Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (5): 529-538.DOI: 10.17521/cjpe.2016.0123
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
Ling HAN, Cheng-Zhang ZHAO*, Ting XU, Wei FENG, Bei-Bei DUAN
Online:
2017-05-10
Published:
2017-06-22
Contact:
Cheng-Zhang ZHAO
About author:
KANG Jing-yao(1991-), E-mail:
Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China[J]. Chin J Plan Ecolo, 2017, 41(5): 529-538.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0123
样地 Plot | 土壤含水量 Soil moisture content (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) | 高度 High (cm) | 密度 Density (plant·m-2) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
I | 50.07 ± 1.24a | 3.01 ± 0.19d | 171.20 ± 5.24a | 19.5 ± 0.55a | 645.30 ± 13.18d |
II | 38.77 ± 1.03b | 5.88 ± 0.23c | 146.37 ± 4.62b | 16.4 ± 0.34b | 833.10 ± 22.48c |
III | 31.50 ± 1.01c | 7.79 ± 0.33b | 127.33 ± 3.25c | 10.3 ± 0.24c | 921.40 ± 31.24b |
IV | 20.40 ± 0.67d | 11.90 ± 0.55a | 98.57 ± 3.66d | 6.3 ± 0.1d | 1β397.10 ± 45.25a |
Table 1 Wetland community biology characteristics and soil physicochemical properties in different plots (mean ± SE, n = 30)
样地 Plot | 土壤含水量 Soil moisture content (%) | 土壤电导率 Soil electrical conductivity (ms·cm-1) | 高度 High (cm) | 密度 Density (plant·m-2) | PAR (μmol·m-2·s-1) |
---|---|---|---|---|---|
I | 50.07 ± 1.24a | 3.01 ± 0.19d | 171.20 ± 5.24a | 19.5 ± 0.55a | 645.30 ± 13.18d |
II | 38.77 ± 1.03b | 5.88 ± 0.23c | 146.37 ± 4.62b | 16.4 ± 0.34b | 833.10 ± 22.48c |
III | 31.50 ± 1.01c | 7.79 ± 0.33b | 127.33 ± 3.25c | 10.3 ± 0.24c | 921.40 ± 31.24b |
IV | 20.40 ± 0.67d | 11.90 ± 0.55a | 98.57 ± 3.66d | 6.3 ± 0.1d | 1β397.10 ± 45.25a |
各功能性状 Functional characteristic | 样地 Plot | |||
---|---|---|---|---|
I | II | III | IV | |
株高 Plant height (cm) | 130.34 ± 4.50b | 149.67 ± 4.62a | 152.00 ± 5.24a | 95.67 ± 3.56c |
分枝数 Twig number (No.·clump-1) | 203.33 ± 8.83a | 173.67 ± 6.34b | 155.33 ± 5.90b | 113.33 ± 4.29c |
叶片厚度 Leaf thickness (mm) | 0.145 ± 0.01c | 0.158 ± 0.02b | 0.162 ± 0.02b | 0.166 ± 0.02a |
叶脉直径 Vein diameter (mm) | 0.208 ± 0.04a | 0.195 ± 0.03b | 0.184 ± 0.02b | 0.164 ± 0.02c |
叶脉密度 Vein destiny (mm·mm-1) | 1.283 ± 0.05c | 1.406 ± 0.04b | 1.439 ± 0.03b | 1.587 ± 0.03a |
Pn (μmol CO2·m-2·s-1) | 13.20 ± 0.12c | 13.94 ± 0.17a | 14.05 ± 0.18a | 13.87 ± 0.13b |
Tr (mmol H2O·m-2·s-1) | 6.83 ± 0.11a | 6.67 ± 0.10b | 6.63 ± 0.09b | 6.35 ± 0.07c |
WUE (μmol CO2·mmol-1 H2O) | 1.93 ± 0.01c | 2.08 ± 0.02b | 2.12 ± 0.02b | 2.18 ± 0.03a |
Table 2 Functional characteristics of Achnatherum splendens in different plots (mean ± SE, n = 30)
各功能性状 Functional characteristic | 样地 Plot | |||
---|---|---|---|---|
I | II | III | IV | |
株高 Plant height (cm) | 130.34 ± 4.50b | 149.67 ± 4.62a | 152.00 ± 5.24a | 95.67 ± 3.56c |
分枝数 Twig number (No.·clump-1) | 203.33 ± 8.83a | 173.67 ± 6.34b | 155.33 ± 5.90b | 113.33 ± 4.29c |
叶片厚度 Leaf thickness (mm) | 0.145 ± 0.01c | 0.158 ± 0.02b | 0.162 ± 0.02b | 0.166 ± 0.02a |
叶脉直径 Vein diameter (mm) | 0.208 ± 0.04a | 0.195 ± 0.03b | 0.184 ± 0.02b | 0.164 ± 0.02c |
叶脉密度 Vein destiny (mm·mm-1) | 1.283 ± 0.05c | 1.406 ± 0.04b | 1.439 ± 0.03b | 1.587 ± 0.03a |
Pn (μmol CO2·m-2·s-1) | 13.20 ± 0.12c | 13.94 ± 0.17a | 14.05 ± 0.18a | 13.87 ± 0.13b |
Tr (mmol H2O·m-2·s-1) | 6.83 ± 0.11a | 6.67 ± 0.10b | 6.63 ± 0.09b | 6.35 ± 0.07c |
WUE (μmol CO2·mmol-1 H2O) | 1.93 ± 0.01c | 2.08 ± 0.02b | 2.12 ± 0.02b | 2.18 ± 0.03a |
Fig. 2 Relationship between leaf thickness and vein density of Achnatherum splendens among different soil moisture conditions. I, plot I (soil moisture content 50.07%); II, plot II (soil moisture content 38.77%); III, plot III (soil moisture content 31.5%); IV, plot IV (soil moisture content 20.4%).
Fig. 3 Relationship between leaf thickness and vein diameter of Achnatherum splendens among different soil moisture conditions. I, plot I (soil moisture content 50.07%); II, plot II (soil moisture content 38.77%); III, plot III (soil moisture content 31.5%); IV, plot IV (soil moisture content 20.4%).
[1] | Berlyn GP, Miksche JP (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press, Ames. |
[2] | Blonder B, Violle C, Bentley LP, Enquist BJ (2010). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100. |
[3] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
[4] | Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics.Plant Physiology, 144, 1890-1898. |
[5] | Domínguez MT, Aponte C, Perez-Ramos IM (2012). Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities.Plant and Soil, 357, 407-424. |
[6] | Falster DS, Warton DI, Wright IJ (. |
[7] | Gago J, Douthe C, Florez-Sarasa I, Escalona JM, Galmes J, Fernie AR, Flexas J, Medrano H (2014). Opportunities for improving leaf water use efficiency under climate change conditions.Plant Science, 226, 108-119. |
[8] | Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.The New Phytologist, 106, 131-160. |
[9] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 39, 300-308. (in English with Chinese abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[10] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK. |
[11] | Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL (2016). Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland.Chinese Journal of Plant Ecology, 40, 788-797. (in Chinese with English abstract)[韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.] |
[12] | Hou ZJ, Zhao CZ, Li Y, Zhang Q, Ma XL (2014). Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland. Chinese Journal of Plant Ecology, 38, 281-288. (in English with Chinese abstract)[侯兆疆, 赵成章, 李钰, 张茜, 马小丽 (2014). 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系. 植物生态学报, 38, 281-288.] |
[13] | Hultine KR, Marshall JD (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition.Oecologia, 123, 32-40. |
[14] | Kang SZ, Zhang JH (2004). Controlled alternate partial root- zone irrigation: Its physiological consequences and impact on water use efficiency.Journal of Experimental Botany, 55, 2437-2446. |
[15] | Li R, Jiang ZM, Zhang SX, Cai J (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848. (in English with Chinese abstract)[李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.] |
[16] | Matthew-Ogburn R, Edwards EJ (2013). Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.Current Biology, 23, 722-726. |
[17] | McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution.The American Naturalist, 175, 447-460. |
[18] | Moles AT, Perkins SE, Laffan SW (2014). Which is a better predictor of plant traits: Temperature or precipitation?Journal of Vegetation Science, 25, 1167-1180. |
[19] | Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818. |
[20] | Nardini A, Pedà G, La Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho- anatomical bases, carbon costs and ecological consequences.New Phytologist, 196, 788-798. |
[21] | Nardini A, Raimondo F, LoGullo MA (2010). Leaf miners help us understand leaf hydraulic design.Plant, Cell & Environment, 33, 1091-1100. |
[22] | Ogburn RM, Edwards EJ (2012). Quantifying succulence: A rapid, physiologically meaningful metric of plant water storage.Plant, Cell & Environment, 35, 1533-1542. |
[23] | Pausas JG, Austin MP (2001). Patterns of plant species richness in relation to different environments: An appraisal.Journal of Vegetation Science, 12, 153-166. |
[24] | Perez-Ramos IM, Roumet C, Cruz P (2012). Evidence for a plant community economics spectrum driven by nutrient and water limitations in a Mediterranean rangeland of southern France.Journal of Ecology, 100, 1315-1327. |
[25] | Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species.Ecology, 87, 1733-1743. |
[26] | Quan XK, Wang CK (2015). Comparison of foliar water use efficiency among 17 provenances ofLarix gmelinii in the Mao’ershan area. Chinese Journal of Plant Ecology, 39, 352-361. (in English with Chinese abstract)[全先奎, 王传宽 (2015). 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 39, 352-361.] |
[27] | Ren QJ, Li HL, Bu HY (2015). Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow.Chinese Journal of Plant Ecology, 39, 593-603. (in English with Chinese abstract)[任青吉, 李宏林, 卜海燕 (2015). 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 39, 593-603.] |
[28] | Reich PB, Cornelissen H (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301. |
[29] | Sack L, Scoffoni C, McKown AD (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837. |
[30] | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000. |
[31] | Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.Journal of Experimental Botany, 64, 4053-4080. |
[32] | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843. |
[33] | Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA, Givnish TJ, Sack L (2015). Light induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads.New Phytologist, 207, 43-58. |
[34] | Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London. |
[35] | Song LL, Fan JW, Wu SH, Zhong HP, Wang N (2012). Response characteristics of leaf traits of common species along an altitudinal gradient in Hongchiba Grassland, Chongqing.Acta Ecologica Sinica, 32, 2759-2767. (in English with Chinese abstract)[宋璐璐, 樊江文, 吴绍洪, 钟华平, 王宁 (2012). 红池坝草地常见物种叶片性状沿海拔梯度的响应特征. 生态学报, 32, 2759-2767.] |
[36] | Sperry JS (2000). Hydraulic constraints on plant gas exchange.Agricultural and Forest Meteorology, 104, 13-23. |
[37] | Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318. |
[38] | Wang RL, Yu GR, He NP, Wang QF, Zhao N, Xu ZW (2015). Latitudinal patterns and influencing factors of leaf functional traits in Chinese forest ecosystems.Acta Geographica Sinica, 70, 1735-1746. (in English with Chinese abstract)[王瑞丽, 于贵瑞, 何念鹏, 王秋凤, 赵宁, 徐志伟 (2015). 中国森林叶片功能属性的纬度格局及其影响因素. 地理学报, 70, 1735-1746.] |
[39] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174. |
[40] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
[41] | Wang J, Cheng JM, Wan HE, Fang F (2004). Study on soil moisture characteristics and water use efficiency ofAchnatherum splendens grassland in Loess Plateau. Arid Meteorology, 22, 51-55. |
[42] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies.New Phytologist, 143, 155-162. |
[43] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
[44] | Wu HW, Li XY, Jing ZY, Li J, Zheng XR, Zhao DZ (2015). Variations in water use forAchnatherum splendens in Lake Qinghai watershed based on δD and δ18O. Acta Ecologica Sinica, 35, 8174-8183. (in English with Chinese abstract)[吴华武, 李小雁, 蒋志云, 李静, 郑肖然, 赵殿智 (2015). 基于δD、δ18O的青海湖流域芨芨草水分利用来源变化研究. 生态学报, 35, 8174-8183.] |
[45] | Xu MS, Huang HX, Shi QR, Yang XD, Zhou LL, Zhao YT, Zhang QQ, Yan ER (2015). Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province. Chinese Journal of Plant Ecology, 39, 857-866. (in English with Chinese abstract)[许洺山, 黄海侠, 史青茹, 杨晓东, 周刘丽, 赵延涛, 张晴晴, 阎恩荣 (2015). 浙东常绿阔叶林植物功能性状对土壤含水量变化的响应. 植物生态学报, 39, 857-866.] |
[46] | Xu T, Zhao CZ, Duan BB, Han L, Zhen HL, Feng W (2016). Slope-related variations of different levels of vein density and leaf size inRobinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Ecology, 35, 41-47. (in English with Chinese abstract)[徐婷, 赵成章, 段贝贝, 韩玲, 郑慧玲, 冯威 (2016). 兰州北山刺槐不同等级叶脉密度与叶大小关系的坡向差异性. 生态学杂志, 35, 41-47.] |
[47] | Yu HY, Chen YT, Xu ZZ, Zhou GS (2014). Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol. Chinese Journal of Plant Ecology, 38, 1029-1040. (in English with Chinese abstract)[于鸿莹, 陈莹婷, 许振柱, 周广胜 (2014). 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析. 植物生态学报, 38, 1029-1040.] |
[48] | Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein density inPaphiopedilum, Orchidaceae. PLOS ONE, 7: e40080. doi: 10.1371/journal.pone.0040080. |
[49] | Zhang ZL, Liu GD, Zhang FC, Zheng CX, Kang YH (2014). Research progress of plant leaf hydraulic conductivity. Chinese Journal of Ecology, 33, 1663-1670. (in English with Chinese abstract)[张志亮, 刘国东, 张富仓, 郑彩霞, 康银红 (2014). 植物叶片导水率的研究进展. 生态学杂志, 33, 1663-1670.] |
[50] | Zhang MJ, Liu MS, Xu C, Chi T, Hong C (2012). Spatial pattern responses ofAchnatherum splendens to environmental stress in different density levels. Acta Ecologica Sinica, 32, 595-604. (in English with Chinese abstract)[张明娟, 刘茂松, 徐驰, 池婷, 洪超 (2012). 不同密度条件下芨芨草空间格局对环境胁迫的响应. 生态学报, 32, 595-604.] |
[51] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yan JC, Jia JC (2010). Soil salinity andAchnatherum splendens distribution. Chinese Journal of Ecology, 29, 2438-2443. (in English with Chinese abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志, 29, 2438-2443.] |
[52] | Zhou HH, Li WH (2015). Responses and adaptation of xylem hydraulic conductivity to salt stress inPopulus euphratica. Chinese Journal of Plant Ecology, 39, 81-91. (in English with Chinese abstract)[周洪华, 李卫红 (2015). 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 39, 81-91.] |
[1] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[2] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[3] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[4] | YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou [J]. Chin J Plant Ecol, 2021, 45(2): 187-196. |
[5] | XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(11): 1138-1153. |
[6] | MO Dan, WANG Zhen-Meng, ZUO You-Lu, XIANG Shuang. Trade-off between shooting and leaf developing of woody species saplings in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2020, 44(10): 995-1006. |
[7] | LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2020, 44(10): 1050-1058. |
[8] | Ling HAN, Cheng-Zhang ZHAO, Wei FENG, Ting XU, Hui-Ling ZHENG, Bei-Bei DUAN. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland [J]. Chin J Plant Ecol, 2017, 41(8): 872-881. |
[9] | Ting XU, Cheng-Zhang ZHAO, Ling HAN, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland, China [J]. Chin J Plan Ecolo, 2017, 41(7): 761-769. |
[10] | Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plant Ecol, 2017, 41(1): 53-61. |
[11] | Yang WANG, Wen-Ting XU, Gao-Ming XIONG, Jia-Xiang LI, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Biomass allocation patterns of Loropetalum chinense [J]. Chin J Plant Ecol, 2017, 41(1): 105-114. |
[12] | Xiao-Hong LI, Jian-Cheng XU, Yi-An XIAO, Wen-Hai HU, Yu-Song CAO. Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China [J]. Chin J Plant Ecol, 2016, 40(9): 871-882. |
[13] | Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN, Hui-Ling ZHENG. Trade-off between leaf size and vein density of Achnatherum splendens in Zhangye wetland [J]. Chin J Plant Ecol, 2016, 40(8): 788-797. |
[14] | Ming-Xiu LIU, Guo-Lu LIANG. Research progress on leaf mass per area [J]. Chin J Plan Ecolo, 2016, 40(8): 847-860. |
[15] | Ming ZHOU, Zhi-Li LIU, Guang-Ze JIN. Improving the accuracy of indirect methods in estimating leaf area index using three correction schemes in a Larix gmelinii plantation [J]. Chin J Plant Ecol, 2016, 40(6): 574-584. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn