Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (12): 1226-1236.DOI: 10.3724/SP.J.1258.2012.01226
• Research Articles • Previous Articles Next Articles
DAI Jing-Zhong1,2, WEI Zhi-Jun1, HE Nian-Peng2,*(), WANG Ruo-Meng3, WEN Xue-Hua2, ZHANG Yun-Hai4, ZHAO Xiao-Ning2, YU Gui-Rui2
Received:
2012-07-31
Accepted:
2012-09-03
Online:
2012-07-31
Published:
2012-11-28
Contact:
HE Nian-Peng
DAI Jing-Zhong, WEI Zhi-Jun, HE Nian-Peng, WANG Ruo-Meng, WEN Xue-Hua, ZHANG Yun-Hai, ZHAO Xiao-Ning, YU Gui-Rui. Effect of grazing enclosure on the priming effect and temperature sensitivity of soil C mineralization in Leymus chinensis grasslands, Inner Mongolia, China[J]. Chin J Plant Ecol, 2012, 36(12): 1226-1236.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.01226
地上生物量 Aboveground biomass (g·m-2) | 地表凋落物 Aboveground litter (g·m-2) | 土壤有机碳 Soil organic carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) | 土壤pH Soil pH | |
---|---|---|---|---|---|---|
自由放牧草地 (FG0) Grazing-free grassland | 60.3 ± 20.6a | 30.5 ± 13.8a | 13.4 ± 0.5a | 1.4 ± 0.1a | 0.22 ± 0.02a | 8.2 ± 0.3a |
封育11年草地 (FG11) 11-year fenced grassland | 171.6 ± 9.6b | 82.8 ± 18.3b | 18.2 ± 0.5b | 1.7 ± 0.1a | 0.30 ± 0.01b | 7.7 ± 0.2b |
封育31年草地 (FG31) 31-year fenced grassland | 148.3 ± 41.3b | 121.1 ± 32.7c | 18.8 ± 2.2b | 1.4 ± 0.7a | 0.28 ± 0.01b | 7.2 ± 0.3c |
F | 23.39 | 19.46 | 20.31 | 0.89 | 69.64 | 17.14 |
p | <0.001 | <0.001 | <0.001 | 0.437 | <0.001 | <0.001 |
Table 1 Effect of enclosure on aboveground biomass and soil chemical properties of Leymus chinensis grassland (mean ± SD)
地上生物量 Aboveground biomass (g·m-2) | 地表凋落物 Aboveground litter (g·m-2) | 土壤有机碳 Soil organic carbon (g·kg-1) | 土壤全氮 Soil total nitrogen (g·kg-1) | 土壤全磷 Soil total phosphorus (g·kg-1) | 土壤pH Soil pH | |
---|---|---|---|---|---|---|
自由放牧草地 (FG0) Grazing-free grassland | 60.3 ± 20.6a | 30.5 ± 13.8a | 13.4 ± 0.5a | 1.4 ± 0.1a | 0.22 ± 0.02a | 8.2 ± 0.3a |
封育11年草地 (FG11) 11-year fenced grassland | 171.6 ± 9.6b | 82.8 ± 18.3b | 18.2 ± 0.5b | 1.7 ± 0.1a | 0.30 ± 0.01b | 7.7 ± 0.2b |
封育31年草地 (FG31) 31-year fenced grassland | 148.3 ± 41.3b | 121.1 ± 32.7c | 18.8 ± 2.2b | 1.4 ± 0.7a | 0.28 ± 0.01b | 7.2 ± 0.3c |
F | 23.39 | 19.46 | 20.31 | 0.89 | 69.64 | 17.14 |
p | <0.001 | <0.001 | <0.001 | 0.437 | <0.001 | <0.001 |
df | F | p | |
---|---|---|---|
封育时间 Enclosure duration (G) | 2 | 1 299.1 | <0.000 1 |
葡萄糖添加 Glucose addition (A) | 1 | 15 682.9 | <0.000 1 |
培养温度 Incubation temperature (T) | 5 | 1 716.5 | <0.000 1 |
培养时间 Incubation time (I) | 14 | 455.4 | <0.000 1 |
G × A | 2 | 618.3 | <0.000 1 |
G × T | 10 | 131.5 | <0.000 1 |
G × I | 28 | 15.9 | <0.000 1 |
A × T | 5 | 960.3 | <0.000 1 |
A × I | 14 | 383.9 | <0.000 1 |
T × I | 70 | 68.1 | <0.000 1 |
G × A × T | 10 | 59.5 | <0.000 1 |
G × A × I | 28 | 11.6 | <0.000 1 |
G × T × I | 140 | 7.3 | <0.000 1 |
A × T × I | 70 | 55.8 | <0.000 1 |
G × A × T × I | 140 | 6.7 | <0.000 1 |
Table 2 Effects of enclosure duration, glucose addition, incubation temperature and time on soil C mineralization rate
df | F | p | |
---|---|---|---|
封育时间 Enclosure duration (G) | 2 | 1 299.1 | <0.000 1 |
葡萄糖添加 Glucose addition (A) | 1 | 15 682.9 | <0.000 1 |
培养温度 Incubation temperature (T) | 5 | 1 716.5 | <0.000 1 |
培养时间 Incubation time (I) | 14 | 455.4 | <0.000 1 |
G × A | 2 | 618.3 | <0.000 1 |
G × T | 10 | 131.5 | <0.000 1 |
G × I | 28 | 15.9 | <0.000 1 |
A × T | 5 | 960.3 | <0.000 1 |
A × I | 14 | 383.9 | <0.000 1 |
T × I | 70 | 68.1 | <0.000 1 |
G × A × T | 10 | 59.5 | <0.000 1 |
G × A × I | 28 | 11.6 | <0.000 1 |
G × T × I | 140 | 7.3 | <0.000 1 |
A × T × I | 70 | 55.8 | <0.000 1 |
G × A × T × I | 140 | 6.7 | <0.000 1 |
Fig. 2 Changes in soil C mineralization rate with incubation temperature and glucose addition. FG0, grazing-free grassland; FG0-GLU, grazing-free grassland with glucose addition; FG11, 11-year fenced grassland; FG11-GLU, 11-year fenced grassland with glucose addition; FG31, 31-year fenced grassland; FG31-GLU, 31-year fenced grassland with glucose addition.
Fig. 4 Effect of incubation temperatures on priming effect of soil C mineralization. Priming effect is calculated by the soil C mineralization of glucose addition divided by soil C mineralization of no glucose addition.
处理 Treatment | 基质质量指数 Substrate quality index | Q10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | 培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | ||||||||
F | p | F | p | F | p | F | p | ||||
封育 Enclosure (G) | 22.7 | <0.000 1 | 123.5 | <0.000 1 | 113.6 | <0.000 1 | 86.2 | <0.000 1 | |||
葡萄糖添加 Glucose addition (A) | 378.8 | <0.000 1 | 2 076.1 | <0.000 1 | 828.3 | <0.000 1 | 101.6 | <0.000 1 | |||
G × A | 4.9 | 0.020 1 | 108.3 | <0.000 1 | 17.2 | 0.000 1 | 9.2 | 0.001 8 |
Table 3 Effects of enclosure and glucose addition on the substrate quality index and temperature sensitivity index (Q10) of soil C mineralization
处理 Treatment | 基质质量指数 Substrate quality index | Q10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | 培养前7天 Duration of 7 days incubation | 培养前56天 Duration of 56 days incubation | ||||||||
F | p | F | p | F | p | F | p | ||||
封育 Enclosure (G) | 22.7 | <0.000 1 | 123.5 | <0.000 1 | 113.6 | <0.000 1 | 86.2 | <0.000 1 | |||
葡萄糖添加 Glucose addition (A) | 378.8 | <0.000 1 | 2 076.1 | <0.000 1 | 828.3 | <0.000 1 | 101.6 | <0.000 1 | |||
G × A | 4.9 | 0.020 1 | 108.3 | <0.000 1 | 17.2 | 0.000 1 | 9.2 | 0.001 8 |
Y = C0 + A × exp (B × T) | |||||
---|---|---|---|---|---|
A | B | R2 | Q10 | ||
培养前7天 Duration of 7 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 52.3 ± 0.9a | 0.052 ± 0.006 | 0.939 | 1.682 ± 0.031a |
GLU | 133.9 ± 3.5b | 0.104 ± 0.002 | 0.938 | 2.838 ± 0.068b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 52.7 ± 1.0a | 0.040 ± 0.002 | 0.950 | 1.496 ± 0.025c |
GLU | 118.1 ± 13.6b | 0.083 ± 0.004 | 0.918 | 2.296 ± 0.086d | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 61.2 ± 0.8a | 0.039 ± 0.002 | 0.943 | 1.480 ± 0.025c |
GLU | 171.9 ± 14.2c | 0.075 ± 0.001 | 0.933 | 2.120 ± 0.017f | |
培养前56天 Duration of 56 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 374.0 ± 54.6a | 0.055 ± 0.008 | 0.965 | 1.742 ± 0.046a |
GLU | 1 421.1 ± 58.4b | 0.065 ± 0.001 | 0.899 | 1.918 ± 0.022b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 345.1 ± 33.3a | 0.016 ± 0.005 | 0.692 | 1.540 ± 0.010b |
GLU | 842.7 ± 37.2c | 0.048 ± 0.001 | 0.819 | 1.615 ± 0.023c | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 396.0 ± 6.7a | 0.038 ± 0.002 | 0.880 | 1.527 ± 0.062b |
GLU | 1 026.1 ± 13.5d | 0.052 ± 0.003 | 0.813 | 1.675 ± 0.058ac |
Table 4 Effect of enclosure and glucose addition on temperature sensitivity of soil C mineralization (mean ± SD)
Y = C0 + A × exp (B × T) | |||||
---|---|---|---|---|---|
A | B | R2 | Q10 | ||
培养前7天 Duration of 7 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 52.3 ± 0.9a | 0.052 ± 0.006 | 0.939 | 1.682 ± 0.031a |
GLU | 133.9 ± 3.5b | 0.104 ± 0.002 | 0.938 | 2.838 ± 0.068b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 52.7 ± 1.0a | 0.040 ± 0.002 | 0.950 | 1.496 ± 0.025c |
GLU | 118.1 ± 13.6b | 0.083 ± 0.004 | 0.918 | 2.296 ± 0.086d | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 61.2 ± 0.8a | 0.039 ± 0.002 | 0.943 | 1.480 ± 0.025c |
GLU | 171.9 ± 14.2c | 0.075 ± 0.001 | 0.933 | 2.120 ± 0.017f | |
培养前56天 Duration of 56 days incubation | |||||
自由放牧草地 Grazing-free grassland (FG0) | CK | 374.0 ± 54.6a | 0.055 ± 0.008 | 0.965 | 1.742 ± 0.046a |
GLU | 1 421.1 ± 58.4b | 0.065 ± 0.001 | 0.899 | 1.918 ± 0.022b | |
封育11年的草地 11-year fenced grassland (FG11) | CK | 345.1 ± 33.3a | 0.016 ± 0.005 | 0.692 | 1.540 ± 0.010b |
GLU | 842.7 ± 37.2c | 0.048 ± 0.001 | 0.819 | 1.615 ± 0.023c | |
封育31年的草地 31-year fenced grassland (FG31) | CK | 396.0 ± 6.7a | 0.038 ± 0.002 | 0.880 | 1.527 ± 0.062b |
GLU | 1 026.1 ± 13.5d | 0.052 ± 0.003 | 0.813 | 1.675 ± 0.058ac |
1 | Allison SD, Wallenstein MD, Bradford MA ( 2010). Soil- carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340. |
2 | Bai JB ( 白洁冰), Xu XL ( 徐兴良), Song MH ( 宋明华), He YT ( 何永涛), Jiang J ( 蒋婧), Shi PL ( 石培礼 ) ( 2011). Effects of temperature and added nitrogen on carbon mineralization in alpine soils on the Tibetan Plateau. Ecology and Environmental Sciences (生态环境学报), 20, 855-859. (in Chinese with English abstract) |
3 | Balogh J, Pintér K, Foti S, Cserhalmi D, Papp M, Nagy Z ( 2011). Dependence of soil respiration on soil mois- ture, clay content, soil organic matter, and CO2 uptake in dry grasslands. Soil Biology & Biochemistry, 43, 1006-1013. |
4 | Chen CM ( 陈春梅), Xie ZB ( 谢祖彬), Zhu JG ( 朱建国 ) ( 2006). Advances in research on priming effect of soil organic carbon. Soils (土壤), 38, 359-365. (in Chinese with English abstract) |
5 | Chen QS ( 陈全胜), Li LH ( 李凌浩), Han XG ( 韩兴国), Yan ZD ( 阎志丹), Wang YF ( 王艳芬), Zhang Y ( 张焱), Xiong XG ( 熊小刚), Chen SP ( 陈世苹), Zhang LX ( 张丽霞), Gao YZ ( 高英志), Tang F ( 唐芳), Yang J ( 杨晶), Dong YS ( 董云社 ) ( 2004). Temperature sensitivity of soil respiration in relation to soil mois- ture in 11 communities of typical temperate steppe in Inner Mongolia. Acta Ecologica Sinica (生态学报), 24, 831-836. (in Chinese with English abstract) |
6 | Chen ZZ ( 陈佐忠), Wang SP ( 汪诗平), Wang YF ( 王艳芬 ) (2000). Typical Grassland Ecosystems in China (中国典型草地生态系统). Science Press, Beijing. (in Chinese) |
7 | Dalenberg JW, Jager G ( 1981). Priming effect of small glucose additions to 14C-labeled soil . Soil Biology & Biochemistry, 13, 219-223. |
8 | Fan FL ( 范分良), Huang PR ( 黄平容), Tang YJ ( 唐勇军), Li ZJ ( 李兆君), Liang YC ( 梁永超 ) ( 2012). Altered microbial communities change soil respiration rates and their temperature sensitivity. Environmental Sciences (环境科学), 33, 932-937. (in Chinese with English abstract) |
9 | Fang CM, Smith P, Moncrieff JB, Smith JU ( 2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. |
10 | Gershenson A, Bader NE, Cheng WX ( 2009). Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 15, 176-183. |
11 | Hamer U, Marschner B ( 2005). Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biology & Biochemistry, 37, 445-454. |
12 |
He NP, Han XG, Yu GR, Chen QS, Justin W ( 2011 a). Divergent changes in plant community composition under 3-decade grazing exclusion in continental steppe. PLOS ONE, 6(11), e26506. doi: 10.1371/ journal.pone.0026506.
DOI URL |
13 | He NP ( 何念鹏), Han XG ( 韩兴国), Yu GR ( 于贵瑞 ) ( 2011). Carbon and nitrogen sequestration rate in long-term fenced grasslands in Inner Mongolia, China. Acta Ecologica Sinica (生态学报), 31, 4270-4276. (in Chinese with English abstract) |
14 | He NP ( 何念鹏), Han XG ( 韩兴国), Yu GR ( 于贵瑞), Dai JZ ( 代景忠 ) ( 2012). Effects of prescribed fire on carbon sequestration of long-term grazing-excluded grasslands in Inner Mongolia. Acta Ecologica Sinica (生态学报), 32, 4388-4395. (in Chinese with English abstract) |
15 | He NP, Yu Q, Wu L, Wang YS, Han XG ( 2008). Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology & Biochemistry, 40, 2952-2959. |
16 | He NP, Zhang YH, Dai JZ, Han XG, Baoyin T, Yu GR ( 2012). Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 22, 859-873. |
17 | He NP, Zhang YH, Yu Q, Cheng QS, Pan QM, Zhang GM, Han XG ( 2011b). Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere, 2, doi: 10.1890/ES1810-00017.00011. |
18 | IPCC(Intergovernmental Panel on Climate Change) ( 2007). Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climatic Change in 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
19 | Jia BR, Zhou GS ( 2009). Integrated diurnal soil respiration model during growing season of a typical temperate steppe: effects of temperature, soil water content and biomass production. Soil Biology & Biochemistry, 41, 681-686. |
20 | Jia BR, Zhou GS, Yuan WP ( 2007). Modeling and coupling of soil respiration and soil water content in fenced Leymus chinensis steppe, Inner Mongolia. Ecological Modeling, 201, 157-162. |
21 | Kuzyakov Y ( 2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Bioche- mistry, 42, 1363-1371. |
22 | Lal R ( 2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627. |
23 | Laura RD ( 1975). On the “priming effect” of organic materials. Soil Science Society of America Journal, 39, 807-808. |
24 | Liu LX ( 刘立新), Dong YS ( 董云社), Qi YC ( 齐玉春), Zhou LX ( 周凌晞 ) ( 2007). Study on the temperature sensitivity of soil respiration in Xilin River of Inner Mongolia, China. China Environmental Science (中国环境科学), 27, 226-230. (in Chinese with English abstract) |
25 | Lloyd J, Taylor JA ( 1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
26 | Luo YQ, Wan SQ, Hui DF, Wallace LL ( 2001). Acclimati- zation of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. |
27 | Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Monta- gnani L, Richardson AD ( 2010). Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838-840. |
28 | Mcintosh RP, Odum EP ( 1969). Ecological succession. Science, 166, 403-404. |
29 | Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ ( 2009). Soil priming by sugar and leaf- litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190. |
30 | Odum EP ( 1957). The ecosystem approach in the teaching of ecology illustrated with sample class data. Ecology, 38, 531-535. |
31 | Perkins DM, Yvon-Durocher G, Demars BOL, Reiss J, Pichler DE, Friberg N, Trimmer M, Woodward G ( 2012). Consistent temperature dependence of respira- tion across ecosystems contrasting in thermal history. Global Change Biology, 18, 1300-1311. |
32 | Sierra CA ( 2012). Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theore- tical considerations. Biogeochemistry, 108, 1-15. |
33 | von Lützow M, Kögel-Knabner I ( 2009). Temperature sensitivity of soil organic matter decomposition: What do we know? Biology and Fertility of Soils, 46, 1-15. |
34 |
Wu L, He N, Wang Y, Han X ( 2008). Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in Leymus chinensis grasslands of northern China. Journal of Environmental Quality, 37, 663-668.
DOI URL PMID |
35 | Yang QP ( 杨庆朋), Liu HS ( 刘洪升), Wang JS ( 王劲松), Liu LX ( 刘丽香), Chi YG ( 迟永刚), Zheng YP ( 郑云普 ) ( 2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration. Acta Ecologica Sinica (生态学报), 31, 2301-2311. (in Chinese with English abstract) |
36 | Zhang JB ( 张金波), Song CC ( 宋长春), Yang WY ( 杨文燕 ) ( 2005). Temperature sensitivity of soil respiration and its effecting factors in the different land use. Acta Scientiae Circumstantiae (环境科学学报), 25, 1537-1542. (in Chinese with English abstract) |
37 | Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XH, Fei SF, Deng SP, He ZL, van Nostrand JD, Luo YQ ( 2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2, 106-110. |
38 | Zhu PL ( 朱培立), Huang DM ( 黄东迈 ) ( 1994). Discussion on priming effect of soil nitrogen. Scientia Agricultura Scinica (中国农业科学), 27, 45-52. (in Chinese with English abstract) |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | Yi-Heng Chen Yusupjan Rusul 吾斯曼 阿卜杜热合曼. Analysis of spatial and temporal variation in grassland vegetation cover in the Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[3] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[4] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[5] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[8] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[9] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[10] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[11] | MIAO Li-Juan, ZHANG Yu-Yang, CHUAI Xiao-Wei, BAO Gang, HE Yu, ZHU Jing-Wen. Effects of climatic factors and their time-lag on grassland NDVI in Asian drylands [J]. Chin J Plant Ecol, 2023, 47(10): 1375-1385. |
[12] | WANG De-Li, LIANG Cun-Zhu. Restoration state of degraded grasslands: climate climax or disturbance climax? [J]. Chin J Plant Ecol, 2023, 47(10): 1464-1470. |
[13] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[14] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[15] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn