Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (5): 490-499.DOI: 10.3724/SP.J.1258.2011.00490
• Research Articles • Previous Articles Next Articles
Received:
2010-12-06
Accepted:
2011-01-28
Online:
2011-12-06
Published:
2011-06-07
Contact:
WANG Li-Qun
ZHOU Yan-Song, WANG Li-Qun. Ecological adaptation of root architecture to grassland degradation in Potentilla acaulis[J]. Chin J Plant Ecol, 2011, 35(5): 490-499.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00490
退化群落 Degraded community | 平均盖度 Average coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | 建群种 Constructive species | 放牧率 Stocking rate (sheep·hm-2) |
---|---|---|---|---|
轻度退化 Light degradation (L) | 92.6 | 159.21 | 大针茅 Stipa grandis | 1.33 |
中度退化 Moderate degradation (M) | 93.0 | 81.00 | 大针茅 Stipa grandis | 4.00 |
重度退化 Heavy degradation (H) | 71.2 | 79.74 | 冷蒿 Artemisia frigida | 6.67 |
极度退化 Extreme degradation (E) | 67.7 | 57.02 | 星毛委陵菜 Potentilla acaulis | 8.00 |
Table 1 Data of each index of four degraded communities
退化群落 Degraded community | 平均盖度 Average coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | 建群种 Constructive species | 放牧率 Stocking rate (sheep·hm-2) |
---|---|---|---|---|
轻度退化 Light degradation (L) | 92.6 | 159.21 | 大针茅 Stipa grandis | 1.33 |
中度退化 Moderate degradation (M) | 93.0 | 81.00 | 大针茅 Stipa grandis | 4.00 |
重度退化 Heavy degradation (H) | 71.2 | 79.74 | 冷蒿 Artemisia frigida | 6.67 |
极度退化 Extreme degradation (E) | 67.7 | 57.02 | 星毛委陵菜 Potentilla acaulis | 8.00 |
退化群落 Degraded community | 相对优势度 Relative dominance | 重要值 Important value | Simpson优势度指数 Simpson dominance index | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|
轻度退化 L | 0.039d | 0.102d | 0.180 | 0.820 | 0.864 |
中度退化 M | 0.042c | 0.122c | 0.129 | 0.871 | 0.913 |
重度退化 H | 0.044b | 0.142b | 0.182 | 0.818 | 0.861 |
极度退化 E | 0.123a | 0.444a | 0.146 | 0.854 | 0.893 |
Table 2 Comparison of relative dominance, important value and community index of Potentilla acaulis in different communities
退化群落 Degraded community | 相对优势度 Relative dominance | 重要值 Important value | Simpson优势度指数 Simpson dominance index | Simpson多样性指数 Simpson diversity index | Pielou均匀度指数 Pielou evenness index |
---|---|---|---|---|---|
轻度退化 L | 0.039d | 0.102d | 0.180 | 0.820 | 0.864 |
中度退化 M | 0.042c | 0.122c | 0.129 | 0.871 | 0.913 |
重度退化 H | 0.044b | 0.142b | 0.182 | 0.818 | 0.861 |
极度退化 E | 0.123a | 0.444a | 0.146 | 0.854 | 0.893 |
退化群落 Degraded community | 冠幅(长×宽) Crown width (length × width) (cm2) | 根幅(长×宽) Root range (length × width) (cm2 ) | 根深 Root depth (cm· individual-1) | 一级垂向根条数 Number of first vertical root (No.· individual-1) | 分蘖子株数 Number of plant tillers (No.· individual-1) | 水平分蘖根长度 Length of horizontal root tillering (cm·individual-1) | 地下生物量 Underground biomass (g·individual-1) |
---|---|---|---|---|---|---|---|
轻度退化 L | 535.2c (23.1 × 23.1) | 1392.4c (37.3 × 37.3) | 48.2c | 10b | 3c | 2.0b | 0.6c |
中度退化 M | 341.6bc (18.5 × 18.5) | 1561.0c (39.5 × 39.5) | 54.2b | 29a | 6bc | 3.4a | 1.6b |
重度退化 H | 641.2b (25.3 × 25.3) | 2696.6b (51.9 × 51.9) | 52.8b | 33a | 9b | 2.6ab | 2.0ab |
极度退化 E | 1047.2a (32.4 × 32.4) | 3637.0a (60.3 × 60.3) | 58.6a | 39a | 14a | 3.3a | 2.8a |
Table 3 Analysis of variance on the crown width, underground biomass, root range, root depth, the number of first vertical root, the number of plant tillers and the length of horizontal root tillering of Potentilla acaulis in different communities
退化群落 Degraded community | 冠幅(长×宽) Crown width (length × width) (cm2) | 根幅(长×宽) Root range (length × width) (cm2 ) | 根深 Root depth (cm· individual-1) | 一级垂向根条数 Number of first vertical root (No.· individual-1) | 分蘖子株数 Number of plant tillers (No.· individual-1) | 水平分蘖根长度 Length of horizontal root tillering (cm·individual-1) | 地下生物量 Underground biomass (g·individual-1) |
---|---|---|---|---|---|---|---|
轻度退化 L | 535.2c (23.1 × 23.1) | 1392.4c (37.3 × 37.3) | 48.2c | 10b | 3c | 2.0b | 0.6c |
中度退化 M | 341.6bc (18.5 × 18.5) | 1561.0c (39.5 × 39.5) | 54.2b | 29a | 6bc | 3.4a | 1.6b |
重度退化 H | 641.2b (25.3 × 25.3) | 2696.6b (51.9 × 51.9) | 52.8b | 33a | 9b | 2.6ab | 2.0ab |
极度退化 E | 1047.2a (32.4 × 32.4) | 3637.0a (60.3 × 60.3) | 58.6a | 39a | 14a | 3.3a | 2.8a |
主成分 Principal component | 特征值 Eigen- value | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) |
---|---|---|---|
根表面积 Root surface area (cm2) | 10.07 | 62.94 | 62.94 |
二级侧根长度 Length of secondary lateral root (cm) | 2.06 | 12.85 | 75.79 |
总根长 Length of total root (cm) | 1.60 | 10.02 | 85.81 |
根分叉数 Number of furcation | 1.04 | 6.53 | 92.34 |
Table 4 Principal component analysis on the root architecture parameter
主成分 Principal component | 特征值 Eigen- value | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) |
---|---|---|---|
根表面积 Root surface area (cm2) | 10.07 | 62.94 | 62.94 |
二级侧根长度 Length of secondary lateral root (cm) | 2.06 | 12.85 | 75.79 |
总根长 Length of total root (cm) | 1.60 | 10.02 | 85.81 |
根分叉数 Number of furcation | 1.04 | 6.53 | 92.34 |
主成分 Principal component | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | |||||
---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | 特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | ||
0.5 mm < d ≤ 1.0 mm | 8.29 | 55.24 | 55.24 | 8.21 | 54.73 | 54.73 | |
1.0 mm < d ≤ 1.5 mm | 2.79 | 18.62 | 73.85 | 2.74 | 18.28 | 73.01 | |
1.5 mm < d ≤ 2.0 mm | 1.24 | 8.25 | 82.10 | 1.28 | 8.55 | 81.56 |
Table 5 Principal component analysis on the parameters of root length and root surface area in different level of root diameter (d)
主成分 Principal component | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | |||||
---|---|---|---|---|---|---|---|
特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | 特征值 Eigenvalue | 总变异度 Total variability (%) | 累积贡献率 Cumulative contribution rate (%) | ||
0.5 mm < d ≤ 1.0 mm | 8.29 | 55.24 | 55.24 | 8.21 | 54.73 | 54.73 | |
1.0 mm < d ≤ 1.5 mm | 2.79 | 18.62 | 73.85 | 2.74 | 18.28 | 73.01 | |
1.5 mm < d ≤ 2.0 mm | 1.24 | 8.25 | 82.10 | 1.28 | 8.55 | 81.56 |
土层深度 Soil depth (cm) | 土壤含水量 Soil water content (%) | 土壤容重 Soil bulk density (g·cm-3) | ||||||
---|---|---|---|---|---|---|---|---|
L | M | H | E | L | M | H | E | |
0-10 | 2.76b | 1.87d | 1.66b | 1.61c | 1.63a | 1.91a | 1.72c | 1.88a |
10-20 | 3.03b | 2.46ab | 2.04b | 1.64c | 1.79a | 1.92a | 1.76abc | 1.87a |
20-30 | 2.83b | 2.16c | 1.88b | 1.72c | 1.84a | 1.89a | 1.78ab | 1.83b |
30-40 | 2.90b | 2.36bc | 2.89a | 1.73c | 1.82a | 1.91a | 1.81a | 1.83b |
40-50 | 3.06b | 2.56ab | 2.78a | 1.87b | 1.78a | 1.88a | 1.75bc | 1.84b |
50-60 | 4.13a | 2.66a | 2.80a | 2.06a | 1.74a | 1.91a | 1.73bc | 1.81b |
平均值 Mean | 3.12a | 2.35b | 2.34bc | 1.77c | 1.77c | 1.91a | 1.76c | 1.84b |
Table 6 Comparison of mean soil water content and soil bulk density among different soil layer in different communities
土层深度 Soil depth (cm) | 土壤含水量 Soil water content (%) | 土壤容重 Soil bulk density (g·cm-3) | ||||||
---|---|---|---|---|---|---|---|---|
L | M | H | E | L | M | H | E | |
0-10 | 2.76b | 1.87d | 1.66b | 1.61c | 1.63a | 1.91a | 1.72c | 1.88a |
10-20 | 3.03b | 2.46ab | 2.04b | 1.64c | 1.79a | 1.92a | 1.76abc | 1.87a |
20-30 | 2.83b | 2.16c | 1.88b | 1.72c | 1.84a | 1.89a | 1.78ab | 1.83b |
30-40 | 2.90b | 2.36bc | 2.89a | 1.73c | 1.82a | 1.91a | 1.81a | 1.83b |
40-50 | 3.06b | 2.56ab | 2.78a | 1.87b | 1.78a | 1.88a | 1.75bc | 1.84b |
50-60 | 4.13a | 2.66a | 2.80a | 2.06a | 1.74a | 1.91a | 1.73bc | 1.81b |
平均值 Mean | 3.12a | 2.35b | 2.34bc | 1.77c | 1.77c | 1.91a | 1.76c | 1.84b |
Fig. 1 Figure of soil hardness value of different soil layers in four communities. Horizontal axis, horizontal distance from the perpendicular bisector of crown width (cm); vertical axis, vertical distance from soil surface (cm); diameter of black round represents the value of soil hardness (kg·cm-2).
Fig. 2 Figure of three-dimension root architecture of broad-waist-inverted centrum of Potentilla acaulis. Density of black dot represents soil water content.
[1] |
Bates TR, Lynch JP (2000). Plant growth and phosphorus accumulation of wild-type and two root hair mutants of Arabidopsis thaliana (Brassicaceae). American Journal of Botany, 87, 958-963.
URL PMID |
[2] |
Berndtsson R, Chen HS (1994). Variability of soil water content along a transect in a desert area. Journal of Arid Environments, 27, 127-139.
DOI URL |
[3] | Böhm W (1979). Methods of studying root systems. In: Billing WD, Golley F, Lange OL, Olson JS eds. Ecological Studies. Springer, Berlin, 188. |
[4] | Chen SH (陈世鍠), Hua YS (华永胜) (1991). Preliminary research on creeping-rooted plant of grassland. Journal of Grassland Inner Mongolia (内蒙古草业), 1, 25-28. (in Chinese) |
[5] | Chen SH (陈世鍠), Zhang H (张昊), Wang LQ (王立群), Zhan BL (占布拉), Zhao ML (赵萌丽) (2001). Plant Roots of Grassland in Northern China (中国北方草地植物根系). Jilin University Press, Changchun. (in Chinese) |
[6] |
Cheng YF, Dai XH, Zhao YD (2007). Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. The Plant Cell, 19, 2430-2439.
DOI URL PMID |
[7] | Coppin NJ, Richards IJ (1990). Use of Vegetation in Civil Engineering. CIRIA, Butterworths. |
[8] | Coutts MP (1983). Root architecture and tree stability. Plant and Soil, 71, 171-188. |
[9] |
Danjon F, Bert D, Godin C, Trichet P (1999). Structural root architecture of 5-year-old Pinus pinaster measured by 3D digitising and analysed with AMAPmod. Plant and Soil, 217, 49-63.
DOI URL |
[10] | Dong M (董鸣) (1996). Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica (植物学报), 38, 828-835. (in Chinese with English abstract) |
[11] | Drexhage M, Chauvière M, Colin F, Nielsen CNN (1999). Development of structural root architecture and allometry of Quercus petraea. Canadian Journal of Forest Research, 29, 600-608. |
[12] | Feng X (冯秀), Tong C (仝川), Zhang L (张鲁), Miao BL (苗百岭), Ding Y (丁勇), Zhang YM (张远鸣) (2006). Assessment on grassland degradation at regional-scale in the Baiyinxile Ranch, Inner Mongolia. Journal of Natural Resources (自然资源学报), 21, 575-583. (in Chinese with English abstract) |
[13] | Gupta SC, Sharma PP, DeFranchi SA (1989). Compaction effects on soil structure. Advances in Agronomy, 42, 311-338. |
[14] | Henderson R, Ford ED, Renshaw E (1983). Morphology of the structural root system of Sitka spruce 2. Computer simulation of rooting pattern. Forestry, 56, 137-153. |
[15] | Jin Y (晋瑜), Pan CD (潘存德), Wang M (王梅), Wan M (万猛) (2005). Plant community species diversity and comparison of its indices in arid desert land. Arid Land Geography (干旱区地理), 28, 113-119. (in Chinese with English abstract) |
[16] |
Leyser O (2006). Dynamic integration of auxin transport and signaling. Current Biology, 16, R424-R433.
URL PMID |
[17] | Li DS (李德生), Liu WB (刘文彬), Xu MN (许慕农) (1993). A study on water and soil conversation benefits of vegetation in limestone mountain area. Journal of Soil and Water Conservation (水土保持学报), 7(2), 57-62. (in Chinese with English abstract) |
[18] | Li JH (李金花), Li ZQ (李镇清) (2002). Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulis under different grazing intensity. Acta Phytoecologica Sinica (植物生态学报), 26, 435-440. (in Chinese with English abstract) |
[19] | Li YH (李永宏) (1994). Research on the grazing degradation model of the main steppe rangelands in Inner Mongolia and some considerations for the establishment of a computerized rangeland monitoring system. Acta Phytoecolo- gica Sinica (植物生态学报), 18, 68-79. (in Chinese with English abstract) |
[20] | Liu DH (刘定辉), Li Y (李勇) (2003). Mechanism of plant roots improving resistance of soil to concentrated flow erosion. Journal of Soil and Water Conservation (水土保持学报), 17(3), 34-37. (in Chinese with English abstract) |
[21] | Liu WG (刘晚苟), Shan L (山仑) (2003). Effect of soil bulk density on maize growth under different water regimes. Chinese Journal of Applied Ecology (应用生态学报), 14, 1906-1910. (in Chinese with English abstract) |
[22] |
Lynch J (1995). Root architecture and plant productivity. Plant Physiology, 109, 7-13.
DOI URL PMID |
[23] | Mao QZ (毛齐正), Yang XT (杨喜田), Miao L (苗蕾) (2008). The ecological roles and influencing factors of plant root architecture. Henan Science (河南科学), 26, 172-176. (in Chinese with English abstract) |
[24] | McMinn RG (1963). Characteristics of Douglas-fir root systems. Canadian Journal of Botany, 41, 105-122. |
[25] |
Mouchel CF, Briggs GC, Hardtke CS (2004). Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Development, 18, 700-714.
URL PMID |
[26] | Norris JE, Stokes A, Mickovski SB, Cammeraat E, van Beek R, Nicoll BC, Achim A (2008). Slope Stability and Erosion Control: Ecotechnological Solutions. Springer Dordrecht. |
[27] | Oppelt AL, Kurth W, Dzierzon H, Jentschke G, Godbold DL (2000). Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana. Annals of Forest Science, 57, 463-475. |
[28] | Pagès L (1999a). Root system architecture: from its representation to the study of its elaboration. Agronomie, 19, 295-304. |
[29] | Pagès L (1999b). Why model root system architecture? In: Stokes A ed. Developments in Plant and Soil Sciences. Kluwer, Dordrecht. 187-194. |
[30] | Pagès L (2002). Modelling root system architecture. In: Weisel Y, Eshel A, Kafkafi U eds. Plant Roots: The Hidden Half 3rd edn. Marcel Dekker, New York. 175-186. |
[31] | Pagès L, Asseng S, Pellerin S, Diggle A (2000). Modelling root system growth and architecture. In: Smit AL ed. Root Methods: A Handbook. Springer, Berlin. 113-146. |
[32] | Song YC (宋永昌) (2001). Vegetation Ecology (植被生态学). East China Normal University Press, Shanghai, 47-51. (in Chinese) |
[33] |
Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell, 17, 616-627.
DOI URL PMID |
[34] | Sun RY (孙儒泳), Li B (李博), Zhuge Y (诸葛阳), Shang YC (尚玉昌) (1993). General Ecology (普通生态学). China Higher Education Press, Beijing, 135-137. (in Chinese) |
[35] | Tsakaldimi M, Tsitsoni T, Ganatsas P, Zagas T (2009). A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant and Soil, 324, 103-113. |
[36] | Wang K (王库) (2001). Effects of plant roots on soil anti- erosion. Soil and Environmental Sciences (土壤与环境), 10, 250-252. (in Chinese with English abstract) |
[37] | Wang LQ (王立群), Chen SH (陈世鍠) (2003). Study on the principle of dividing root system type of lawn plant. Journal of Inner Mongolia Agricultural University (内蒙古农业大学学报), 24(3), 11-13. (in Chinese with English abstract) |
[38] | Wang SP (汪诗平), Li YH (李永宏) (1999). Degradation mechanism of typical grassland in Inner Mongolia. Chinese Journal of Applied Ecology (应用生态学报), 10, 437-441. (in Chinese with English abstract) |
[39] | Wu Y (吴彦), Liu SQ (刘世全), Wang JX (王金锡) (1997). Effect of plant root system on soil anti-erosion. Chinese Journal of Applications and Environmental Biology (应用与环境生物学报), 3, 119-124. (in Chinese with English abstract) |
[40] | Yu XZ (于向芝), He X (贺晓), Zhang T (张韬), Wang W (王炜) (2007). Response of leaf structures of 8 plants to grazing prohibition in degraded grassland of Inner Mongolia. Acta Ecologica Sinica (生态学报), 27, 1638-1645. (in Chinese with English abstract) |
[41] | Zhang TH (张铜会), Zhao HL (赵哈林), Toshiya O (大黑俊哉), Yasuhito S (白户康人) (2003). Soil characteristics and spatial pattern of vegetation after successive grazing in Horqin Sandy Land, Inner Mongolia. Journal of Arid Land Resources and Environment (干旱区资源与环境), 17(4), 117-121. (in Chinese with English abstract) |
[42] | Zhao W (赵玮), Zhang TH (张铜会), Liu XP (刘新平), Wang SK (王少昆), Luo YY (罗亚勇) (2008). Spatiotemporal variation of soil moisture and its relations with Artemisia halodendron root water content as affected by rainfall. Chinese Journal of Ecology (生态学杂志), 27, 151-156. (in Chinese with English abstract) |
[43] | Zhao XY (赵雪艳), Wang SP (汪诗平) (2009). Responses of the anatomical characteristics of plant leaf to long-term grazing under different stocking rates in Inner Mongolia steppe. Acta Ecologica Sinica (生态学报), 29, 2906-2918. (in Chinese with English abstract) |
[1] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[2] | ZHU Wei, YU Li-Xuan, ZHAO De-Hai, JIA Li-Ming. Architectural analysis of root systems of mature trees in sandy loam soils using the root development classification [J]. Chin J Plant Ecol, 2019, 43(2): 119-130. |
[3] | Qian YANG, Wei WANG, Hui ZENG. Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2018, 42(4): 430-441. |
[4] | Yi WU, Wen-Yao LIU, Liang SONG, Xi CHEN, Hua-Zheng LU, Su LI, Xian-Meng SHI. Advances in ecological studies of epiphytes using canopy cranes [J]. Chin J Plan Ecolo, 2016, 40(5): 508-522. |
[5] | SONG Qing-Hua,ZHAO Cheng-Zhang,SHI Yuan-Chun,DU Jing,WANG Ji-Wei,CHEN Jing. Fractal root system of Melica przewalskyi along different aspect in degraded grassland [J]. Chin J Plan Ecolo, 2015, 39(8): 816-824. |
[6] | SONG Qing-Hua,ZHAO Cheng-Zhang,SHI Yuan-Chun,DU Jing,WANG Ji-Wei,CHEN Jing. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes [J]. Chin J Plan Ecolo, 2015, 39(6): 577-585. |
[7] | ZHENG Hui-Ling,ZHAO Cheng-Zhang,XU Ting,DUAN Bei-Bei,HAN Ling,FENG Wei. Trade-off relationship between root forks and branch angle of Reaumuria songarica on different aspects of slopes [J]. Chin J Plan Ecolo, 2015, 39(11): 1062-1070. |
[8] | LIU Na-Na,TIAN Qiu-Ying,ZHANG Wen-Hao. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(9): 905-915. |
[9] | WEN Jun, ZHOU Hua-Kun, YAO Bu-Qing, LI Yi-Kang, ZHAO Xin-Quan, CHEN Zhe, LIAN Li-Ye, GUO Kai-Xian. Characteristics of soil respiration in different degraded alpine grassland in the source region of Three-River [J]. Chin J Plant Ecol, 2014, 38(2): 209-218. |
[10] | GUO Jing-Heng, ZENG Fan-Jiang, LI Chang-Jun, ZHANG Bo. Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert [J]. Chin J Plant Ecol, 2014, 38(1): 36-44. |
[11] | QIN Feng-Fei,LI Qiang,CUI Zhao-Ming,LI Hong-Ping,YANG Zhi-Ran. Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering [J]. Chin J Plant Ecol, 2012, 36(4): 333-345. |
[12] | DONG Jia, MOU Pu. Root nutrient foraging of morphological plasticity and physiological mechanism in Calliste- phus chinensis [J]. Chin J Plant Ecol, 2012, 36(11): 1172-1183. |
[13] | GAO Yan, TIAN Qiu-Ying, SHI Feng-Ling, LI Ling-Hao, ZHANG Wen-Hao. Comparative studies on adaptive strategies of Medicago falcata and M. truncatula to phosphorus deficiency in soil [J]. Chin J Plant Ecol, 2011, 35(6): 632-640. |
[14] | JANNATHAN Mamut, TAN Dun-Yan, CHENG Xiao-Jun. Ecological significance of fruit heteromorphism in the annual ephemeral Senecio subdentatus [J]. Chin J Plant Ecol, 2011, 35(6): 663-671. |
[15] | YANG Qing, ZHANG Yi, ZHOU Zhi-Chun, MA Xue-Hong, LIU Wei-Hong, FENG Zhong-Ping. Genetic variation in root architecture and phosphorus efficiency in response to heterogeneous phosphorus deficiency in Pinus massoniana families [J]. Chin J Plant Ecol, 2011, 35(12): 1226-1235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn