Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (9): 883-892.DOI: 10.17521/cjpe.2016.0040
Special Issue: 凋落物
• Research Articles • Previous Articles Next Articles
Bo XU1,2, Zhong-Fu ZHU3, Jin-Yang LI1, Yan WU1, Gui-Ping DENG3, Ning WU1, Fu-Sun SHI1,*()
Received:
2016-01-19
Accepted:
2016-07-23
Online:
2016-09-10
Published:
2016-09-29
Contact:
Fu-Sun SHI
Bo XU, Zhong-Fu ZHU, Jin-Yang LI, Yan WU, Gui-Ping DENG, Ning WU, Fu-Sun SHI. Leaf decomposition and nutrient release of dominant species in the forest and lake in the Jiuzhaigou National Nature Reserve, China[J]. Chin J Plant Ecol, 2016, 40(9): 883-892.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0040
样地 Site | 位置 Location | 经纬度 Longitude and latitude | 海拔 Elevation (m) |
---|---|---|---|
黄果冷杉林 Abies ernestii forest | 卧龙海 Wolong Lake | 103.90° E, 33.20° N | 2 266 |
柳树灌丛 Salix cupularis shrub | 树正群海 Shuzheng lakes | 103.90° E, 33.20° N | 2 272 |
油松林 Pinus tabulaeformis forest | 公主海 Gongzhu Lake | 103.90° E, 33.20° N | 2 314 |
红桦林 Betula albo-sinensis forest | 诺日朗 Nuorilang | 103.91° E, 33.16° N | 2 398 |
Table 1 Site information
样地 Site | 位置 Location | 经纬度 Longitude and latitude | 海拔 Elevation (m) |
---|---|---|---|
黄果冷杉林 Abies ernestii forest | 卧龙海 Wolong Lake | 103.90° E, 33.20° N | 2 266 |
柳树灌丛 Salix cupularis shrub | 树正群海 Shuzheng lakes | 103.90° E, 33.20° N | 2 272 |
油松林 Pinus tabulaeformis forest | 公主海 Gongzhu Lake | 103.90° E, 33.20° N | 2 314 |
红桦林 Betula albo-sinensis forest | 诺日朗 Nuorilang | 103.91° E, 33.16° N | 2 398 |
树种 Species | 碳含量 C content (mg·g-1) | 氮含量 N content (mg·g-1) | 磷含量 P content (mg·g-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 529.91 ± 10.04a | 15.39 ± 0.32b | 0.88 ± 0.03b | 34.46 ± 1.37b | 604.14 ± 34.61b | 17.52 ± 0.31a |
高山柳 Salix cupularis | 505.12 ± 8.13b | 16.69 ± 0.40a | 1.39 ± 0.04a | 30.26 ± 1.25b | 363.17 ± 14.54c | 12.01 ± 0.02c |
黄果冷杉 Pinus tabulaeformis | 489.32 ± 10.32b | 15.45 ± 0.43b | 1.44 ± 0.05a | 31.70 ± 1.43b | 339.60 ± 17.25c | 10.71 ± 0.22d |
油松 Abies ernestii | 530.59 ± 11.60a | 9.42 ± 0.33c | 0.65 ± 0.03c | 56.37 ± 2.76a | 812.60 ± 58.05a | 14.41 ± 0.66b |
Table 2 Initial nutrient contents of the leaf litter (mean ± SE)
树种 Species | 碳含量 C content (mg·g-1) | 氮含量 N content (mg·g-1) | 磷含量 P content (mg·g-1) | C:N | C:P | N:P |
---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 529.91 ± 10.04a | 15.39 ± 0.32b | 0.88 ± 0.03b | 34.46 ± 1.37b | 604.14 ± 34.61b | 17.52 ± 0.31a |
高山柳 Salix cupularis | 505.12 ± 8.13b | 16.69 ± 0.40a | 1.39 ± 0.04a | 30.26 ± 1.25b | 363.17 ± 14.54c | 12.01 ± 0.02c |
黄果冷杉 Pinus tabulaeformis | 489.32 ± 10.32b | 15.45 ± 0.43b | 1.44 ± 0.05a | 31.70 ± 1.43b | 339.60 ± 17.25c | 10.71 ± 0.22d |
油松 Abies ernestii | 530.59 ± 11.60a | 9.42 ± 0.33c | 0.65 ± 0.03c | 56.37 ± 2.76a | 812.60 ± 58.05a | 14.41 ± 0.66b |
变异来源 Source of variation | 自由度 Degree of freedom | 质量剩余率 Mass remaining ratio | 氮素剩余率 Nitrogen remaining ratio | 磷素剩余率 Phosphorus remaining ratio | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
物种 Species | 3 | 7 394.01 | < 0.01 | 46.25 | < 0.01 | 10.28 | < 0.01 | ||
分解时间 Decomposition time | 3 | 6 486.93 | < 0.01 | 37.18 | < 0.01 | 8.17 | < 0.01 | ||
环境类型 Environmental types | 1 | 7 169.46 | < 0.01 | 0.91 | 0.34 | 51.04 | < 0.01 | ||
物种×分解时间 Species × decomposition time | 9 | 264.45 | < 0.01 | 8.84 | < 0.01 | 9.96 | < 0.01 | ||
物种×环境类型 Species × environmental types | 3 | 24.27 | < 0.01 | 8.46 | < 0.01 | 5.99 | 0.00 | ||
分解时间×环境类型 Decomposition time × environmental types | 3 | 121.53 | < 0.01 | 50.83 | < 0.01 | 37.60 | < 0.01 |
Table 3 Multivariate analysis of variance on the differences in mass and nutrient remaining ratios among species, decomposition time and site
变异来源 Source of variation | 自由度 Degree of freedom | 质量剩余率 Mass remaining ratio | 氮素剩余率 Nitrogen remaining ratio | 磷素剩余率 Phosphorus remaining ratio | |||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | ||||
物种 Species | 3 | 7 394.01 | < 0.01 | 46.25 | < 0.01 | 10.28 | < 0.01 | ||
分解时间 Decomposition time | 3 | 6 486.93 | < 0.01 | 37.18 | < 0.01 | 8.17 | < 0.01 | ||
环境类型 Environmental types | 1 | 7 169.46 | < 0.01 | 0.91 | 0.34 | 51.04 | < 0.01 | ||
物种×分解时间 Species × decomposition time | 9 | 264.45 | < 0.01 | 8.84 | < 0.01 | 9.96 | < 0.01 | ||
物种×环境类型 Species × environmental types | 3 | 24.27 | < 0.01 | 8.46 | < 0.01 | 5.99 | 0.00 | ||
分解时间×环境类型 Decomposition time × environmental types | 3 | 121.53 | < 0.01 | 50.83 | < 0.01 | 37.60 | < 0.01 |
Fig. 2 Mass remaining ratio of leaf litter decomposition in the forest (A) and lake (B) (mean ± SE). The lowercase letters denote highly significant differences in mass remaining ratios among the species for the same decomposition time (p < 0.01), with each decomposition time holds the same multiple comparison results.
树种 Species | 环境类型 Environmental types | 拟合方程 Fitted equations | 分解系数k Decomposition coefficient k | 半分解时间 Time of half decomposition (a) | 99%分解时间 Time of 99% decomposition (a) | 相关系数r Correlation coefficient r | 显著性 Significance |
---|---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 陆地 Land | y = 97.03e-0.441t | 0.441 | 1.50 | 10.34 | 0.93 | p < 0.01 |
水体 Water | y = 95.01e-0.678t | 0.678 | 0.95 | 6.69 | 0.96 | p < 0.01 | |
高山柳 Salix cupularis | 陆地 Land | y = 95.16e-0.667t | 0.667 | 0.96 | 6.80 | 0.94 | p < 0.01 |
水体 Water | y = 91.76e-0.966t | 0.966 | 0.63 | 4.66 | 0.95 | p < 0.01 | |
油松 Pinus tabulaeformis | 陆地 Land | y = 99.33e-0.169t | 0.169 | 4.07 | 27.21 | 0.94 | p < 0.01 |
水体 Water | y = 94.12e-0.275t | 0.275 | 2.30 | 16.47 | 0.96 | p < 0.01 | |
黄果冷杉 Abies ernestii | 陆地 Land | y = 98.42e-0.238t | 0.238 | 2.84 | 18.88 | 0.97 | p < 0.01 |
水体 Water | y = 93.43e-0.432t | 0.432 | 1.45 | 10.47 | 0.99 | p < 0.01 |
Table 4 Empirical model for leaf litter decomposition
树种 Species | 环境类型 Environmental types | 拟合方程 Fitted equations | 分解系数k Decomposition coefficient k | 半分解时间 Time of half decomposition (a) | 99%分解时间 Time of 99% decomposition (a) | 相关系数r Correlation coefficient r | 显著性 Significance |
---|---|---|---|---|---|---|---|
红桦 Betula albo-sinensis | 陆地 Land | y = 97.03e-0.441t | 0.441 | 1.50 | 10.34 | 0.93 | p < 0.01 |
水体 Water | y = 95.01e-0.678t | 0.678 | 0.95 | 6.69 | 0.96 | p < 0.01 | |
高山柳 Salix cupularis | 陆地 Land | y = 95.16e-0.667t | 0.667 | 0.96 | 6.80 | 0.94 | p < 0.01 |
水体 Water | y = 91.76e-0.966t | 0.966 | 0.63 | 4.66 | 0.95 | p < 0.01 | |
油松 Pinus tabulaeformis | 陆地 Land | y = 99.33e-0.169t | 0.169 | 4.07 | 27.21 | 0.94 | p < 0.01 |
水体 Water | y = 94.12e-0.275t | 0.275 | 2.30 | 16.47 | 0.96 | p < 0.01 | |
黄果冷杉 Abies ernestii | 陆地 Land | y = 98.42e-0.238t | 0.238 | 2.84 | 18.88 | 0.97 | p < 0.01 |
水体 Water | y = 93.43e-0.432t | 0.432 | 1.45 | 10.47 | 0.99 | p < 0.01 |
C | N | P | C:N | C:P | N:P | |
---|---|---|---|---|---|---|
质量剩余率 Mass remaining ratio | 0.12ns | -0.63** | -0.41* | 0.57** | 0.46* | 0.47ns |
氮素剩余率 Nitrogen remaining ratio | 0.24ns | -0.60** | -0.45* | 0.58** | 0.50* | 0.11ns |
磷素剩余率 Phosphorus remaining ratio | -0.06ns | -0.14ns | -0.02ns | 0.14ns | 0.04ns | -0.14ns |
Table 5 Pearson correlations between mass, nitrogen and phosphorus remaining ratio after one-year decomposition and leaf initial nutrient contents
C | N | P | C:N | C:P | N:P | |
---|---|---|---|---|---|---|
质量剩余率 Mass remaining ratio | 0.12ns | -0.63** | -0.41* | 0.57** | 0.46* | 0.47ns |
氮素剩余率 Nitrogen remaining ratio | 0.24ns | -0.60** | -0.45* | 0.58** | 0.50* | 0.11ns |
磷素剩余率 Phosphorus remaining ratio | -0.06ns | -0.14ns | -0.02ns | 0.14ns | 0.04ns | -0.14ns |
1 | Aerts R (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 79, 439-449. |
2 | Aponte C, Garcia LV, Maranon T (2012). Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests changes over time.Ecosystems, 15, 1204-1218. |
3 | Ayres E, Dromph KM, Bardgett RD (2006). Do plant species encourage soil biota that specialise in the rapid decomposition of their litter?Soil Biology & Biochemistry, 38, 183-186. |
4 | Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils.Forest Ecology and Management, 133, 13-22. |
5 | Chen SX, Jiang MX (2006). Leaf litter decomposition dynamics of different tree species in Xiangxi River watershed, the Three Gorges Region, China.Acta Ecologica Sinica, 26, 2905-2912. (in Chinese with English abstract)[陈书秀, 江明喜 (2006). 三峡地区香溪河流域不同树种叶片凋落物的分解. 生态学报, 26, 2905-2912.] |
6 | Chi GL, Tong XL (2010). Leaching process of leaf litter in running water and lentic water in subtropical China.Ecological Science, 29, 50-55. (in Chinese with English abstract)[迟国梁, 童晓立 (2010). 亚热带地区树叶凋落物在流水和静水环境中的淋溶规律. 生态科学, 29, 50-55.] |
7 | Couteaux MM, Bottner P, Berg B (1995). Litter decomposition, climate and litter quality.Trends in Ecology Evolution, 10, 63-66. |
8 | Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle D, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Ecology Letters, 11, 1065-1071. |
9 | Deng CC, Jiang XM, Liu Y, Zhang J, Chen YM, He RL (2015). Litter decomposition of Rhododendron lapponicum in alpine timberline ecotone.Acta Ecologica Sinica, 35, 1769-1778. (in Chinese with English abstract)[邓长春, 蒋先敏, 刘洋, 张健, 陈亚梅, 和润莲 (2015). 高山林线交错带高山杜鹃的凋落物分解. 生态学报, 35, 1769-1778.] |
10 | Graca MAS (2001). The role of invertebrates on leaf litter decomposition in streams—A review.International Review of Hydrobiology, 86, 383-393. |
11 | Guo ZL, Zheng JP, Ma YD, Li QK, Yu GR, Han SJ, Fan CN, Liu WD (2006). Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China.Acta Ecologica Sinica, 26, 1037-1046. (in Chinese with English abstract)[郭忠玲, 郑金萍, 马元丹, 李庆康, 于贵瑞, 韩士杰, 范春楠, 刘万德 (2006). 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究. 生态学报, 26, 1037-1046.] |
12 | Handa T, Aerts R, Berendse F, Berg MP, Bruder A, But- enschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014). Consequences of biodiversity loss for litter decomposition across biomes.Nature, 59, 218-221. |
13 | Hättenschwiler S, Jørgensen HB (2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest.Journal of Ecology, 98, 754-763. |
14 | Hieber M, Gessner MO (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates.Ecology, 83, 1026. |
15 | Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden.Ecology, 87, 2288-2297. |
16 | Ibrahima A, Biyanzi P, Halima M (2008). Changes in organic compounds during leaf litter leaching: Laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon. Iforest-Biogeo- sciences and Forestry, 1, 27-33. |
17 | Kay AD, Mankowski J, Hobbie SE (2008). Long-term burning interacts with herbivory to slow decomposition.Ecology, 89, 1188-1194. |
18 | Leroy CJ, Marks JC (2006). Litter quality, stream character- istics and litter diversity influence decomposition rates and macroinvertebrates.Freshwater Biology, 51, 605-617. |
19 | Liu SY, Zhang XP, Zeng ZY (2007). Biodiversity of the Jiuzhaigou National Nature Reserve. Sichuan Science and Technology Press, Chengdu. (in Chinese)[刘少英, 章小平, 曾宗永 (2007). 九寨沟自然保护区的生物多样性. 四川科学科技出版社, 成都.] |
20 | Liu X, Jiang MX, Deng HB (2008). Dynamics of nitrogen and phosphorus content during leaf litter decomposition in Xiangxi River watershed, the Three Gorges region.Journal of Wuhan Botanical Research, 26, 613-619. (in Chinese with English abstract)[刘昕, 江明喜, 邓红兵 (2008). 三峡地区香溪河流域叶片凋落物分解过程中N、P含量动态研究. 武汉植物学研究, 26, 613-619.] |
21 | Lu RK (2000). Soil and Agro-chemical Analytical Methods. China Agricultural Science and Technology Press, Beijing. 302-315.[鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京. 302-315.] |
22 | Makkonen M, Berg MP, Handa T, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012). Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient.Ecology Letters, 15, 1033-1041. |
23 | Martínez A, Larrañaga A, Pérez J, Descals E, Pozo J (2014). Temperature affects leaf litter decomposition in low-order forest streams: Field and microcosm approaches.FEMS Microbiology Ecology, 87, 257-267. |
24 | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests.Ecosystems, 9, 46-62. |
25 | Moore TR, Trofymow JA, Taylor B, Prescott C, Camire C, Duschene L, Fyles J, Kozak L, Kranabetter M, Morrison I, Siltanen M, Smith S, Titus B, Visser S, Wein R, Zoltai S (1999). Litter decomposition rates in Canadian forests.Global Change Biology, 5, 75-82. |
26 | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems.Ecology, 44, 322-331. |
27 | Osono T, Azuma J, Hirose D (2014). Plant species effect on the decomposition and chemical changes of leaf litter in grassland and pine and oak forest soils.Plant and Soil, 376, 411-421. |
28 | Parnas H (1975). Model for decomposition of organic material by microorganisms.Soil Biology & Biochemistry, 7, 161-169. |
29 | Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition.Science, 315, 361-364. |
30 | Pascoal C, Cassio F, Gomes P (2001). Leaf breakdown rates: A measure of water quality?International Review of Hydrobiology, 86, 407-416. |
31 | Peng SL, Liu Q (2002). The dynamics of forest litter and its responses to global warming.Acta Ecologica Sinica, 22, 1534-1544. (in Chinese with English abstract)[彭少麟, 刘强 (2002). 森林凋落物动态及其对全球变暖的响应. 生态学报, 22, 1534-1544.] |
32 | Petersen RC, Cummins KW (1974). Leaf processing in a woodland stream.Freshwater Biology, 4, 343-368. |
33 | Purahong W, Kapturska D, Pecyna MJ, Schulz E, Schloter M, Buscot F, Hofrichter M, Kruger D (2014). Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: A case study from central European forests.PLOS ONE, 9, 1-11. |
34 | Santiago LS (2007). Extending the leaf economics spectrum to decomposition: Evidence from a tropical forest.Ecology, 88, 126-1131. |
35 | SAS Institute (2008). SAS 9.2 User's Guide. Carolina, USA. |
36 | Shi L, Fan SH, Jiang ZH, Qi LH, Liu GL (2015). Mixed leaf litter decomposition and N, P release with a focus on Phy- llostachys edulis (Carriere) J. Houz. forest in subtropical southeastern China.Acta Societatis Botanicorum Poloniae, 84, 207-214. |
37 | Tiegs SD, Entrekin SA, Reeves GH, Kuntzsch D, Merritt RW (2013). Litter decomposition, and associated invertebrate communities, in wetland ponds of the Copper River Delta, Alaska (USA).Wetlands, 33, 1151-1163. |
38 | Wang J, Huang JH (2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China.Acta Phytoecologica Sinica, 25, 375-380. (in Chinese with English abstract)[王瑾, 黄建辉 (2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较. 植物生态学报, 25, 375-380.] |
39 | Wang XE, Xue L, Xie TF (2009). A review on litter dec- omposition.Chinese Journal of Soil Science, 40, 1473-1478. (in Chinese with English abstract)[王相娥, 薛立, 谢腾芳 (2009). 凋落物分解研究综述. 土壤通报, 40, 1473-1478.] |
40 | Wang XH, Huang JJ, Yan ER (2004). Leaf litter decomposition of common trees in Tiantong.Acta Phytoecologica Sinica, 28, 457-467. (in Chinese with English abstract)[王希华, 黄建军, 闫恩荣 (2004). 天童国家森林公园常见植物凋落叶分解的研究. 植物生态学报, 28, 457-467.] |
41 | Wardle DA, Nilsson MC, Zackrisson O, Gallet C (2003). Determinants of litter mixing effects in a Swedish boreal forest.Soil Biology & Biochemistry, 35, 827-835. |
42 | Wu QQ, Wu FZ, Yang WQ, Xu ZF, He W, He M, Zhao YY, Zhu JX (2013). Effect of seasonal snow cover on litter decomposition in alpine forest.Chinese Journal of Plant Ecology, 37, 296-305. (in Chinese with English abstract)[武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄 (2013). 季节性雪被对高山森林凋落物分解的影响. 植物生态学报, 37, 296-305.] |
43 | Yang YS, Lin P, Guo JF, Lin RY, Chen GS, He ZM, Xie JS (2003). Litter production, nutrient return and leaf-litter decomposition in natural and monoculture plantation forests of Castanopsis kawakamii in subtropical China.Acta Ecologica Sinica, 23, 1278-1289. (in Chinese with English abstract)[杨玉盛, 林鹏, 郭剑芬, 林瑞余, 陈光水, 何宗明, 谢锦升 (2003). 格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解. 生态学报, 23, 1278-1289.] |
44 | Zhang C, Yang WQ, Yue K, Huang CP, Peng Y, Wu FZ (2015). Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alpine forest streams.Chinese Journal of Applied Ecology, 26, 1601-1608. (in Chinese with English abstract)[张川, 杨万勤, 岳楷, 黄春萍, 彭艳, 吴福忠 (2015). 高山森林溪流冬季不同时期凋落物分解中水溶性氮和磷的动态特征. 应用生态学报, 26, 1601-1608.] |
45 | Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Zhang DQ, Yan JH (2008). Factors influencing leaf litter decomposition: An intersite decomposition experiment across China.Plant and Soil, 311, 61-72. |
[1] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[2] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[3] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[4] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[5] | DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(5): 660-671. |
[6] | LI Xiao-Ling, ZHU Dao-Ming, YU Yu-Rong, WU Hao, MOU Li, HONG Liu, LIU Xue- Fei, BU Gui-Jun, XUE Dan, WU Lin. Effects of simulated nitrogen deposition on growth and decomposition of two bryophytes in ombrotrophic peatland, southwestern Hubei, China [J]. Chin J Plant Ecol, 2023, 47(5): 644-659. |
[7] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[8] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[9] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[10] | CHEN Lin-Kang, ZHAO Ping, WANG Ding, XIANG Rui, LONG Guang-Qiang. Non-additive effect of mixed decomposition of maize and potato straw [J]. Chin J Plant Ecol, 2023, 47(12): 1728-1738. |
[11] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[12] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
[13] | ZHU Wei-Na, ZHANG Guo-Long, ZHANG Pu-Jin, ZHANG Qian-Qian, REN Jin-Tao, XU Bu-Yun, QING Hua. Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe [J]. Chin J Plant Ecol, 2021, 45(6): 606-616. |
[14] | Fan Lin-Jie, LI Cheng-Dao, LI Xiang-Yi, Henry J. SUN, LIN Li-Sha, LIU Bo. Effects of sand burial on litter decomposition rate and salt content dynamics in an extremely arid region [J]. Chin J Plant Ecol, 2021, 45(2): 144-153. |
[15] | YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn