Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (5): 526-534.DOI: 10.3773/j.issn.1005-264x.2010.05.006
Special Issue: 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
ZHANG Li-Hua1,2, CHEN Ya-Ning2,*(), ZHAO Rui-Feng3, LI Wei-Hong2, XIE Zhong-Kui1
Received:
2009-08-14
Accepted:
2009-12-10
Online:
2010-08-14
Published:
2010-05-01
Contact:
CHEN Ya-Ning
ZHANG Li-Hua, CHEN Ya-Ning, ZHAO Rui-Feng, LI Wei-Hong, XIE Zhong-Kui. Analysis of soil CO2 efflux in Populus and Ulmus pumila planting shelterbelts in arid region, China[J]. Chin J Plant Ecol, 2010, 34(5): 526-534.
Fig. 1 Changes of Populus sp. woodland’s soil respiration rate (■) and air temperature near soil surface (□), as well as Ulmus pumila woodland’s soil respiration rate (●) and air temperature near soil surface (○), measured in July 2005 (A) and October 2006 (B).
Fig. 2 Seasonal variations of soil respiration rate (A), temperature (B) and soil water content (C) in Populus sp. (solid symbols) and Ulmus pumila (open symbols) woodlands in growing season in 2005 and 2006.
年 Year | 类型 Type | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September | 10月 October | 变幅 Fluctuation |
---|---|---|---|---|---|---|---|---|
2005 | 杨树 Populus sp. | 1.854 A | 2.696 aB | 5.170 aC | 3.489 aD | 2.297 aAB | 2.234 aAB | 4.486 |
榆树 Ulmus pumila | 2.106 bA | 2.497 bA | 1.418 bB | 1.290 bBC | 0.999 bBD | 2.689 | ||
2006 | 杨树 Populus sp. | 2.968 aA | 3.251 aAC | 7.461 aB | 6.853 aB | 3.853 aC | 2.505 aD | 6.259 |
榆树 Ulmus pumila | 1.043 bAE | 2.387 bB | 1.594 bCE | 3.433 bD | 2.314 bB | 1.159 bE | 3.187 |
Table 1 Comparison of difference in soil respiration rate at two woodlands in 2005 and 2006
年 Year | 类型 Type | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September | 10月 October | 变幅 Fluctuation |
---|---|---|---|---|---|---|---|---|
2005 | 杨树 Populus sp. | 1.854 A | 2.696 aB | 5.170 aC | 3.489 aD | 2.297 aAB | 2.234 aAB | 4.486 |
榆树 Ulmus pumila | 2.106 bA | 2.497 bA | 1.418 bB | 1.290 bBC | 0.999 bBD | 2.689 | ||
2006 | 杨树 Populus sp. | 2.968 aA | 3.251 aAC | 7.461 aB | 6.853 aB | 3.853 aC | 2.505 aD | 6.259 |
榆树 Ulmus pumila | 1.043 bAE | 2.387 bB | 1.594 bCE | 3.433 bD | 2.314 bB | 1.159 bE | 3.187 |
林地类型 Woodland type | 温度 Temperature (℃) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ta | T0 | T5 | T10 | T15 | T20 | T25 | T30 | T35 | T40 | T50 | |
杨树 Populus sp. | 0.436 | 0.348 | 0.538 | 0.567 | 0.611 | 0.641 | 0.682 | 0.720 | 0.747 | 0.769 | 0.785 |
榆树 Ulmus pumila | 0.415 | 0.330 | 0.610 | 0.616 | 0.624 | 0.628 | 0.637 | 0.642 | 0.644 | 0.635 | 0.610 |
Table 2 Exponential correlation between soil respiration rate and temperature at two woodlands
林地类型 Woodland type | 温度 Temperature (℃) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ta | T0 | T5 | T10 | T15 | T20 | T25 | T30 | T35 | T40 | T50 | |
杨树 Populus sp. | 0.436 | 0.348 | 0.538 | 0.567 | 0.611 | 0.641 | 0.682 | 0.720 | 0.747 | 0.769 | 0.785 |
榆树 Ulmus pumila | 0.415 | 0.330 | 0.610 | 0.616 | 0.624 | 0.628 | 0.637 | 0.642 | 0.644 | 0.635 | 0.610 |
Fig. 3 Exponential regressions between soil respiration rate and soil temperature at 50 cm depth for Populus sp. woodland and at 35 cm depth for Ulmus pumila woodland.
林地类型 Woodland type | 4-Rs = a +b (TW) | R2 | 7-Rs = aebTWc | R2 | 6-Rs = aTbWc | R2 |
---|---|---|---|---|---|---|
杨树 Populus sp. | Rs = -0.494 + 0.015T50W15-30 | 0.56** | Rs = 0.091e0.131T50W15-300.490 | 0.81* | Rs = 0.002T502.201 W15-300.479 | 0.77* |
榆树 Ulmus pumila | Rs = 0.560 + 0.004T35W5-15 | 0.42* | Rs = 0.181e0.084T35W5-150.291 | 0.59* | Rs = 0.017T351.382 W5-150.258 | 0.58* |
8-Rs = a + bT + cW + dTW | R2 | 5-Rs = a + bT + cW | R2 | |||
杨树 Populus sp. | Rs = 13.554-0.738T50 -1.053W15-30 + 0.071T50W15-30 | 0.82** | Rs = -3.472 + 0.402T50 + 0.025W15-30 | 0.69** | ||
榆树 Ulmus pumila | Rs = 0.698 + 0.043T35 -0.087W5-15 + 0.006T35W5-15 | NS | Rs = -0.842 + 0.134T35 + 0.022W5-15 | 0.56* |
Table 3 Best regression equations between soil respiration rate and temperature, soil water content at the Populus sp. and Ulmus pumila woodlands
林地类型 Woodland type | 4-Rs = a +b (TW) | R2 | 7-Rs = aebTWc | R2 | 6-Rs = aTbWc | R2 |
---|---|---|---|---|---|---|
杨树 Populus sp. | Rs = -0.494 + 0.015T50W15-30 | 0.56** | Rs = 0.091e0.131T50W15-300.490 | 0.81* | Rs = 0.002T502.201 W15-300.479 | 0.77* |
榆树 Ulmus pumila | Rs = 0.560 + 0.004T35W5-15 | 0.42* | Rs = 0.181e0.084T35W5-150.291 | 0.59* | Rs = 0.017T351.382 W5-150.258 | 0.58* |
8-Rs = a + bT + cW + dTW | R2 | 5-Rs = a + bT + cW | R2 | |||
杨树 Populus sp. | Rs = 13.554-0.738T50 -1.053W15-30 + 0.071T50W15-30 | 0.82** | Rs = -3.472 + 0.402T50 + 0.025W15-30 | 0.69** | ||
榆树 Ulmus pumila | Rs = 0.698 + 0.043T35 -0.087W5-15 + 0.006T35W5-15 | NS | Rs = -0.842 + 0.134T35 + 0.022W5-15 | 0.56* |
林地类型 Woodland type | 深度 Depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全量N Total N (g·kg-1) | 有效N Available N (mg·kg-1) | pH (土水比1:5) (1:5 for soil: water) | 电导率Electrical conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) | HCO3- (g·kg-1) |
---|---|---|---|---|---|---|---|---|
杨树 Populus sp. | 0-5 | 6.959 | 0.657 | 31.28 | 8.13 | 0.24 | 0.885 | 0.258 |
5-15 | 4.173 | 0.330 | 21.12 | 8.24 | 0.22 | 0.895 | 0.261 | |
15-30 | 3.043 | 0.357 | 30.69 | 8.17 | 0.24 | 0.859 | 0.240 | |
30-50 | 2.926 | 0.235 | 13.73 | 8.31 | 0.15 | 0.654 | 0.270 | |
榆树 Ulmus pumila | 0-5 | 7.298 | 0.659 | 62.72 | 7.97 | 0.62 | 1.695 | 0.230 |
5-15 | 4.191 | 0.442 | 22.90 | 8.17 | 0.18 | 0.668 | 0.329 | |
15-30 | 4.406 | 0.378 | 28.79 | 8.15 | 0.21 | 0.833 | 0.326 | |
30-50 | 4.407 | 0.429 | 14.78 | 7.91 | 0.14 | 0.270 | 0.947 |
Table 4 Comparison of soil nutrient and salinity at two woodlands in 2005 and 2006
林地类型 Woodland type | 深度 Depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全量N Total N (g·kg-1) | 有效N Available N (mg·kg-1) | pH (土水比1:5) (1:5 for soil: water) | 电导率Electrical conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) | HCO3- (g·kg-1) |
---|---|---|---|---|---|---|---|---|
杨树 Populus sp. | 0-5 | 6.959 | 0.657 | 31.28 | 8.13 | 0.24 | 0.885 | 0.258 |
5-15 | 4.173 | 0.330 | 21.12 | 8.24 | 0.22 | 0.895 | 0.261 | |
15-30 | 3.043 | 0.357 | 30.69 | 8.17 | 0.24 | 0.859 | 0.240 | |
30-50 | 2.926 | 0.235 | 13.73 | 8.31 | 0.15 | 0.654 | 0.270 | |
榆树 Ulmus pumila | 0-5 | 7.298 | 0.659 | 62.72 | 7.97 | 0.62 | 1.695 | 0.230 |
5-15 | 4.191 | 0.442 | 22.90 | 8.17 | 0.18 | 0.668 | 0.329 | |
15-30 | 4.406 | 0.378 | 28.79 | 8.15 | 0.21 | 0.833 | 0.326 | |
30-50 | 4.407 | 0.429 | 14.78 | 7.91 | 0.14 | 0.270 | 0.947 |
Fig. 4 Comparison of response curves of apparent photosynthetic electron transport rate to photosynthetically active radiation in leaves of Populus sp. and Ulmus pumila woodlands.
[1] | Campbell JL, Law BE (2005). Forest soil respiration across three climatically distinct chronosequences in Oregon. Biogeochemistry, 73, 109-125. |
[2] | Campbell JL, Sun OJ, Law BE (2004). Supply-side controls on soil respiration among Oregon forests. Global Chang Biology, 10, 857-1869. |
[3] | Carbone MS, Winston GC, Trumbore SE (2008). Soil respiration in perennial grass and shrub ecosystems: linking environmental controls with plant and microbial sources on seasonal and diel timescales. Journal of Geophysical Research, 113, G02022, doi: 10.1029/2007JG000611. |
[4] | Chu JX (褚金翔), Zhang XQ (张小全) (2006). Dynamic and fractionalization of soil respiration under three different land use/covers in the subalpine region of western Sichuan Province, China. Acta Ecologica Sinica (生态学报), 26, 1693-1700. (in Chinese with English abstract) |
[5] | Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC, Zak D (2002). Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 113, 39-51. |
[6] | Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164. |
[7] | Dilly O, Zyakun A (2008). Priming effect and respiratory quotient in a forest soil amended with glucose. Geomicrobiology Journal, 25, 425-431. |
[8] | Dilustro JJ, Collins B, Duncan L, Crawford C (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204, 85-95. |
[9] |
Ekblad A, Högberb P (2001). Nature aboundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127, 305-308.
DOI URL PMID |
[10] | Epron D, Nouvenon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-andre L, Joffre R, Jourdan C, Bonnefond J-M, Berbigier P, Hamel O (2004). Spatial and temporal variations of soil respiration in an Eucalyptus plantation in Congo. Forest Ecology and Management, 202, 149-160. |
[11] | Erland B, Hakan W (2003). Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system. Global Change Biology, 9, 1788-1791. |
[12] | Ge ZW (葛之葳), Gong JR (龚吉蕊), Duan QW (段庆伟), You X (尤鑫), Zhang XS (张新时) (2009). Diurnal and monthly variation of soil respiration during growing season in Yili, Xinjiang. Journal of Nanjing Forestry University (Natural Science Edition) 南京林业大学学报(自然科学版), 33, 65-68. (in Chinese with English abstract) |
[13] | Hamer U, Marschner B (2005). Priming effects in soils after combined and repeated substrate additions. Geoderma, 128, 38-51. |
[14] | Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biology and Biochemistry, 39, 418-425. |
[15] | Illeris L, Michelsen A, Jonasson S (2003). Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry, 85, 15-29. |
[16] | IPCC (Intergovernmental Panel on Climate Change) (2000). Land use, land-use change and forestry. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ eds. A Special Report of the IPCC. Cambridge University Press, Cambridge, UK. |
[17] | Irvine J, Law BE, Kurpius MR (2005). Coupling of canopy gas exchange with root and rhizosphere respiration in a semiarid forest. Biogeochemistry, 73, 271-282. |
[18] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[19] | Kang SY, Doh S, Lee DV, Jin L, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437. |
[20] | Liang NS, Nakadai T, Hirano T, Qu LY, Takayoshi K, Yasumi F, Gen I (2004). In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 123, 97-117. |
[21] | Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S (2006). Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Globe Change Biology, 12, 2136-2145. |
[22] |
Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625.
DOI URL PMID |
[23] | Lü W (吕文), Zhang WD (张卫东), Bao J (包军) (2000). Discussion on developing of Poplar and construction of Three Norths Protection Forest Project. Protection Forest Science and Technology (防护林科技), 43(2), 67-69. (in Chinese) |
[24] | Moyano FE, Kutsch WL, Rebmann C (2008). Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology, 148, 135-143. |
[25] | Moyano FE, Kutsch WL, Schulze ED (2007). Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biology and Biochemistry, 39, 843-853. |
[26] |
Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
URL PMID |
[27] | Qian YB (钱亦兵), Zhou HR (周华荣), Xu M (徐曼), Jiang J (蒋进), Wang XQ (王雪芹), Li DM (李东梅), Zhao CJ (赵从举) (2004). Relationship between water-soil properties and desert plant diversities in agricultural development area of Kelamayi. Journal of Soil and Water Conservation (水土保持学报), 18, 186-189. (in Chinese with English abstract) |
[28] | Raich JW, Tufekcioglu A (2000). Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90. |
[29] | Schaefer DA, Feng WT, Zou XM (2009). Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biology and Biochemistry, 41, 1000-1007. |
[30] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20. |
[31] |
Tang JW, Badocchi DD, Xu LK (2005). Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 11, 1298-1304.
URL PMID |
[32] | Trumbore S (2006). Carbon respired by terrestrial ecosystems-recent progress and challenges. Global Change Biology, 12, 141-153. |
[33] |
Vargas R, Detto M, Baldocchi DD, Allen MF (2009). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, doi: 10.1111/j.1365-2486.2009.021-11.x.
URL PMID |
[34] | Wang CK, Yang JY, Zhang QZ (2006). Soil respiration in six temperate forests in China. Global Change Biology, 12, 1-12. |
[35] | Wang GB (王国兵), Tang YF (唐燕飞), Ruan HH (阮宏华), Shi Z (施政), He R (何容), Wang Y (王莹), Lin F (蔺菲), Su GX (苏广鑫) (2009). Seasonal variation of soil respiration and its main regulating factors in a secondary oak forest and a pine plantation in north-subtropical area in China. Acta Ecologica Sinica (生态学报), 29, 966-975. (in Chinese with English abstract) |
[36] | Wang GJ (王光军), Tian DL (田大伦), Zhu F (朱凡), Yan WD (闫文德), Li SZ (李树战) (2008). Comparison of soil respiration and its controlling factors in sweetgum and camphortree plantations in Hunan, China. Acta Ecologica Sinica (生态学报), 28, 4107-4114. (in Chinese with English abstract) |
[37] | Xu M, Qi Y (2001a). Soil surface CO2 efflux and its spatial and temporal variation in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. |
[38] | Xu M, Qi Y (2001b). Spatial and seasonal variations of Q10 determine by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical, 15, 687-696. |
[39] | Yang LF (杨兰芳), Cai ZC (蔡祖聪), Qi SH (祁士华) (2007). Effects of maize growth and photosynthesis on δ13C in soil respiration. Acta Ecologica Sinica (生态学报), 27, 1072-1078. (in Chinese with English abstract) |
[40] | Yang YS (杨玉盛), Chen GS (陈光水), Wang XG (王小国), Xie JS (谢锦升), Dong B (董彬), Li Z (李震), Gao R (高人) (2005). Effect of clear-cutting on soil respiration of Chinese fir plantation. Acta Pedologica Sinica (土壤学报), 42, 584-590. (in Chinese with English abstract) |
[41] | Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007). Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 35, 319-328. |
[42] | Zhou WJ (周文君), Sha LQ (沙丽清), Shen SG (沈守艮), Zheng Z (郑征) (2008). Seasonal change of soil respiration and its influence factors in rubber (Hevea brasiliensis) plantation in Xishuangbanna, SW China. Journal of Mountain Science (山地学报), 26, 317-325. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn