Chin J Plant Ecol ›› 2008, Vol. 32 ›› Issue (6): 1301-1311.DOI: 10.3773/j.issn.1005-264x.2008.06.011
Special Issue: 生态系统碳水能量通量
• Original article • Previous Articles Next Articles
ZHANG Wen-Li1,2, CHEN Shi-Ping2, MIAO Hai-Xia2, LIN Guang-Hui2,*()
Received:
2008-02-20
Accepted:
2008-06-25
Online:
2008-02-20
Published:
2008-11-30
Contact:
LIN Guang-Hui
ZHANG Wen-Li, CHEN Shi-Ping, MIAO Hai-Xia, LIN Guang-Hui. EFFECTS ON CARBON FLUX OF CONVERSION OF GRASSLAND STEPPE TO CROPLAND IN CHINA[J]. Chin J Plant Ecol, 2008, 32(6): 1301-1311.
天DOY | 地上生物量 Aboveground biomass (g) | 绿叶 Green leaf (g) | 枯叶 Withered leaf (g) | 茎 Sterm (g) | 生殖穗 Spike (g) | ||||
---|---|---|---|---|---|---|---|---|---|
草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | ||
192 | 189.1±13.6 | 86.3±3.4 | 102.8±11.3 | ||||||
193 | 319.8±26.4 | 65.3±7.0 | 12.7±1.0 | 193.3±13.8 | 45.0±6.1 | ||||
200 | 460±32.5 | 58.4±8.4 | 22.2±2.6 | 315.9±30.8 | 84.2±2.6 | ||||
206 | 197.4±17.2 | 91.2±5.7 | 98.6±12.8 | ||||||
207 | 806.5±16.8 | 78.2±8.0 | 45.8±4.2 | 521.9±32.0 | 160.5±13.6 | ||||
214 | 643.5±36.4 | 38.0±1.8 | 48.6±2.3 | 401.3±15.8 | 155.6±20.2 | ||||
221 | 213.7±25.4 | 82.0±4.0 | 18.3±3.3 | 112.8±27.4 | 21.0±6.0 | ||||
221 | 870.7±47.7 | 21.2±0.9 | 82.9±4.0 | 464.0±19.0 | 302.7±24.5 | ||||
228 | 837.7±45.4 | 4.1±0.4 | 88.0±2.6 | 364.6±26.0 | 381.1±22.6 | ||||
234 | 197.2±11.9 | 68.2±4.2 | 20.2±4.1 | 98.3±14.3 | 10.4±2.4 | ||||
235 | 753.7±33.5 | 1.4±0.9 | 61.1±5.1 | 299.3±12.0 | 391.9±22.4 | ||||
253 | 174.5±20.0 | 47.4±7.6 | 34.0±2.7 | 76.3±16.7 | 16.7±3.8 | ||||
266 | 140.4±6.9 | 36.9±3.2 | 34.7±3.2 | 67.1±4.4 | 1.57±0.3 |
Table 1 Seasonal changes of biomass of different parts of aboveground in steppe and wheat field (g·m-2)(Mean±SE)
天DOY | 地上生物量 Aboveground biomass (g) | 绿叶 Green leaf (g) | 枯叶 Withered leaf (g) | 茎 Sterm (g) | 生殖穗 Spike (g) | ||||
---|---|---|---|---|---|---|---|---|---|
草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | 草地 Steppe | 小麦田 Wheat | ||
192 | 189.1±13.6 | 86.3±3.4 | 102.8±11.3 | ||||||
193 | 319.8±26.4 | 65.3±7.0 | 12.7±1.0 | 193.3±13.8 | 45.0±6.1 | ||||
200 | 460±32.5 | 58.4±8.4 | 22.2±2.6 | 315.9±30.8 | 84.2±2.6 | ||||
206 | 197.4±17.2 | 91.2±5.7 | 98.6±12.8 | ||||||
207 | 806.5±16.8 | 78.2±8.0 | 45.8±4.2 | 521.9±32.0 | 160.5±13.6 | ||||
214 | 643.5±36.4 | 38.0±1.8 | 48.6±2.3 | 401.3±15.8 | 155.6±20.2 | ||||
221 | 213.7±25.4 | 82.0±4.0 | 18.3±3.3 | 112.8±27.4 | 21.0±6.0 | ||||
221 | 870.7±47.7 | 21.2±0.9 | 82.9±4.0 | 464.0±19.0 | 302.7±24.5 | ||||
228 | 837.7±45.4 | 4.1±0.4 | 88.0±2.6 | 364.6±26.0 | 381.1±22.6 | ||||
234 | 197.2±11.9 | 68.2±4.2 | 20.2±4.1 | 98.3±14.3 | 10.4±2.4 | ||||
235 | 753.7±33.5 | 1.4±0.9 | 61.1±5.1 | 299.3±12.0 | 391.9±22.4 | ||||
253 | 174.5±20.0 | 47.4±7.6 | 34.0±2.7 | 76.3±16.7 | 16.7±3.8 | ||||
266 | 140.4±6.9 | 36.9±3.2 | 34.7±3.2 | 67.1±4.4 | 1.57±0.3 |
Fig 3 Seasonal changes of net ecosystem exchange (NEE) (a) and total ecosystem respiration (TER) (b) of steppe and wheat field during the growing season in 2006 Negative indicates carbon uptake, positive indicates carbon release *: p <0.05 **: p <0.01
Fig. 4 Diel variations of net ecosystem exchange (NEE) (a), primary assimilation (PA) (b) and total ecosystem respiration (TER) (c) on 18 June, 2006 in steppe and wheat field Negative means carbon uptake
Fig. 5 Linear relationships between net ecosystem exchange (NEE) with leaf area index (LAI) in steppe and wheat field during the growing season Negative means carbon uptake
Fig. 6 Linear relationships between total ecosystem respiration (TER) and soil temperature at 10 cm depth (Ts) in the steppe and wheat field during the growing season
Fig. 7 Linear relationships between total ecosystem respiration (TER) and soil volume water content at 10 cm depth (VWC) in the steppe and wheat field during the growing season
[1] | Baldocchi DD (1994). A comparative study of mass and energy exchange over a closed C 3 (wheat) and an open C 4 (corn) crop: II.CO 2 exchange and water use efficiency. Agricultural and Forest Meteorology, 67,291-321. |
[2] | Baldocchi DD (1997). Measuring and modeling carbon dioxide and water vapor exchange over a temperate broad-leafed forest during the 1985 summer drought. Plant, Cell and Environment, 20,1108-1122. |
[3] |
Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001). Factors controlling long- and short-term sequestration of atmospheric CO 2 in a mid-latitude forest. Science, 294,1688-1691.
DOI URL PMID |
[4] | Black TA, Hartog G, Neumann HH, Blanken PD, Yang PC, Russell C, Nesic Z, Lee X, Chen SG, Staebler R, Novak MD (1996). Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology, 2,219-229. |
[5] |
Chaves MM, Pereira JS, Maroco JP, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalh I, Faria T, inheiro CP (2002). How plants cope with water stress in the field? Photosunthesis and growth. Annals of Botany, 89,907-916.
URL PMID |
[6] | Chen YP, Chen YN, Li WH, Xu CC (2006). Characterization of photosynthesis of Populus euphratica grown in the arid region. Photosynthetica, 44,622-626. |
[7] | Chen ZZ (陈佐忠) (1988). Overview of topography and climate in the Xinlin river basin of Inner Mongolia. Research on Grassland Ecosystem (草原生态系统研究), (3),13-22. |
[8] | Ciais P, Tans PP, White JW, Trolier M, Francey RJ, Berry JA, Randall DR, Sellers PJ, Collatz JG, Schimel DS (1995). Partitioning of ocean and land uptake of CO 2 as inferred by δ 13C measurement from the NOAA/ CMDL global air sampling network. Journal of Geophysical Research, 100,5051-5070. |
[9] | Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Massarie KA, Zhang N (1994). Evidence for interannual variability of the carbon cycle from the National oceanic and Atmospheric Administration/Climate Monitoring and Diagnostic Laboratory global air sampling network. Journal of Geophysical Research, 99,22831-22855. |
[10] | Duan XN (段晓男), Wang XK (王效科), Feng ZZ (冯兆忠), Ouyang ZY (欧阳志云) (2005). Study of net ecosystem exchange for seedling stage of spring wheat ecosystem in Hetao Irrigation District, Inner Mongolia. Acta Scientiae Circumstantiae(环境科学学报), 2,166-171. (in Chinese with English abstract) |
[11] | Dugas WA, Heuer ML, Mayeux HS (1999). Carbon dioxide fluxes over bermudagrass, native prairie, and sorghum. Agricultural and Forest Meteorology, 93,121-139. |
[12] | Flanagan LB, Johnson BG (2005). Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 130,237-253. |
[13] | Flanagan LB, Wever LA, Carson PJ (2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8,599-615. |
[14] | Frank AB, Dugas WA (2001). Carbon dioxide fluxes over a northern, semiarid, mixed grass prairie. Agricultural and Forest Meteorology, 108,317-326. |
[15] | Fu YL, Yu GR, Sun XM, Li YN, Wen XF, Zhang LM, Li ZQ, Zhao LA, Hao YB (2006). Depression of net ecosystem CO 2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agricultural and Forest Meteorology, 137,234-244. |
[16] | Gratani L, Varone L (2004). Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. Photosynthetica, 42,551-558. |
[17] | Ham JM, Knapp AK (1998). Fluxes of CO 2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source. Agricultural and Forest Meteorology, 89,1-14. |
[18] | Houghton RA 1995. Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble J, Levine E, Steanrt BA eds. Soils and Global Change. CRC Press, Inc. Boca Raton, Florida, 45-65. |
[19] | Hunt JE, Kelliher FM, McSeveny TM, Byers JN (2002). Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology, 111,65-82. |
[20] | Kato T, Tang YH, Gu S, Hirota M (2006). Temperature and biomass influences on interannual changes in CO 2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 12,1285-1298. |
[21] | Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113,97-120. |
[22] | Li LH (李凌浩), Liu XH (刘先华), Chen ZZ (陈佐忠) (1998). Study on the carbon cycle of Leymus chinensis steppe in the Xinlin river basin. Acta Botanica Sinica (植物学报), 40,955-961. (in Chinese with English abstract) |
[23] | Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M (2005). Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 11,1-15. |
[24] | Matos MC, Matos AA, Mantas A, Cordeiro V, Vieira DA, Silva JB (1998). Diurnal and seasonal changes in Prunus amygdalus gas exchanges. Photosynthetica, 35,517-524. |
[25] | Matos MC, Rebelo E, Lauriano J, Semedo J, Marques N, Campos PS, Matos A, Vieira-da-silva J (2004). CO 2 assimilation and water relations of almond tree ( Prunus amygdalus Batsch) cultivars grown under field conditions. Photosynthetica, 42,473-476. |
[26] |
Ni BR, Pallardy SG (1991). Response of gas exchange to water stress in seedlings of woody angiosperms. Tree Physiology, 8,1-9.
DOI URL PMID |
[27] | Norman JM, Polley W (1989). Canopy photosynthesis. In: Briggs WR ed. Photosynthesis: Proc. of C.S. French Symp. on Photosynthesis, Stanford, CA, 27-23 July 1988. A. R. Liss, Inc., New York, 227-241. |
[28] | Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario JL (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biochemical Cycles, 7,785-810. |
[29] | Scurlock JMO, Hall DO (1998). The global carbon sink: a grassland perspective. Global Change Biology, 4,229-233. |
[30] | Suyker AE, Verman SB, Burba G (2003). Interannual variability in net CO 2 exchange of a native tallgrass prairie. Global Change Biology, 9,255-265. |
[31] | Tans PP, Fung IY, Takahashi T (1990). Observational constraints on the global atmospheric CO 2 budget. Science, 247,1431-1438. |
[32] | Tian HY (田洪艳), Guo P (郭平), Zhou DW (周道玮) (2001). The study on the disturbance ecological effect of reclamation of grasslands on soil and vegetation. Arid Zone Research(干旱区研究), 18(3),67-71. (in Chinese with English abstract) |
[33] | Verma SB, Kim J, Clement RJ (1992). Momentum, water vapour, and carbon dioxide exchange at a centrally located prairie site during FIFE. Journal of Geophysical Research, 97,18629-18639. |
[34] | Wen XF, Yu GR, Sun XM, Li QK, Liu YF, Zhang LM, Ren CY, Fu YL, Li ZQ (2006). Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agricultural and Forest Meteorology, 137,166-175. |
[35] |
Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993). Net exchange of CO 2 in a mid-latitude forest. Science, 260,1314-1317.
DOI URL PMID |
[36] | Xinhua News (新华网) (2006). http://www.nmg.xinhua.org/zjcy/2006-11/24/content_8609465.htm. (in Chinese) |
[37] | Xu LK, Baldocchi DD (2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 1232,79-96. |
[38] | Yu GR, Wen XF, Li QK, Zhang LM, Ren CY, Liu YF, Guan DX (2005). Seasonal patterns and environmental control of ecosystem respiration in subtropical and temperate forests in China. Science in China Series D Earth Sciences, 48 (Suppl. 1),93-105. |
[39] | Zha TS, Kellomäki S, Wang KY, Rouvinen I (2004). Carbon sequestration and ecosystem respiration for 4 years in a Scots pine forest. Global Change Biology, 10,1492-1503. |
[40] | Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Fu YL, Li QK, Li ZQ, Liu YF, Guan DX, Yan JH (2006). Seasonal variations of ecosystem apparent quantum yield (a) and maximum photosynthesis rate ( P max) of different forest ecosystems in China. Agricultural and Forest Meteorology, 137,176-187. |
[41] | Zhang SR, Gao RF (1999). Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. Photosynthetica, 37,559-571. |
[42] | Zhang YQ (张永强), Chen YJ (沈彦俊), Liu CM (刘昌明), Yu Q (于强), Sun HY (孙宏永), Jia JS (贾金生), Tang CY (唐常源), Kondoh A (2002). Measurement and analysis of water,heat and CO 2 flux from a farmland in the North China Plain. Acta Geographica Sinica(地理学报), 57,333-342.. (in Chinese with English abstract) |
[43] | Zhou GS (周广胜), Wang YH (王玉辉), Jiang YL (蒋延玲), Yang LM (杨利民) (2002). Conversion of terrestrial ecosystems and carbon cycling. Acta Phytoecologica Sinica(植物生态学报), 26,250-254. (in Chinese with English abstract) |
[44] | Zhou T (周涛), Shi PJ (史培军) (2006). Indirect impacts of land use change on soil organic carbon change in China. Advances in Earth Science(地球科学进展), 21,138-143. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn