙海莲, 陈海军 (2019). 不同放牧强度下荒漠草原土壤氮矿化季节性动态研究. 生态环境学报, 28, 723-731.]
DOI |
|
[21] |
Tegeder M, Masclaux-Daubresse C (2018). Source and sink mechanisms of nitrogen transport and use. New Phytologist, 217, 35-53.
DOI PMID |
[22] | Vertès F, Delaby L, Klumpp K, Bloor J (2019). C-N-P uncoupling in grazed grasslands and environmental implications of management intensification//Lemaire G, de Faccio Carvalho PC, Kronberg S, Recous S. Agroecosystem Diversity. Academic Press, Cambridge, UK. 15-34. |
[23] | Wang CH, Xing XR, Han XG (2004). Advances in study of factors affecting soil N mineralization in grassland ecosystems. Chinese Journal of Applied Ecology, 15, 2184-2188. |
[王常慧, 邢雪荣, 韩兴国 (2004). 草地生态系统中土壤氮素矿化影响因素的研究进展. 应用生态学报, 15, 2184-2188.] | |
[24] |
Wang J, Wang D, Li C, Seastedt TR, Liang C, Wang L, Sun W, Liang M, Li Y (2018). Feces nitrogen release induced by different large herbivores in a dry grassland. Ecological Applications, 28, 201-211.
DOI PMID |
[25] | Wang L, Delgado-Baquerizo M, Zhao X, Zhang M, Song Y, Cai J, Chang Q, Li Z, Chen Y, Liu J, Zhu H, Wang D, Han G, Liang C, Wang C, Xin X (2020). Livestock overgrazing disrupts the positive associations between soil biodiversity and nitrogen availability. Functional Ecology, 34, 1713-1720. |
[26] | Wu DD, Jing X, Lin L, Yang XY, Zhang ZH, He JS (2016). Responses of soil inorganic nitrogen to warming and altered precipitation in an alpine meadow on the Qinghai-Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 52, 959-966. |
[武丹丹, 井新, 林笠, 杨新宇, 张振华, 贺金生 (2016). 青藏高原高寒草甸土壤无机氮对增温和降水改变的响应. 北京大学学报(自然科学版), 52, 959-966.] | |
[27] | Yu YW, Nan ZB (2008). Animal urine excretion characteristics and its effect on grassland vegetation and animal selective intake: a review. Acta Ecologica Sinica, 28, 777-785. |
[于应文, 南志标 (2008). 畜尿排泄特征及其对草地植被和家畜选择采食的作用. 生态学报, 28, 777-785.] | |
[28] | Zhang CX, Nan ZB (2010). Research progress on effects of grazing on physical and chemical characteristics of grassland soil. Acta Prataculturae Sinica, 19(4), 204-211. |
[张成霞, 南志标 (2010). 放牧对草地土壤理化特性影响的研究进展. 草业学报, 19(4), 204-211.] | |
[29] | Zhang SH, Zhang Y, Ma XY, Wang C, Ma Q, Yang XC, Xu T, Ma Y, Zheng Z (2022). Mechanisms underlying loss of plant biodiversity by atmospheric nitrogen deposition in grasslands. Acta Ecologica Sinica, 42, 1252-1261. |
[张世虎, 张悦, 马晓玉, 王聪, 马群, 杨雪纯, 徐婷, 马越, 郑智 (2022). 大气氮沉降影响草地植物物种多样性机制研究综述. 生态学报, 42, 1252-1261.] | |
[30] | Zhang Y (2021). Effects of Grazing on Soil Nitrogen Transfers and Microbial Community Traits in a Meadow Steppe Ecosystem. Master degree dissertation, Chinese Academy of Agricultural Sciences, Beijing. |
[张宇 (2021). 放牧强度对温性草甸草原土壤氮转化及微生物的影响. 硕士学位论文, 中国农业科学院, 北京.] | |
[31] | Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564. |
[张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.]
DOI |
|
[32] | Zhu ZC, Huang Y, Xu FW, Xing W, Zheng SX, Bai YF (2017). Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland. Chinese Journal of Plant Ecology, 41, 938-952. |
[朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞 (2017). 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响. 植物生态学报, 41, 938-952.]
DOI |
|
[33] |
Zhu YZ, Li YY, Han JG, Yao HY (2019). Effects of changes in water status on soil microbes and their response mechanism: a review. Chinese Journal of Applied Ecology, 30, 4323-4332.
DOI |
[朱义族, 李雅颖, 韩继刚, 姚槐应 (2019). 水分条件变化对土壤微生物的影响及其响应机制研究进展. 应用生态学报, 30, 4323-4332.]
DOI |
[1] | 崔冬晴, 田晨, 宋慧敏, 鲁小名, 萨其日, 徐国庆, 杨培志, 白永飞, 田建卿. 典型草原优势植物根际细菌群落多样性和功能群组成对长期放牧的响应机制[J]. 植物生态学报, 2025, 49(7): 1-. |
[2] | 闫小莉, 刘贵梅, 李小玉, 江宇翔, 全小强, 王燕茹, 曲鲁平, 汤行昊. 不同氮添加水平和铵硝态氮配比环境下木荷幼苗光合及叶绿素荧光特性[J]. 植物生态学报, 2025, 49(4): 624-637. |
[3] | 全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉. 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响[J]. 植物生态学报, 2024, 48(8): 1050-1064. |
[4] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[5] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[6] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[7] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[8] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[9] | 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响[J]. 植物生态学报, 2019, 43(1): 77-84. |
[10] | 许浩, 胡朝臣, 许士麒, 孙新超, 刘学炎. 外来植物入侵对土壤氮有效性的影响[J]. 植物生态学报, 2018, 42(11): 1120-1130. |
[11] | 马志良, 赵文强, 赵春章, 刘美, 朱攀, 刘庆. 青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应[J]. 植物生态学报, 2018, 42(1): 86-94. |
[12] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[13] | 李永强, 李治国, 董智, 王忠武, 屈志强, 韩国栋. 内蒙古荒漠草原放牧强度对风沙通量和沉积物粒径的影响[J]. 植物生态学报, 2016, 40(10): 1003-1014. |
[14] | 李文怀, 郑淑霞, 白永飞. 放牧强度和地形对内蒙古典型草原物种多度分布的影响[J]. 植物生态学报, 2014, 38(2): 178-187. |
[15] | 杨婧, 褚鹏飞, 陈迪马, 王明玖, 白永飞. 放牧对内蒙古典型草原α、β和γ多样性的影响机制[J]. 植物生态学报, 2014, 38(2): 188-200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19