Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (9): 955-962.DOI: 10.17521/cjpe.2018.0080
Special Issue: 根系生态学
• Review • Previous Articles Next Articles
					
													GU Wei-Ping1,LIU Rui-Peng1,LI Xing-Huan1,SUN Tao2,ZHANG Zi-Jia2,ZAN Peng1,WEN Lu-Ning1,MA Peng-Yu1,MAO Zi-Jun1,*(
)
												  
						
						
						
					
				
Received:2018-04-10
															
							
																	Revised:2018-09-10
															
							
															
							
																	Online:2018-09-20
															
							
																	Published:2019-01-15
															
						Contact:
								Zi-Jun MAO   
													Supported by:GU Wei-Ping, LIU Rui-Peng, LI Xing-Huan, SUN Tao, ZHANG Zi-Jia, ZAN Peng, WEN Lu-Ning, MA Peng-Yu, MAO Zi-Jun. Decomposition of different root branch orders and its dominant controlling factors in four temperate tree species[J]. Chin J Plan Ecolo, 2018, 42(9): 955-962.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0080
| 林型 Forest type  |  T10 (℃) | W10 (g·g-1) | 林龄 Age (a)  |  密度 Density (trees·hm-2)  |  DBH (cm) | 主要树种 Dominant tree species  |  
|---|---|---|---|---|---|---|
| 落叶松人工林 Larix gmelinii plantation  |  11.6 | 0.396 | 40 | 1 682 | 18.7 | 落叶松 Larix gmelinii  |  
| 红松人工林 Pinus koraiensis plantation  |  10.8 | 0.458 | 46 | 2 904 | 16.1 | 红松 Pinus koraiensis  |  
| 杨-桦林 Aspen-birch forest  |  12.9 | 0.552 | 58 | 2 381 | 12.9 | 山杨、白桦 Populus davidiana, Betula platyphylla  |  
| 阔叶林 Hardwood forest  |  12.3 | 0.579 | 49 | 2 017 | 15.6 | 水曲柳、胡桃楸 Fraxinus mandschurica, Juglans mandshurica  |  
Table 1 Stand characteristics of the four forest types
| 林型 Forest type  |  T10 (℃) | W10 (g·g-1) | 林龄 Age (a)  |  密度 Density (trees·hm-2)  |  DBH (cm) | 主要树种 Dominant tree species  |  
|---|---|---|---|---|---|---|
| 落叶松人工林 Larix gmelinii plantation  |  11.6 | 0.396 | 40 | 1 682 | 18.7 | 落叶松 Larix gmelinii  |  
| 红松人工林 Pinus koraiensis plantation  |  10.8 | 0.458 | 46 | 2 904 | 16.1 | 红松 Pinus koraiensis  |  
| 杨-桦林 Aspen-birch forest  |  12.9 | 0.552 | 58 | 2 381 | 12.9 | 山杨、白桦 Populus davidiana, Betula platyphylla  |  
| 阔叶林 Hardwood forest  |  12.3 | 0.579 | 49 | 2 017 | 15.6 | 水曲柳、胡桃楸 Fraxinus mandschurica, Juglans mandshurica  |  
| 树种 Tree species | 根直径 Root diameter (mm) | |||
|---|---|---|---|---|
| 一级 First-order | 二级 Second-order | 三级 Third-order | 四级 Fourth-order | |
| 红松 Pinus koraiensis | 0.29 ± 0.01 | 0.29 ± 0.02 | 0.53 ± 0.03 | 1.59 ± 0.12 | 
| 落叶松 Larix gmelinii | 0.26 ± 0.02 | 0.28 ± 0.01 | 0.46 ± 0.05 | 0.85 ± 0.09 | 
| 水曲柳 Fraxinus mandschurica | 0.34 ± 0.01 | 0.45 ± 0.01 | 0.55 ± 0.02 | 0.89 ± 0.07 | 
| 白桦 Betula platyphylla | 0.21 ± 0.01 | 0.26 ± 0.03 | 0.27 ± 0.06 | 0.43 ± 0.09 | 
Table 2 Mean root diameter from first-order to fourth-order roots of the four temperate tree species (mean ± SE)
| 树种 Tree species | 根直径 Root diameter (mm) | |||
|---|---|---|---|---|
| 一级 First-order | 二级 Second-order | 三级 Third-order | 四级 Fourth-order | |
| 红松 Pinus koraiensis | 0.29 ± 0.01 | 0.29 ± 0.02 | 0.53 ± 0.03 | 1.59 ± 0.12 | 
| 落叶松 Larix gmelinii | 0.26 ± 0.02 | 0.28 ± 0.01 | 0.46 ± 0.05 | 0.85 ± 0.09 | 
| 水曲柳 Fraxinus mandschurica | 0.34 ± 0.01 | 0.45 ± 0.01 | 0.55 ± 0.02 | 0.89 ± 0.07 | 
| 白桦 Betula platyphylla | 0.21 ± 0.01 | 0.26 ± 0.03 | 0.27 ± 0.06 | 0.43 ± 0.09 | 
																													Fig. 1 Mass remaining (%) of roots of different branch orders of the four tree species (mean ± SE). [1+2] refers to root orders 1 to 2, [3+4] refers to root orders 3 to 4. A, Pinus koraiensis. B, Larix gmelinii. C, Fraxinus mandschurica. D, Betula platyphylla.
| 根序 Root order  |  红松 Pinus koraiensis | 落叶松 Larix gmelinii | 水曲柳 Fraxinus mandschurica | 白桦 Betula platyphylla | ||||
|---|---|---|---|---|---|---|---|---|
| k | R2 | k | R2 | k | R2 | k | R2 | |
| [1+2] | 0.342 | 0.983 | 0.304 | 0.985 | 0.450 | 0.993 | 0.441 | 0.987 | 
| [3+4] | 0.461 | 0.987 | 0.436 | 0.980 | 0.555 | 0.995 | 0.579 | 0.994 | 
Table 3 Decay constants (k) and the correlation coefficient (R2) of root decomposition for each species
| 根序 Root order  |  红松 Pinus koraiensis | 落叶松 Larix gmelinii | 水曲柳 Fraxinus mandschurica | 白桦 Betula platyphylla | ||||
|---|---|---|---|---|---|---|---|---|
| k | R2 | k | R2 | k | R2 | k | R2 | |
| [1+2] | 0.342 | 0.983 | 0.304 | 0.985 | 0.450 | 0.993 | 0.441 | 0.987 | 
| [3+4] | 0.461 | 0.987 | 0.436 | 0.980 | 0.555 | 0.995 | 0.579 | 0.994 | 
| 树种 Tree Species | 红松 Pinus koraiensis | 落叶松 Larix gmelinii | 水曲柳 Fraxinus mandschurica | 白桦 Betula platyphylla | ||||
|---|---|---|---|---|---|---|---|---|
| 根序 Root order | [1+2] | [3+4] | [1+2] | [3+4] | [1+2] | [3+4] | [1+2] | [3+4] | 
| N (mg·g-1) | 21.6 ± 0.9 | 12.3 ± 0.5 | 25.5 ± 2.3 | 13.9 ± 1.2 | 31.9 ± 1.8 | 18.3 ± 1.3 | 28.1 ± 1.6 | 16.7 ± 1.1 | 
| P (mg·g-1) | 1.9 ± 0.4 | 1.4 ± 0.4 | 2.8 ± 0.2 | 1.9 ± 0.2 | 2.5 ± 0.1 | 1.7 ± 0.2 | 2.2 ± 0.1 | 1.4 ± 0.2 | 
| K (mg·g-1) | 4.4 ± 0.5 | 2.9 ± 0.1 | 5.8 ± 0.2 | 4.5 ± 0.3 | 4.0 ± 0.1 | 4.9 ± 0.3 | 5.3 ± 0.6 | 3.7 ± 0.3 | 
| AUF (mg·g-1) | 528.5 ± 40.1 | 398.6 ± 32.9 | 513.4 ± 38.7 | 435.8 ± 37.5 | 401.7 ± 29.6 | 289.3 ± 26.4 | 397.5 ± 34.1 | 302.1 ± 28.2 | 
| TNC (mg·g-1) | 101.7 ± 10.9 | 150.2 ± 18.4 | 98.3 ± 9.6 | 138.0 ± 14.1 | 195.8 ± 20.6 | 279.1 ± 23.5 | 164.9 ± 18.3 | 214.6 ± 21.4 | 
| C:N | 29.6 ± 1.4 | 48.2 ± 1.9 | 23.6 ± 1.8 | 45.2 ± 3.1 | 14.4 ± 2.1 | 23.7 ± 2.4 | 18.7 ± 2.0 | 34.8 ± 3.1 | 
Table 4 Initial root chemistry parameters at the start of the litterbag experiment in the four temperate tree species (mean ± SE)
| 树种 Tree Species | 红松 Pinus koraiensis | 落叶松 Larix gmelinii | 水曲柳 Fraxinus mandschurica | 白桦 Betula platyphylla | ||||
|---|---|---|---|---|---|---|---|---|
| 根序 Root order | [1+2] | [3+4] | [1+2] | [3+4] | [1+2] | [3+4] | [1+2] | [3+4] | 
| N (mg·g-1) | 21.6 ± 0.9 | 12.3 ± 0.5 | 25.5 ± 2.3 | 13.9 ± 1.2 | 31.9 ± 1.8 | 18.3 ± 1.3 | 28.1 ± 1.6 | 16.7 ± 1.1 | 
| P (mg·g-1) | 1.9 ± 0.4 | 1.4 ± 0.4 | 2.8 ± 0.2 | 1.9 ± 0.2 | 2.5 ± 0.1 | 1.7 ± 0.2 | 2.2 ± 0.1 | 1.4 ± 0.2 | 
| K (mg·g-1) | 4.4 ± 0.5 | 2.9 ± 0.1 | 5.8 ± 0.2 | 4.5 ± 0.3 | 4.0 ± 0.1 | 4.9 ± 0.3 | 5.3 ± 0.6 | 3.7 ± 0.3 | 
| AUF (mg·g-1) | 528.5 ± 40.1 | 398.6 ± 32.9 | 513.4 ± 38.7 | 435.8 ± 37.5 | 401.7 ± 29.6 | 289.3 ± 26.4 | 397.5 ± 34.1 | 302.1 ± 28.2 | 
| TNC (mg·g-1) | 101.7 ± 10.9 | 150.2 ± 18.4 | 98.3 ± 9.6 | 138.0 ± 14.1 | 195.8 ± 20.6 | 279.1 ± 23.5 | 164.9 ± 18.3 | 214.6 ± 21.4 | 
| C:N | 29.6 ± 1.4 | 48.2 ± 1.9 | 23.6 ± 1.8 | 45.2 ± 3.1 | 14.4 ± 2.1 | 23.7 ± 2.4 | 18.7 ± 2.0 | 34.8 ± 3.1 | 
																													Fig. 2 Regression relation between root decay constants (k) and root initial acid-unhydrolyzable fraction (AUF)(A) and total non-structural carbohydrat (TNC)(B) concentrations across all species.
| [1] |  
											 Aerts R  ( 2006). The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724. 
																							 DOI URL  | 
										
| [2] |  
											 Chen H, Harmon ME, Griffiths RP  ( 2001). Decomposition and nitrogen release from decomposition woody roots in coniferous forests of the Pacific Northwest. Canadian Journal of Forest Research, 31, 246-260. 
																							 DOI URL  | 
										
| [3] |  
											 Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N  ( 2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071. 
																							 DOI URL  | 
										
| [4] |  
											 Dornbush ME, Isenhart TM, Raich JW  ( 2002). Quantifying fine root decomposition: An alternative to buried litterbags. Ecology, 83, 2985-2990. 
																							 DOI URL  | 
										
| [5] |  
											 Fan P, Guo D  ( 2010). Slow decomposition of lower order roots: A key mechanism of root carbon and nutrient retention in the soil. Oecologia, 163, 509-515. 
																							 DOI URL PMID  | 
										
| [6] |  
											 Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM  ( 2011). Decomposition of the finest root branching orders linking belowground dynamics to fine-root function and structure. Ecological Monographs, 81, 89-102. 
																							 DOI URL  | 
										
| [7] |  
											 Gu JC, Wang DN, Xia XX, Wang SZ  ( 2016). Applications of functional classification methods for tree fine root biomass estimation: Advancements and synthesis. Chinese Journal of Plant Ecology, 40, 1344-1351.
																							 DOI URL  | 
										
|  
											[  谷加存, 王东男, 夏秀雪, 王韶仲  ( 2016). 功能划分方法在树木细根生物量研究中的应用: 进展与评述. 植物生态学报, 40, 1344-1351.] 
																							 DOI URL  | 
										|
| [8] |  
											 Gu LC, Wang GL, Jing H, Yao X  ( 2017). Response of decomposition and nutrient release in different diameter fine roots of Pinus tabuliformis plantation to N addition. Chinese Journal of Applied Ecology, 28, 2771-2777.
																							 DOI URL  | 
										
|  
											[  谷利茶, 王国梁, 景航, 姚旭  ( 2017). 氮添加对油松不同径级细根分解及其养分释放的影响. 应用生态学报, 28, 2771-2777.] 
																							 DOI URL  | 
										|
| [9] |  
											 Guo D, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ  ( 2008a ). Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: Root branch order predominates. Journal of Ecology, 96, 737-745. 
																							 DOI URL  | 
										
| [10] |  
											 Guo D, Xia M, Wei X, Chang W, Liu Y, Wang Z  ( 2008b ). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683. 
																							 DOI URL PMID  | 
										
| [11] |  
											 Guo DL, Mitchell RJ, Hendricks JJ  ( 2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457. 
																							 DOI URL PMID  | 
										
| [12] |  
											 Hendricks JJ, Wilson CA, Boring LR  ( 2002). Foliar litter position and decomposition in a fire-maintained longleaf pine-wiregrass ecosystem. Canadian Journal of Forest Research, 32, 928-941. 
																							 DOI URL  | 
										
| [13] |  
											 Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB  ( 2010). Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia, 162, 505-513. 
																							 DOI URL PMID  | 
										
| [14] |  
											 Hobbie SE, Reich PB, Ogdahl M, Ogdahl M, Zytkowiak R, Hale C, Karolewski P  ( 2006). Tree species on decomposition and forest floor dynamics in a common garden. Ecology, 87, 2288-2297. 
																							 DOI URL PMID  | 
										
| [15] |  
											 Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Chang CH  ( 2015). Effects of snow cover on acid-soluble extractive and acid-insoluble residue during foliar litter decomposition in the alpine forest. Acta Ecologica Sinica, 35, 4687-4698.
																							 DOI URL  | 
										
|  
											[  李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 常晨晖  ( 2015). 不同厚度雪被对高山森林6种凋落物分解过程中酸溶性和酸不溶性组分的影响. 生态学报, 35, 4687-4698.] 
																							 DOI URL  | 
										|
| [16] |  
											 Liu Y, Wang GL, Liu GB, Qu QL, Yuan ZC  ( 2010). Difference and inherent linkage of root characteristics in different root classification of Pinus tabulaeformis seedlings. Chinese Journal of Plant Ecology, 34, 1386-1393.
																							 DOI URL  | 
										
|  
											[  刘莹, 王国梁, 刘国彬, 曲秋玲, 袁子成  ( 2010). 不同分类系统下油松幼苗根系特征的差异与联系. 植物生态学报, 34, 1386-1393.] 
																							 DOI URL  | 
										|
| [17] |  
											 Magill AH, John DA  ( 1998). Long-term effects of experimental nitrogen additions on foliar litter decay and humus for mation in forest ecosystems. Plant and Soil, 203, 301-311. 
																							 DOI URL  | 
										
| [18] |  
											 McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Lepp?lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M  ( 2015). Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518. 
																							 DOI URL PMID  | 
										
| [19] |  
											 Pregitzer KS, de Forest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL  ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. 
																							 DOI URL  | 
										
| [20] |  
											 Seifter S, Dayton S, Novic B  ( 1950). The estimation of glycogen with the anthrone reagent. Archives of Biochemistry and Biophysics, 25, 191-200. 
																							 DOI URL PMID  | 
										
| [21] |  
											 Silver WL, Miya RK  ( 2001). Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia, 129, 407-419. 
																							 DOI URL PMID  | 
										
| [22] |  
											 Song S, Gu JC, Quan XK, Guo DL, Wang ZQ  ( 2008). Fine-root decomposition of  Fraxinus mandschurica and Larix gmelinii plantations. Journal of Plant Ecology (Chinese Version), 32, 1227-1237.
																							 DOI URL  | 
										
|  
											[  宋森, 谷加存, 全先奎, 郭大立, 王政权  ( 2008). 水曲柳和兴安落叶松人工林细根分解研究. 植物生态学报, 32, 1227-1237.] 
																							 DOI URL  | 
										|
| [23] |  
											 Sun T, Dong L, Mao Z  ( 2015). Simulated atmospheric nitrogen deposition alters decomposition of ephemeral roots. Ecosystems, 18, 1240-1252. 
																							 DOI URL  | 
										
| [24] | Sun T, Dong LL, Zhang LL, Wu ZJ, Wang QK, Li YY, Zhang HG, Wang ZW ( 2016). Early stage fine-root decomposition and its relationship with root order and soil depth in a Larix gmelinii plantation. Forests, 7, 234. DOI: 10.3390/?f7100234. | 
| [25] |  
											 Sun T, Mao ZZ, Dong LL, Hou LL, Song Y, Wang XW  ( 2013a ). Further evidence for slow decomposition of very fine roots using two methods: Litterbags and intact cores. Plant and Soil, 366, 633-646. 
																							 DOI URL  | 
										
| [26] |  
											 Sun T, Mao ZZ, Han YY  ( 2013b ). Slow decomposition of very fine roots and some factors controlling the process: A 4-year experiment in four temperate tree species. Plant and Soil, 372, 445-458. 
																							 DOI URL  | 
										
| [27] |  
											 Vogt KA, Grier CC, Vogt DJ  ( 1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377. 
																							 DOI URL  | 
										
| [28] |  
											 Wardle DA, Bardgett RD, Klironomos JN, Set?l? H, van der Putten WH, Wall WH  ( 2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633. 
																							 DOI URL  | 
										
| [29] |  
											 Wen DZ, Wei P, Zhang YC, Kong GH  ( 1998). Dry mass loss and chemical changes of the decomposed fine roots in three China south subtropical forests at Dinghushan. Chinese Journal of Ecology, 17, 1-6.
																							 DOI URL  | 
										
|  
											[  温达志, 魏平, 张佑昌, 孔国辉  ( 1998). 鼎湖山南亚热带森林细根分解干物质损失和元素动态. 生态学杂志, 17, 1-6.] 
																							 DOI URL  | 
										|
| [30] | Xia M, Guo D, Pregitzer KS ( 2010). Ephemeral root modules in Fraxinus mandschurica. New Phytologist, 188, 1065-1074. | 
| [31] |  
											 Xia M, Talhelm AF, Pregitzer KS  ( 2015). Fine roots are the dominant source of recalcitrant plant litter in sugar maple-?dominated northern hardwood forests. New Phytologist, 208, 715-726. 
																							 DOI URL PMID  | 
										
| [32] | Xiong Y, Fan P, Fu S, Zeng H, Guo D ( 2012). Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees. Plant and Soil, 363, 19-31. | 
| [33] | Zhang XJ, Wu C, Mei L, Han YZ, Wang ZQ ( 2006). Root decomposition and nutrient release of Fraxinus manshurica and Larix gmelinii plantations. Chinese Journal of Applied Ecology, 17, 1370-1376. | 
| [ 张秀娟, 吴楚, 梅莉, 韩有志, 王政权 ( 2006). 水曲柳和落叶松人工林细根分解与养分释放. 应用生态学报, 17, 1370-1376.] | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
	Copyright © 2022 Chinese Journal of Plant Ecology 
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn