Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (1): 18-25.DOI: 10.3724/SP.J.1258.2013.00002
• Review • Previous Articles Next Articles
WU Jian*(), LIU Min-Shi, LI Wei-Tao
Received:
2012-08-27
Accepted:
2012-11-13
Online:
2013-08-27
Published:
2013-01-15
Contact:
WU Jian
WU Jian, LIU Min-Shi, LI Wei-Tao. Research on vegetation cover information extraction technologies under different terrain conditions[J]. Chin J Plant Ecol, 2013, 37(1): 18-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00002
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.656 | 10.73 | 0.638 | 11.74 | |
NDVI2 | 803.3 | 671.02 | 0.508 | 14.65 | 0.497 | 14.40 | |
NDVI3 | TM4 | TM3 | 0.483 | 15.01 | 0.476 | 15.29 |
Table 1 Modeling and verification results of shady slope vegetation coverage estimation of different normalized differential vegetation index (NDVI)
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.656 | 10.73 | 0.638 | 11.74 | |
NDVI2 | 803.3 | 671.02 | 0.508 | 14.65 | 0.497 | 14.40 | |
NDVI3 | TM4 | TM3 | 0.483 | 15.01 | 0.476 | 15.29 |
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.731 | 8.85 | 0.711 | 9.94 | |
NDVI2 | 803.3 | 671.02 | 0.712 | 9.87 | 0.682 | 10.73 | |
NDVI3 | TM4 | TM3 | 0.713 | 9.96 | 0.708 | 10.69 |
Table 2 Modeling and verification results of sunny slope vegetation coverage estimation of different normalized differential vegetation index (NDVI)
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.731 | 8.85 | 0.711 | 9.94 | |
NDVI2 | 803.3 | 671.02 | 0.712 | 9.87 | 0.682 | 10.73 | |
NDVI3 | TM4 | TM3 | 0.713 | 9.96 | 0.708 | 10.69 |
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.746 | 7.09 | 0.732 | 8.95 | |
NDVI2 | 803.3 | 671.02 | 0.723 | 7.84 | 0.706 | 10.47 | |
NDVI3 | TM4 | TM3 | 0.705 | 9.12 | 0.691 | 10.70 |
Table 3 Modeling and verification results of plain vegetation coverage estimation of each normalized differential vegetation index (NDVI)
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.746 | 7.09 | 0.732 | 8.95 | |
NDVI2 | 803.3 | 671.02 | 0.723 | 7.84 | 0.706 | 10.47 | |
NDVI3 | TM4 | TM3 | 0.705 | 9.12 | 0.691 | 10.70 |
Fig. 1 Verification results of the prediction value of shady slope vegetation coverage by the optimal hyper spectral normalized differential vegetation index (NDVI1). RMSE, root mean square error.
NDVIsoil | NDVIveg | 阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||||
NDVI1 | -0.10 | 0.64 | 0.656 | 10.38 | 0.730 | 9.15 | 0.758 | 8.06 | ||
NDVI2 | -0.06 | 0.62 | 0.537 | 12.69 | 0.717 | 10.06 | 0.725 | 9.90 | ||
NDVI3 | -0.02 | 0.55 | 0.504 | 14.17 | 0.684 | 11.23 | 0.712 | 10.34 |
Table 4 Verification results of pixel binary model of different normalized differential vegetation index (NDVI) under different terrain conditions
NDVIsoil | NDVIveg | 阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||||
NDVI1 | -0.10 | 0.64 | 0.656 | 10.38 | 0.730 | 9.15 | 0.758 | 8.06 | ||
NDVI2 | -0.06 | 0.62 | 0.537 | 12.69 | 0.717 | 10.06 | 0.725 | 9.90 | ||
NDVI3 | -0.02 | 0.55 | 0.504 | 14.17 | 0.684 | 11.23 | 0.712 | 10.34 |
Fig. 2 Verification results of the prediction value of shady slope vegetation coverage of pixel binary model based on the optimal high spectral NDVI (NDVI1). RMSE, root mean square error.
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 8 | 0.693 | 11.28 | 0.667 | 11.95 | |
一阶微分 FD | 7 | 0.748 | 9.55 | 0.714 | 11.03 | |
二阶微分 SD | 9 | 0.732 | 10.17 | 0.708 | 11.15 | |
包络线去除 CR | 9 | 0.794 | 8.49 | 0.753 | 9.06 |
Table 5 Modeling and verification results of shady slope vegetation coverage by principal component regression (PCR) models based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 8 | 0.693 | 11.28 | 0.667 | 11.95 | |
一阶微分 FD | 7 | 0.748 | 9.55 | 0.714 | 11.03 | |
二阶微分 SD | 9 | 0.732 | 10.17 | 0.708 | 11.15 | |
包络线去除 CR | 9 | 0.794 | 8.49 | 0.753 | 9.06 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.739 | 10.26 | 0.641 | 12.76 | |
一阶微分 FD | 12 | 0.766 | 9.14 | 0.685 | 11.57 | |
二阶微分 SD | 8 | 0.775 | 8.90 | 0.639 | 12.88 | |
包络线去除 CR | 10 | 0.753 | 9.67 | 0.650 | 12.34 |
Table 6 Modeling and verification results of sunny slope vegetation coverage by principal component regression (PCR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.739 | 10.26 | 0.641 | 12.76 | |
一阶微分 FD | 12 | 0.766 | 9.14 | 0.685 | 11.57 | |
二阶微分 SD | 8 | 0.775 | 8.90 | 0.639 | 12.88 | |
包络线去除 CR | 10 | 0.753 | 9.67 | 0.650 | 12.34 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 7 | 0.745 | 10.06 | 0.703 | 11.68 | |
一阶微分 FD | 10 | 0.759 | 9.71 | 0.726 | 10.04 | |
二阶微分 SD | 11 | 0.681 | 11.93 | 0.659 | 12.48 | |
包络线去除 CR | 9 | 0.730 | 10.51 | 0.717 | 11.45 |
Table 7 Modeling and verification results of plain vegetation coverage by principal component regression (PCR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 7 | 0.745 | 10.06 | 0.703 | 11.68 | |
一阶微分 FD | 10 | 0.759 | 9.71 | 0.726 | 10.04 | |
二阶微分 SD | 11 | 0.681 | 11.93 | 0.659 | 12.48 | |
包络线去除 CR | 9 | 0.730 | 10.51 | 0.717 | 11.45 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 9 | 0.742 | 10.64 | 0.718 | 11.34 | |
一阶微分 FD | 13 | 0.810 | 6.29 | 0.773 | 8.85 | |
二阶微分 SD | 10 | 0.794 | 7.78 | 0.761 | 9.16 | |
包络线去除 CR | 8 | 0.726 | 10.15 | 0.692 | 11.54 |
Table 8 Modeling and verification results of shady slope vegetation coverage by partial least squares regression (PLSR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 9 | 0.742 | 10.64 | 0.718 | 11.34 | |
一阶微分 FD | 13 | 0.810 | 6.29 | 0.773 | 8.85 | |
二阶微分 SD | 10 | 0.794 | 7.78 | 0.761 | 9.16 | |
包络线去除 CR | 8 | 0.726 | 10.15 | 0.692 | 11.54 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 11 | 0.783 | 8.18 | 0.756 | 9.84 | |
一阶微分 FD | 7 | 0.790 | 7.96 | 0.758 | 9.23 | |
二阶微分 SD | 9 | 0.823 | 6.04 | 0.801 | 7.35 | |
包络线去除 CR | 8 | 0.731 | 10.27 | 0.692 | 11.49 |
Table 9 Modeling and verification results of sunny slope vegetation coverage by partial least squares regression (PLSR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 11 | 0.783 | 8.18 | 0.756 | 9.84 | |
一阶微分 FD | 7 | 0.790 | 7.96 | 0.758 | 9.23 | |
二阶微分 SD | 9 | 0.823 | 6.04 | 0.801 | 7.35 | |
包络线去除 CR | 8 | 0.731 | 10.27 | 0.692 | 11.49 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.765 | 8.90 | 0.743 | 10.21 | |
一阶微分 FD | 8 | 0.804 | 7.22 | 0.809 | 6.95 | |
二阶微分 SD | 7 | 0.836 | 6.13 | 0.760 | 8.57 | |
包络线去除 CR | 11 | 0.773 | 9.15 | 0.739 | 10.38 |
Table 10 Modeling and verification results of plain vegetation coverage by partial least squares regression (PLSR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.765 | 8.90 | 0.743 | 10.21 | |
一阶微分 FD | 8 | 0.804 | 7.22 | 0.809 | 6.95 | |
二阶微分 SD | 7 | 0.836 | 6.13 | 0.760 | 8.57 | |
包络线去除 CR | 11 | 0.773 | 9.15 | 0.739 | 10.38 |
分解模型 Decomposition model | 验证 Verification | |||||||
---|---|---|---|---|---|---|---|---|
阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
LS | 0.618 | 14.59 | 0.709 | 11.92 | 0.746 | 10.37 | ||
FCLS | 0.653 | 12.87 | 0.761 | 8.45 | 0.852 | 5.86 |
Table 11 Accuracy verification results of vegetation component unmixed by full confining linear spectral mixture model (FCLS) and linear spectral mixture model (LS) under different terrain conditions
分解模型 Decomposition model | 验证 Verification | |||||||
---|---|---|---|---|---|---|---|---|
阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
LS | 0.618 | 14.59 | 0.709 | 11.92 | 0.746 | 10.37 | ||
FCLS | 0.653 | 12.87 | 0.761 | 8.45 | 0.852 | 5.86 |
[1] | Asner GP, Lobell DB (2000). A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, 74, 99-112. |
[2] | Blackburn GA (1998). Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66, 273-285. |
[3] | Cheng HF, Zhang WB, Chen F (2008). Advances in researches on application of remote sensing method to estimating vegetation coverage. Remote Sensing for Land & Resources, 20(1), 13-18. (in Chinese with English abstract) |
[ 程红芳, 章文波, 陈锋 (2008). 植被覆盖度遥感估算方法研究进展. 国土资源遥感, 20(1), 13-18.] | |
[4] | Drake NA, Mackin S, Settle JJ (1999). Mapping vegetation, soils, and geology in semi-arid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery. Remote Sensing of Environment, 68, 12-25. |
[5] | Du MY, Wu WB, Guo ZD (2002). Research on multi-source geographic information based classification of desertification. Journal of Image and Graphics, 7, 740-743. (in Chinese with English abstract) |
[ 杜明义, 武文波, 郭达志 (2002). 多源地学信息在土地荒漠化遥感分类中的应用研究. 中国图形图像学报, 7, 740-743.] | |
[6] | Elvidge CD, Chen ZK (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54, 38-48. |
[7] | Hansen MC, Defries RS, Townshend JRG, Sohlberg R, Dimiceli C, Carroll M (2002). Towards an operational MODIS continuous field of percent tree cover agorithm: examples using AVHRR and MODIS data. Remote Sensing of Environment, 83, 303-319. (in Chinese with English abstract) |
[8] | Kremer RG, Running SW (1993). Community type differentiation using NOAA/AVHRR data within a sagebrush-steppe ecosystem. Remote Sensing of Environment, 46, 311-318. |
[9] | Li XS, Gao ZH, Li ZY, Bai LN, Wang BY (2010). Estimation of sparse vegetation coverage in arid region based on hy- perspectral mixed pixel decomposition. Chinese Journal of Applied Ecology, 21, 152-158. (in Chinese with English abstract) |
[ 李晓松, 高志海, 李增元, 白黎娜, 王琫瑜 (2010). 基于高光谱混合像元分解的干旱地区稀疏植被覆盖度优测. 应用生态学报, 21, 152-158.] | |
[10] | Li XS, Li ZY, Gao ZH, Bai LN, Wang BY (2011). Estimation of vegetation cover in desertified regions from hyperion imageries using NDVI and partial least squares regression. Journal of Desert Research, 31, 162-167. (in Chinese with English abstract) |
[ 李晓松, 李增元, 高志海, 白黎娜, 王琫瑜 (2011). 基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感优测. 中国沙漠, 31, 162-167.] | |
[11] | Thenkabail PS, Smith RB, de Pauw E (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing Environment, 71, 158-182. |
[12] | Townshend JRG, Justice CO (1986). Analysis of dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 12, 1224-1242. |
[13] | Yang JH, Ci LJ (2006). Progress on remote sensing-based desertification assessment. World Forestry Research, 19(6), 11-17. (in Chinese with English abstract) |
[ 杨晓晖, 慈龙骏 (2006). 基于遥感技术的荒漠化评价研究进展. 世界林业研究, 19(6), 11-17.] |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Zhiyang Zhang Yinghui Zhao Zhen Zhen. Dynamic monitoring of carbon storage of the terrestrial ecosystem in Songhua River Basin from 1986 to 2022 [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[4] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[5] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[6] | WANG Fu-Biao, YE Zi-Piao. A review on light response models of electron transport rates of plant [J]. Chin J Plant Ecol, 2024, 48(3): 287-305. |
[7] | Zumureti YUSUFUJANG, DONG Zheng-Wu, CHENG Peng, YE Mao, LIU Sui-Yun-Hao, LI Sheng-Yu, ZHAO Xiao-Ying. Response of water use strategies of Tamarix ramosissima to nebkhas accumulation process [J]. Chin J Plant Ecol, 2024, 48(1): 113-126. |
[8] | LI Bo-Xin, JIANG Chao, SUN Osbert Jianxin. Comprehensive assessment of vegetation carbon use efficiency in southwestern China simulated by CMIP6 models [J]. Chin J Plant Ecol, 2023, 47(9): 1211-1224. |
[9] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[10] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[11] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[12] | WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(4): 479-490. |
[13] | ZHONG Jiao, JIANG Chao, LIU Shi-Rong, LONG Wen-Xing, SUN Osbert Jianxin. Spatial distribution patterns in potential species richness of foraging plants for Hainan gibbons [J]. Chin J Plant Ecol, 2023, 47(4): 491-505. |
[14] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[15] | CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China [J]. Chin J Plant Ecol, 2022, 46(7): 753-765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn