Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (11): 1113-1126.DOI: 10.17521/cjpe.2020.0111
• Research Articles • Previous Articles Next Articles
ZHANG Wen-Qiang1,2, LUO Ge-Ping1,2,3,*(), ZHENG Hong-Wei1,2, WANG Hao4, HAMDI Rafiq1,5,6, HE Hui-Li1,2, CAI Peng1,2, CHEN Chun-Bo1,2
Received:
2020-04-20
Accepted:
2020-06-02
Online:
2020-11-20
Published:
2020-07-07
Contact:
LUO Ge-Ping
Supported by:
ZHANG Wen-Qiang, LUO Ge-Ping, ZHENG Hong-Wei, WANG Hao, HAMDI Rafiq, HE Hui-Li, CAI Peng, CHEN Chun-Bo. Analysis of vegetation index changes and driving forces in inland arid areas based on random forest model: a case study of the middle part of northern slope of the north Tianshan Mountains[J]. Chin J Plant Ecol, 2020, 44(11): 1113-1126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0111
数据 Data | 数据类型 Data type | 空间分辨率 Spatial resolution | 数据时段 Acquisition time | 数据来源 Data source |
---|---|---|---|---|
MODIS-NDVI | 栅格 Raster | 1 km | 2000-2015 | https://code.earthengine.google.com |
Landsat TM/ETM/OLI | 栅格 Raster | 30 m | 2000, 2005, 2010, 2015 | https://earthexplorer.usgs.gov |
气象数据 Meteorological data | 站点 Station | - | 2000-2015 | 中国气象科学数据共享服务网(http://data.cma.cn/)、当地气象局 China meteorological data sharing service system (http://data.cma.cn/), local weather bureau |
土地利用类型 Land use type | 矢量 Vector | - | 2000, 2005, 2010, 2015 | 中国科学院新疆生态与地理研究所对地观测与系统模拟实验室 Earth observation and systems simulation laboratory, Xinjiang institute of ecology and geography, Chinese Academy of Sciences |
放牧数据 Grazing data | 栅格、站点 Raster, station | 0.083 33° | 2000, 2005, 2010, 2015 | 世界粮农组织(FAO)(http://www.fao.org/livestock-systems/en/)、2015年野外实测数据、新疆统计年鉴 Food and Agriculture Organization (http://www.fao.org/livestock-systems/en/), field data in 2015, Xinjiang statistical yearbook |
Table 1 Data source of the middle part of northern slope of the north Tianshan Mountains
数据 Data | 数据类型 Data type | 空间分辨率 Spatial resolution | 数据时段 Acquisition time | 数据来源 Data source |
---|---|---|---|---|
MODIS-NDVI | 栅格 Raster | 1 km | 2000-2015 | https://code.earthengine.google.com |
Landsat TM/ETM/OLI | 栅格 Raster | 30 m | 2000, 2005, 2010, 2015 | https://earthexplorer.usgs.gov |
气象数据 Meteorological data | 站点 Station | - | 2000-2015 | 中国气象科学数据共享服务网(http://data.cma.cn/)、当地气象局 China meteorological data sharing service system (http://data.cma.cn/), local weather bureau |
土地利用类型 Land use type | 矢量 Vector | - | 2000, 2005, 2010, 2015 | 中国科学院新疆生态与地理研究所对地观测与系统模拟实验室 Earth observation and systems simulation laboratory, Xinjiang institute of ecology and geography, Chinese Academy of Sciences |
放牧数据 Grazing data | 栅格、站点 Raster, station | 0.083 33° | 2000, 2005, 2010, 2015 | 世界粮农组织(FAO)(http://www.fao.org/livestock-systems/en/)、2015年野外实测数据、新疆统计年鉴 Food and Agriculture Organization (http://www.fao.org/livestock-systems/en/), field data in 2015, Xinjiang statistical yearbook |
自变量 Independent variable | 回归系数 Regression coefficient | |||
---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | |
年最低气温 Annual minimum temperature | 0.134 | 0.156 | 0.127 | 0.162 |
年平均气温 Annual average temperature | -0.160 | -0.139 | -0.122 | -0.245 |
年最高气温 Annual maximum temperature | 0.026 | -0.014 | -0.013 | 0.072 |
年累计降水量 Annual cumulative precipitation | 0.000 2 | 0.000 3 | 0.000 03 | 0.000 001 |
耕地比例 Arable proportion | 0.005 | 0.005 | 0.005 | 0.005 |
林地比例 Forest proportion | 0.005 | 0.005 | 0.007 | 0.007 |
草地比例 Grassland proportion | 0.002 | 0.001 | 0.001 | 0.001 |
水体比例 Water body proportion | -0.001 | -0.001 | -0.001 | -0.002 |
城市比例 Urban proportion | 0.003 | 0.002 | 0.002 | 0.002 |
荒漠比例 Desert proportion | 0.001 | 0.000 1 | -0.000 4 | -0.000 3 |
放牧强度 Grazing intensity | 0.054 | 0.038 | 0.053 | 0.044 |
常数项 Constant | 0.617 | 0.983 | 0.981 | 0.634 |
Table 2 Regression coefficient of each independent variable of normalized differential vegetation index (NDVI) of the middle part of northern slope of the north Tianshan Mountains from 2000 to 2015
自变量 Independent variable | 回归系数 Regression coefficient | |||
---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | |
年最低气温 Annual minimum temperature | 0.134 | 0.156 | 0.127 | 0.162 |
年平均气温 Annual average temperature | -0.160 | -0.139 | -0.122 | -0.245 |
年最高气温 Annual maximum temperature | 0.026 | -0.014 | -0.013 | 0.072 |
年累计降水量 Annual cumulative precipitation | 0.000 2 | 0.000 3 | 0.000 03 | 0.000 001 |
耕地比例 Arable proportion | 0.005 | 0.005 | 0.005 | 0.005 |
林地比例 Forest proportion | 0.005 | 0.005 | 0.007 | 0.007 |
草地比例 Grassland proportion | 0.002 | 0.001 | 0.001 | 0.001 |
水体比例 Water body proportion | -0.001 | -0.001 | -0.001 | -0.002 |
城市比例 Urban proportion | 0.003 | 0.002 | 0.002 | 0.002 |
荒漠比例 Desert proportion | 0.001 | 0.000 1 | -0.000 4 | -0.000 3 |
放牧强度 Grazing intensity | 0.054 | 0.038 | 0.053 | 0.044 |
常数项 Constant | 0.617 | 0.983 | 0.981 | 0.634 |
Fig. 2 Changes in maximum normalized differential vegetation index (NDVI) trend of the middle part of northern slope of the north Tianshan Mountains from 2000 to 2015 (A), changes in NDVI with altitude (B), and NDVI spatial distribution in 2000 (C), 2005 (D), 2010 (E), and 2015 (F).
Fig. 3 Changes of climatic factors of study area of the middle part of northern slope of the north Tianshan Mountains from 2000 to 2015. A, Temperature. B, Precipitation. Interpolation results of annual minimum temperature (C), annual average temperature (D), annual maximum temperature (E), and annual cumulative precipitation (F) in 2000 (1), 2005 (2), 2010 (3) and 2015 (4).
Fig. 4 Proportion of arable lands (A), forest (B), grassland (C),water body (D), urban (E) and desert (F) in each pixel and grazing intensity (G) spatial distribution in the study area of the middle part of northern slope of the north Tianshan Mountains in 2000 (1), 2005 (2), 2010 (3) and 2015 (4). Grazing intensity data comes from Food and Agriculture Organization of the United Nations (FAO).
2000 | 2005 | 总计 Total | |||||
---|---|---|---|---|---|---|---|
耕地 Arable | 林地 Forest | 草地 Grassland | 水体 Water body | 城市 Urban | 荒漠 Desert | ||
耕地 Arable | 1.568 8 | 0.003 8 | 0.040 9 | 0.001 1 | 0.010 1 | 0.021 6 | 1.646 3 |
林地 Forest | 0.017 9 | 0.592 0 | 0.017 3 | 0.000 5 | 0.001 7 | 0.001 9 | 0.631 3 |
草地 Grassland | 0.140 3 | 0.004 9 | 5.606 3 | 0.005 5 | 0.006 8 | 0.534 3 | 6.298 1 |
水体 Water body | 0.001 3 | 0.000 1 | 0.003 8 | 0.489 3 | 0.000 4 | 0.005 0 | 0.499 9 |
城市 Urban | 0.006 2 | 0.000 1 | 0.002 3 | 0.000 2 | 0.147 9 | 0.000 9 | 0.157 6 |
荒漠 Desert | 0.056 6 | 0.001 5 | 0.027 6 | 0.017 7 | 0.011 6 | 5.558 6 | 5.673 6 |
总计 Total | 1.791 1 | 0.602 4 | 5.698 2 | 0.514 3 | 0.178 5 | 6.122 3 | 14.906 8 |
Table 3 Land use transition matrix of the middle part of northern slope of the north Tianshan Mountains from 2000 to 2005 (104 km2)
2000 | 2005 | 总计 Total | |||||
---|---|---|---|---|---|---|---|
耕地 Arable | 林地 Forest | 草地 Grassland | 水体 Water body | 城市 Urban | 荒漠 Desert | ||
耕地 Arable | 1.568 8 | 0.003 8 | 0.040 9 | 0.001 1 | 0.010 1 | 0.021 6 | 1.646 3 |
林地 Forest | 0.017 9 | 0.592 0 | 0.017 3 | 0.000 5 | 0.001 7 | 0.001 9 | 0.631 3 |
草地 Grassland | 0.140 3 | 0.004 9 | 5.606 3 | 0.005 5 | 0.006 8 | 0.534 3 | 6.298 1 |
水体 Water body | 0.001 3 | 0.000 1 | 0.003 8 | 0.489 3 | 0.000 4 | 0.005 0 | 0.499 9 |
城市 Urban | 0.006 2 | 0.000 1 | 0.002 3 | 0.000 2 | 0.147 9 | 0.000 9 | 0.157 6 |
荒漠 Desert | 0.056 6 | 0.001 5 | 0.027 6 | 0.017 7 | 0.011 6 | 5.558 6 | 5.673 6 |
总计 Total | 1.791 1 | 0.602 4 | 5.698 2 | 0.514 3 | 0.178 5 | 6.122 3 | 14.906 8 |
2000 | 2010 | 总计 Total | |||||
---|---|---|---|---|---|---|---|
耕地 Arable | 林地 Forest | 草地 Grassland | 水体 Water body | 城市 Urban | 荒漠 Desert | ||
耕地 Arable | 1.463 0 | 0.003 5 | 0.117 6 | 0.005 0 | 0.052 1 | 0.005 2 | 1.646 4 |
林地 Forest | 0.057 8 | 0.208 3 | 0.332 1 | 0.003 9 | 0.004 5 | 0.023 9 | 0.630 5 |
草地 Grassland | 0.511 1 | 0.095 7 | 4.663 2 | 0.028 6 | 0.041 5 | 0.956 1 | 6.296 2 |
水体 Water body | 0.007 1 | 0.000 4 | 0.050 0 | 0.224 0 | 0.001 7 | 0.216 8 | 0.500 0 |
城市 Urban | 0.035 5 | 0.000 2 | 0.009 5 | 0.000 2 | 0.100 1 | 0.012 2 | 0.157 7 |
荒漠 Desert | 0.215 4 | 0.004 2 | 1.047 6 | 0.035 9 | 0.027 4 | 4.342 1 | 5.672 6 |
总计 Total | 2.289 9 | 0.312 3 | 6.220 0 | 0.297 6 | 0.227 3 | 5.556 3 | 14.903 4 |
Table 4 Land use transition matrix of the middle part of northern slope of the north Tianshan Mountains from 2000 to 2010 (104 km2)
2000 | 2010 | 总计 Total | |||||
---|---|---|---|---|---|---|---|
耕地 Arable | 林地 Forest | 草地 Grassland | 水体 Water body | 城市 Urban | 荒漠 Desert | ||
耕地 Arable | 1.463 0 | 0.003 5 | 0.117 6 | 0.005 0 | 0.052 1 | 0.005 2 | 1.646 4 |
林地 Forest | 0.057 8 | 0.208 3 | 0.332 1 | 0.003 9 | 0.004 5 | 0.023 9 | 0.630 5 |
草地 Grassland | 0.511 1 | 0.095 7 | 4.663 2 | 0.028 6 | 0.041 5 | 0.956 1 | 6.296 2 |
水体 Water body | 0.007 1 | 0.000 4 | 0.050 0 | 0.224 0 | 0.001 7 | 0.216 8 | 0.500 0 |
城市 Urban | 0.035 5 | 0.000 2 | 0.009 5 | 0.000 2 | 0.100 1 | 0.012 2 | 0.157 7 |
荒漠 Desert | 0.215 4 | 0.004 2 | 1.047 6 | 0.035 9 | 0.027 4 | 4.342 1 | 5.672 6 |
总计 Total | 2.289 9 | 0.312 3 | 6.220 0 | 0.297 6 | 0.227 3 | 5.556 3 | 14.903 4 |
2000 | 2015 | 总计 Total | |||||
---|---|---|---|---|---|---|---|
耕地 Arable | 林地 Forest | 草地 Grassland | 水体 Water body | 城市 Urban | 荒漠 Desert | ||
耕地 Arable | 1.442 8 | 0.003 2 | 0.114 7 | 0.004 7 | 0.076 4 | 0.004 6 | 1.646 4 |
林地 Forest | 0.064 9 | 0.208 0 | 0.324 1 | 0.004 0 | 0.005 6 | 0.023 8 | 0.630 4 |
草地 Grassland | 0.612 9 | 0.095 7 | 4.538 3 | 0.028 2 | 0.068 6 | 0.952 4 | 6.296 1 |
水体 Water body | 0.007 7 | 0.000 4 | 0.049 8 | 0.222 9 | 0.002 3 | 0.216 9 | 0.500 0 |
城市 Urban | 0.034 2 | 0.000 2 | 0.008 5 | 0.000 3 | 0.102 3 | 0.012 2 | 0.157 7 |
荒漠 Desert | 0.281 5 | 0.004 2 | 0.985 1 | 0.036 0 | 0.042 0 | 4.323 7 | 5.672 5 |
总计 Total | 2.444 0 | 0.311 7 | 6.0205 | 0.297 2 | 0.297 2 | 5.533 6 | 14.903 1 |
Table 5 Land use transition matrix of the middle part of northern slope of the north Tianshan Mountains from 2000 to 2015 (104 km2)
2000 | 2015 | 总计 Total | |||||
---|---|---|---|---|---|---|---|
耕地 Arable | 林地 Forest | 草地 Grassland | 水体 Water body | 城市 Urban | 荒漠 Desert | ||
耕地 Arable | 1.442 8 | 0.003 2 | 0.114 7 | 0.004 7 | 0.076 4 | 0.004 6 | 1.646 4 |
林地 Forest | 0.064 9 | 0.208 0 | 0.324 1 | 0.004 0 | 0.005 6 | 0.023 8 | 0.630 4 |
草地 Grassland | 0.612 9 | 0.095 7 | 4.538 3 | 0.028 2 | 0.068 6 | 0.952 4 | 6.296 1 |
水体 Water body | 0.007 7 | 0.000 4 | 0.049 8 | 0.222 9 | 0.002 3 | 0.216 9 | 0.500 0 |
城市 Urban | 0.034 2 | 0.000 2 | 0.008 5 | 0.000 3 | 0.102 3 | 0.012 2 | 0.157 7 |
荒漠 Desert | 0.281 5 | 0.004 2 | 0.985 1 | 0.036 0 | 0.042 0 | 4.323 7 | 5.672 5 |
总计 Total | 2.444 0 | 0.311 7 | 6.0205 | 0.297 2 | 0.297 2 | 5.533 6 | 14.903 1 |
Fig. 5 Correlation coefficient between normalized differential vegetation index (NDVI) and impact factors. A, arable proportion; AT, annual average temperature; D, desert proportion; F, forest proportion; G, grassland proportion; GI, grazing intensity; HT, annual maximum temperature; LT, annual minimum temperature; P, annual cumulative precipitation; U, urban proportion; W, water body proportion.
Fig. 6 Scatter plot of normalized differential vegetation index (NDVI) fitting values of Multiple Linear Regression (MLR)(A) and Random Forest (RF)(B) in 2000 (1), 2005 (2), 2010 (3) and 2015 (4). MAE, mean absolute error; RMSE, root mean square error.
Fig. 7 Frequency distribution histogram of normalized differential vegetation index (NDVI) fitting values of Multiple Linear Regression (MLR) and Random Forest (RF) in 2000 (A), 2005 (B), 2010 (C) and 2015 (D).
Fig. 8 Importance of impact factors of spatial distribution and change of normalized differential vegetation index (NDVI). A, Contribution of each factor to static NDVI. A, arable proportion; AT, annual average temperature; D, desert proportion; F, forest proportion; G, grassland proportion; GI, grazing intensity; HT, annual maximum temperature; LT, annual minimum temperature. P, annual cumulative precipitation; U, urban proportion; W, water body proportion. B, Add the suffix C to each letter to dynamic NDVI.
对静态NDVI的贡献率 Contribution to static NDVI | 对NDVI变化的贡献率 Contribution to dynamic NDVI | ||||||
---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2000-2005 | 2000-2010 | 2000-2015 | |
气候因子 Climate factor | 0.74 | 0.69 | 0.67 | 0.63 | 0.71 | 0.55 | 0.41 |
人类活动 Human activity | 0.26 | 0.31 | 0.33 | 0.37 | 0.29 | 0.35 | 0.59 |
Table 6 Important statistics of the independent variables for spatial distribution (static) and change (dynamic) of normalized differential vegetation index (NDVI)
对静态NDVI的贡献率 Contribution to static NDVI | 对NDVI变化的贡献率 Contribution to dynamic NDVI | ||||||
---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2000-2005 | 2000-2010 | 2000-2015 | |
气候因子 Climate factor | 0.74 | 0.69 | 0.67 | 0.63 | 0.71 | 0.55 | 0.41 |
人类活动 Human activity | 0.26 | 0.31 | 0.33 | 0.37 | 0.29 | 0.35 | 0.59 |
分级标准 Rule (%) | NDVI | NDVI变化 NDVI change | ||||||
---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2000-2005 | 2000-2010 | 2000-2015 | ||
高估区 Overrated | <-5 | 16.70 | 17.72 | 15.28 | 13.54 | 1.71 | 2.85 | 3.78 |
准确区 Accurate | -5-5 | 65.73 | 64.30 | 68.69 | 71.68 | 96.28 | 93.76 | 92.01 |
低估区 Underrated | >5 | 17.57 | 17.98 | 16.03 | 14.78 | 2.00 | 3.39 | 4.21 |
Table 7 Spatial difference of normalized differential vegetation index (NDVI) predicted value
分级标准 Rule (%) | NDVI | NDVI变化 NDVI change | ||||||
---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2000-2005 | 2000-2010 | 2000-2015 | ||
高估区 Overrated | <-5 | 16.70 | 17.72 | 15.28 | 13.54 | 1.71 | 2.85 | 3.78 |
准确区 Accurate | -5-5 | 65.73 | 64.30 | 68.69 | 71.68 | 96.28 | 93.76 | 92.01 |
低估区 Underrated | >5 | 17.57 | 17.98 | 16.03 | 14.78 | 2.00 | 3.39 | 4.21 |
Fig. 9 Spatial difference of the normalized differential vegetation index (NDVI) predicted values in 2000 (A), 2005 (B), 2010 (C), 2015 (D), 2000-2005 (E), 2000-2010 (F), and 2000-2015 (G) in study area of the middle part of northern slope of the north Tianshan Mountains.
[1] | Belgiu M, Drăguţ L (2016). Random Forest in Remote Sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. |
[2] | Breiman L (2001). Random forests. Machine Learning, 45, 5-32. |
[3] | Cai P, Hamdi R, Luo GP, He HL, Zhang M, Termonia P, de Maeyer P (2019). Agriculture intensification increases summer precipitation in Tianshan Mountains, China. Atmospheric Research, 227, 140-146. |
[4] | Chen X, Luo GP, Xia J, Zhou KF, Lou SP, Ye MQ (2004). Ecological response of climate change on the northern slope of Tianshan Mountains in Xinjiang. Science in China Series D, 34, 1166-1175. |
[ 陈曦, 罗格平, 夏军, 周可法, 娄少平, 叶民权 (2004). 新疆天山北坡气候变化的生态响应研究. 中国科学D辑, 34, 1166-1175.] | |
[5] | Fang XR, Wen ZF, Chen JL, Wu SJ, Huang YY, Ma MH (2019). Remote sensing estimation of suspended sediment concentration based on Random Forest Regression Model. Journal of Remote Sensing, 23, 756-772. |
[ 方馨蕊, 温兆飞, 陈吉龙, 吴胜军, 黄远洋, 马茂华 (2019). 随机森林回归模型的悬浮泥沙浓度遥感估算. 遥感学报, 23, 756-772.] | |
[6] |
Gang C, Zhou W, Wang Z, Chen Y, Li J, Chen J, Qi J, Odeh I, Groisman PY (2015). Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy and Crop Science, 201, 57-68.
DOI URL |
[7] |
Gao JB, Jiao KW, Wu SH (2019). Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013. Acta Geographica Sinica, 74, 534-543.
DOI URL |
[ 高江波, 焦珂伟, 吴绍洪 (2019). 1982-2013年中国植被NDVI空间异质性的气候影响分析. 地理学报, 74, 534-543.] | |
[8] |
Gilbert M, Nicolas G, Cinardi G, van Boeckel TP, Vanwambeke SO, Wint GRW, Robinson TP (2018). Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Scientific Data, 5, 180227. DOI: 10.1038/sdata.2018.227.
DOI URL PMID |
[9] | Gu ZJ, Duan XW, Shi YD, Li Y, Pan X (2018). Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China. Ecological Indicators, 93, 54-64. |
[10] | Han QF, Luo GP, Li CF, Shakir A, Wu M, Saidov A (2016). Simulated grazing effects on carbon emission in Central Asia. Agricultural and Forest Meteorology, 216, 203-214. |
[11] | He K, Wu SX, Yang Y, Wang D, Zhang SY, Yin N (2018). Dynamic changes of land use and oasis in Xinjiang in the last 40 years. Arid Land Geography, 41, 1333-1340. |
[ 贺可, 吴世新, 杨怡, 王丹, 张寿雨, 尹楠 (2018). 近40 a新疆土地利用及其绿洲动态变化. 干旱区地理, 41, 1333-1340.] | |
[12] | Hu S, Wang FY, Zhan CS, Zhao RX, Mo XG, Liu LMZ (2019). Detecting and attributing vegetation changes in Taihang Mountain, China. Journal of Mountain Science, 16, 337-350. |
[13] | Huang XT, Luo GP, He HL, Wang XX, Amuti T (2017). Ecological effects of grazing in the northern Tianshan Mountains. Water, 9, 932. DOI: 10.3390/w9120932. |
[14] | Huang XT, Luo GP, Ye FP, Han QF (2018). Effects of grazing on net primary productivity, evapotranspiration and water use efficiency in the grasslands of Xinjiang, China. Journal of Arid Land, 10, 588-600. |
[15] |
Kasza J, Wolfe R (2014). Interpretation of commonly used statistical regression models. Respirology, 19(1), 14-21.
URL PMID |
[16] |
Krishnaswamy J, John R, Joseph S (2014). Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Global Change Biology, 20, 203-215.
URL PMID |
[17] | Li JJ, Peng SZ, Li Z (2017). Detecting and attributing vegetation changes on China’s Loess Plateau. Agricultural and Forest Meteorology, 247, 260-270. |
[18] | Liu Q, Yang ZP, Han F, Wang ZG, Wang CR (2016). NDVI-based vegetation dynamics and their response to recent climate change: a case study in the Tianshan Mountains, China. Environmental Earth Sciences, 75, 1189. DOI: 10.1007/s12665-016-5987-5. |
[19] | Liu Y, Nie L, Yang Y (2018). Spatio-temporal evolution and climatic driving characteristics of grassland in Tianshan Mountain area in 2001-2015. Ecology and Environmental Sciences, 27, 802-810. |
[ 刘艳, 聂磊, 杨耘 (2018). 2001-2015年天山地区草地NDVI时空演变和气候驱动特征分析. 生态环境学报, 27, 802-810.] | |
[20] | Liu ZJ, Liu YS, Li YR (2018). Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China. Ecological Indicators, 95, 370-378. |
[21] | Lujan-Moreno GA, Howard PR, Rojas OG, Montgomery DC (2018). Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study. Expert Systems with Applications, 109, 195-205. |
[22] | Ma QM, Jia XP, Wang HB, Li YS, Li SN (2019). Recent advances in driving mechanisms of climate and anthropogenic factors on vegetation change. Journal of Desert Research, 39(6), 48-55. |
[ 马启民, 贾晓鹏, 王海兵, 李永山, 李劭宁 (2019). 气候和人为因素对植被变化影响的评价方法综述. 中国沙漠, 39(6), 48-55.] | |
[23] |
Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531, 229-232.
URL PMID |
[24] | Sung S, Nicklas F, Georg K, Lee DK (2016). Estimating net primary productivity under climate change by application of Global Forest Model (G4M). Journal of the Korean Society People, Plants, and Environment, 19, 549-558. |
[25] | Wang H, Zhou SL, Li XB, Liu HH, Chi DK, Xu KK (2016). The influence of climate change and human activities on ecosystem service value. Ecological Engineering, 87, 224-239. |
[26] | Wang JB, Zhao J, Li CH, Zhu Y, Kang CY, Gao C (2019). The spatial-temporal patterns of the impact of human activities on vegetation coverage in China from 2001 to 2015. Acta Geographica Sinica, 74, 504-519. |
[ 王建邦, 赵军, 李传华, 朱钰, 康重阳, 高超 (2019). 2001-2015年中国植被覆盖人为影响的时空格局. 地理学报, 74, 504-519.] | |
[27] | Wang ZY, Xu DY, Yang H, Ding X, Li DJ (2017). Impacts of climate change and human activities on vegetation dynamics in Inner Mongolia, 1981-2010. Progress in Geography, 36, 1025-1032. |
[ 王子玉, 许端阳, 杨华, 丁雪, 李达净 (2017). 1981-2010年气候变化和人类活动对内蒙古地区植被动态影响的定量研究. 地理科学进展, 36, 1025-1032.] | |
[28] | Yang HF, Yao L, Wang YB, Li JL (2017). Relative contribution of climate change and human activities to vegetation degradation and restoration in north Xinjiang, China. The Rangeland Journal, 39, 289-302. |
[29] | Zhang M, Luo GP, Cao XS, Hamdi R, Li T, Cai P, Ye H, He HL (2019). Numerical simulation of the irrigation effects on surface fluxes and local climate in typical mountain-oasis-desert systems in the central Asia arid area. Journal of Geophysical Research: Atmospheres, 124, 12485-12506. |
[30] | Zhang Q, Yuan XL, Chen X, Luo GP, Li LH (2016). Vegetation change and its response to climate change in Central Asia from 1982 to 2012. Chinese Journal of Plant Ecology, 40, 13-23. |
[ 张琪, 袁秀亮, 陈曦, 罗格平, 李龙辉 (2016). 1982-2012年中亚植被变化及其对气候变化的响应. 植物生态学报, 40, 13-23.] | |
[31] | Zhang RP, Zhang YL, Guo J, Feng QS, Liang TG (2018). Comparison of spatial interpolation methods for precipitation distribution in Xinjiang region. Pratacultural Science, 35, 521-529. |
[ 张仁平, 张云玲, 郭靖, 冯琦胜, 梁天刚 (2018). 新疆地区降水分布的空间插值方法比较. 草业科学, 35, 521-529.] | |
[32] | Zheng K, Wei JZ, Pei JY, Cheng H, Zhang XL, Huang FQ, Li FM, Ye JS (2019). Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Science of the Total Environment, 660, 236-244. |
[1] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[2] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[3] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[7] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[8] | HE Jie, HE Liang, LÜ Du, CHENG Zhuo, XUE Fan, LIU Bao-Yuan, ZHANG Xiao-Ping. Spatiotemporal variation and its driving mechanism of photosynthetic vegetation in the Loess Plateau from 2001 to 2020 [J]. Chin J Plant Ecol, 2023, 47(3): 306-318. |
[9] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[10] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[11] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[12] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[13] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[14] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[15] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn