Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (3): 337-348.DOI: 10.17521/cjpe.2017.0241

• Research Articles • Previous Articles     Next Articles

Spatial patterns and drivers of root turnover in grassland ecosystems in China

Yuan-Feng SUN1,2,Hong-Wei WAN1,Yu-Jin ZHAO1,Shi-Ping CHEN1,2,Yong-Fei BAI1,2,*()   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2018-03-20 Published:2018-03-08
  • Contact: Yong-Fei BAI
  • Supported by:
    Supported by the National Keypoint Research and Invention Program(2017YFA06047020);the Strategic Priority Research Program of the Chinese Academy of Sciences.(XDA05050400)


<i>Aims</i> Root turnover rate is a key indicator of ecosystem functions and services. It is also a core parameter for estimating net primary productivity and carbon sequestration potential. However, few studies have examined the patterns and drivers of root turnover at regional and global scales, especially for the widely distributed grassland ecosystems in China. Our objective is to determine: 1) the spatial patterns of root turnover rate for grassland ecosystems in China; and 2) the mechanisms and relative contributions of abiotic and biotic factors driving the root turnover process.

<i>Methods</i> Root turnover data used in this study were derived from two sources. One was obtained from the sample- to-sample plot survey by Grassland Carbon Sequestration Project. The other was extracted from 43 published literatures on root turnover of grasslands in China from 1983 to 2016. These publications were collected from the ISI Web of Science or Chinese literature database. For studies in which climatic variables were not reported, climate information was extracted from the World Climate Database based on site coordinates. Soil properties were collected from Harmonized World Soil Database Version 1.1 supplied by Food and Agriculture Organization of the United Nations.

<i>Important findings </i> Our results showed that root turnover rate was significantly negatively correlated with latitude in China. The national scale pattern of root turnover was influenced by climatic variables (mean annual temperature and mean annual precipitation) and soil properties (gravel content, bulk density, and pH value). These variables together explained 44% of the variation in root turnover rate, with the relative contribution being 57% for climatic variables and 43% for soil properties. However, the regional scale patterns and drivers of root turnover for grasslands in China were different from those at the global scale.

Key words: root turnover, grassland in China, climatic factors, soil properties, relative contribution, climate change