Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (6): 642-650.DOI: 10.3773/j.issn.1005-264x.2010.06.003
• Research Articles • Previous Articles Next Articles
RONG Li1,2, LI Shou-Jian3, LI Xian-Wei1,*(), FAN Chuan1
Received:
2009-10-09
Accepted:
2010-01-13
Online:
2010-10-09
Published:
2010-06-01
Contact:
LI Xian-Wei
RONG Li, LI Shou-Jian, LI Xian-Wei, FAN Chuan. Soil enzyme dynamics during fine root (including grass root) decomposition in different farmland-to-forest/grassland conversions in the rainy zone of western China[J]. Chin J Plant Ecol, 2010, 34(6): 642-650.
模式 Model | 树高 TH (m) | 胸径 DBH (cm) | 郁闭度/覆盖度(%) CD/C | 林分密度 SD (株·hm-2) | 林下植被 Floor vegetation | 地理位置 Geographical locations | |||
---|---|---|---|---|---|---|---|---|---|
经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度 Slope | 坡向 Slope aspect | ||||||
HN | 12.5 | 7.4 | 0.5 (100%) | 4 200 | 扁穗牛鞭草Hemarthria compressa | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
H | 13.6 | 7.5 | 0.5 (100%) | 4 200 | 鸭茅Dactylis glomerata、铁线蕨Adiantum capillus-veneris、鸢尾Iris tectorum maxim | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
NC | 0.8 | - | 100% | - | - | 103°22' E, 29°24' N, | 620-630 | 27° | WE |
LS | 7.8 | 4.5 | 0.4 (100%) | 2 700 | 鸭茅D.glomerata、青蒿Herba Artemisiae、高羊茅Festuca arun- dinacea | 103°22' E, 29°24' N, | 620-630 | 26° | WE |
Table 1 Description of the plots
模式 Model | 树高 TH (m) | 胸径 DBH (cm) | 郁闭度/覆盖度(%) CD/C | 林分密度 SD (株·hm-2) | 林下植被 Floor vegetation | 地理位置 Geographical locations | |||
---|---|---|---|---|---|---|---|---|---|
经纬度 Longitude and latitude | 海拔 Altitude (m) | 坡度 Slope | 坡向 Slope aspect | ||||||
HN | 12.5 | 7.4 | 0.5 (100%) | 4 200 | 扁穗牛鞭草Hemarthria compressa | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
H | 13.6 | 7.5 | 0.5 (100%) | 4 200 | 鸭茅Dactylis glomerata、铁线蕨Adiantum capillus-veneris、鸢尾Iris tectorum maxim | 103°22' E, 29°24' N, | 620-630 | 25° | WE |
NC | 0.8 | - | 100% | - | - | 103°22' E, 29°24' N, | 620-630 | 27° | WE |
LS | 7.8 | 4.5 | 0.4 (100%) | 2 700 | 鸭茅D.glomerata、青蒿Herba Artemisiae、高羊茅Festuca arun- dinacea | 103°22' E, 29°24' N, | 620-630 | 26° | WE |
模式 Model | 水溶性总糖 Water soluble total carbohydrate | 粗蛋白 Crude protein | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | 灰分 Ash |
---|---|---|---|---|---|---|
HN | 4.98 | 2.33 | 15.46 | 19.79 | 22.94 | 3.22 |
H | 4.20 | 2.05 | 13.10 | 16.24 | 31.15 | 1.12 |
NC | 5.20 | 2.86 | 19.40 | 28.06 | 3.85 | 7.81 |
LS | 3.80 | 1.48 | 11.20 | 26.30 | 34.71 | 2.01 |
Table 2 Initial chemical component contents of fine roots (including grass roots) in four models (%)
模式 Model | 水溶性总糖 Water soluble total carbohydrate | 粗蛋白 Crude protein | 半纤维素 Hemicellulose | 纤维素 Cellulose | 木质素 Lignin | 灰分 Ash |
---|---|---|---|---|---|---|
HN | 4.98 | 2.33 | 15.46 | 19.79 | 22.94 | 3.22 |
H | 4.20 | 2.05 | 13.10 | 16.24 | 31.15 | 1.12 |
NC | 5.20 | 2.86 | 19.40 | 28.06 | 3.85 | 7.81 |
LS | 3.80 | 1.48 | 11.20 | 26.30 | 34.71 | 2.01 |
Fig. 2 Variations of soil enzyme activities in four models (mean ± SE, n = 6). A, Urease activity. B, Sucrase activity. C, Acid phosphatase activity. D, Cellulase activity. E, Polyphenoloxidase activity. H, HN, LS and NC, see Table 1.
模式 Model | 脲酶 Urease | 蔗糖酶 Sucrase | 酸性磷酸酶 Acid phosphatase | 纤维素酶 Cellulase | 多酚氧化酶 Polyphenoloxidase | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
HN | 0.891 0* | 0.017 2 | 0.943 5** | 0.004 7 | 0.303 9 | 0.558 2 | 0.132 8 | 0.080 2 | 0.474 9 | 0.341 2 |
H | 0.751 5 | 0.084 9 | 0.195 9 | 0.709 9 | 0.604 3 | 0.203 9 | 0.037 0 | 0.944 5 | 0.497 5 | 0.315 3 |
NC | 0.809 1* | 0.051 2 | 0.631 2 | 0.178 9 | 0.880 0* | 0.020 7 | 0.028 0 | 0.957 3 | 0.134 4 | 0.799 7 |
LS | 0.931 2** | 0.011 0 | 0.728 2 | 0.100 8 | 0.095 6 | 0.857 0 | 0.446 1 | 0.375 2 | 0.886 0* | 0.018 7 |
Table 3 Relationships between soil enzyme and decomposition rate of fine root (including grass root) (n = 6)
模式 Model | 脲酶 Urease | 蔗糖酶 Sucrase | 酸性磷酸酶 Acid phosphatase | 纤维素酶 Cellulase | 多酚氧化酶 Polyphenoloxidase | |||||
---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | |
HN | 0.891 0* | 0.017 2 | 0.943 5** | 0.004 7 | 0.303 9 | 0.558 2 | 0.132 8 | 0.080 2 | 0.474 9 | 0.341 2 |
H | 0.751 5 | 0.084 9 | 0.195 9 | 0.709 9 | 0.604 3 | 0.203 9 | 0.037 0 | 0.944 5 | 0.497 5 | 0.315 3 |
NC | 0.809 1* | 0.051 2 | 0.631 2 | 0.178 9 | 0.880 0* | 0.020 7 | 0.028 0 | 0.957 3 | 0.134 4 | 0.799 7 |
LS | 0.931 2** | 0.011 0 | 0.728 2 | 0.100 8 | 0.095 6 | 0.857 0 | 0.446 1 | 0.375 2 | 0.886 0* | 0.018 7 |
模式Model | 酶类 Enzyme | 细菌 Bacteria | 真菌 Fungi | 放线菌Actinomycete | 需氧固氮细菌 Aerobic azotobacter | 纤维素分解菌 Cellulolytic bacteria |
---|---|---|---|---|---|---|
HN | 脲酶Urease | 0.429 5 | 0.965 2** | 0.628 0 | 0.813 2* | -0.866 7* |
蔗糖酶Sucrase | 0.878 6* | 0.878 2* | 0.215 3 | 0.385 0 | 0.936 0** | |
酸性磷酸酶 Acid phosphatase | 0.401 3 | 0.244 6 | 0.616 5 | 0.115 7 | 0.385 0 | |
纤维素酶Cellulase | 0.569 5 | -0.301 3 | -0.540 3 | -0.795 2 | 0.058 1 | |
多酚氧化酶Polyphenoloxidase | 0.645 2 | 0.426 2 | 0.627 4 | -0.115 7 | 0.650 4 | |
H | 脲酶Urease | 0.437 0 | 0.598 3 | 0.548 3 | 0.990 0** | 0.254 5 |
蔗糖酶Sucrase | 0.859 1* | 0.366 4 | 0.623 1 | 0.324 0 | 0.588 0 | |
酸性磷酸酶 Acid phosphatase | 0.867 3* | 0.653 5 | 0.685 5 | 0.653 6 | 0.673 0 | |
纤维素酶Cellulase | 0.730 2 | 0.342 2 | 0.254 9 | -0.268 9 | 0.785 9 | |
多酚氧化酶Polyphenoloxidase | 0.468 2 | 0.503 0 | 0.008 7 | 0.255 6 | 0.753 1 | |
NC | 脲酶Urease | 0.160 8 | 0.858 0* | 0.009 5 | 0.735 4 | 0.000 0 |
蔗糖酶Sucrase | 0.551 8 | 0.717 4 | 0.410 7 | 0.282 0 | 0.680 3 | |
酸性磷酸酶 Acid phosphatase | 0.778 7 | 0.935 0** | 0.443 7 | 0.293 1 | 0.887 3* | |
纤维素酶Cellulase | 0.768 1 | 0.013 4 | -0.882 8 | -0.479 1 | 0.098 3 | |
多酚氧化酶Polyphenoloxidase | 0.242 3 | -0.088 6 | 0.258 5 | 0.585 2 | 0.153 4 | |
LS | 脲酶Urease | 0.289 2 | 0.924 0** | 0.777 1 | 0.873 2* | 0.501 1 |
蔗糖酶Sucrase | 0.121 2 | 0.617 3 | -0.696 4 | -0.560 8 | -0.157 8 | |
酸性磷酸酶 Acid phosphatase | 0.513 9 | 0.001 7 | 0.700 9 | 0.030 3 | 0.418 2 | |
纤维素酶Cellulase | 0.375 5 | -0.430 7 | 0.075 1 | -0.067 3 | 0.385 7 | |
多酚氧化酶Polyphenoloxidase | 0.658 1 | 0.692 8 | 0.710 0 | 0.831 8* | 0.849 2* |
Table 4 Relationships between soil enzyme and soil microorganism (r) (n = 6)
模式Model | 酶类 Enzyme | 细菌 Bacteria | 真菌 Fungi | 放线菌Actinomycete | 需氧固氮细菌 Aerobic azotobacter | 纤维素分解菌 Cellulolytic bacteria |
---|---|---|---|---|---|---|
HN | 脲酶Urease | 0.429 5 | 0.965 2** | 0.628 0 | 0.813 2* | -0.866 7* |
蔗糖酶Sucrase | 0.878 6* | 0.878 2* | 0.215 3 | 0.385 0 | 0.936 0** | |
酸性磷酸酶 Acid phosphatase | 0.401 3 | 0.244 6 | 0.616 5 | 0.115 7 | 0.385 0 | |
纤维素酶Cellulase | 0.569 5 | -0.301 3 | -0.540 3 | -0.795 2 | 0.058 1 | |
多酚氧化酶Polyphenoloxidase | 0.645 2 | 0.426 2 | 0.627 4 | -0.115 7 | 0.650 4 | |
H | 脲酶Urease | 0.437 0 | 0.598 3 | 0.548 3 | 0.990 0** | 0.254 5 |
蔗糖酶Sucrase | 0.859 1* | 0.366 4 | 0.623 1 | 0.324 0 | 0.588 0 | |
酸性磷酸酶 Acid phosphatase | 0.867 3* | 0.653 5 | 0.685 5 | 0.653 6 | 0.673 0 | |
纤维素酶Cellulase | 0.730 2 | 0.342 2 | 0.254 9 | -0.268 9 | 0.785 9 | |
多酚氧化酶Polyphenoloxidase | 0.468 2 | 0.503 0 | 0.008 7 | 0.255 6 | 0.753 1 | |
NC | 脲酶Urease | 0.160 8 | 0.858 0* | 0.009 5 | 0.735 4 | 0.000 0 |
蔗糖酶Sucrase | 0.551 8 | 0.717 4 | 0.410 7 | 0.282 0 | 0.680 3 | |
酸性磷酸酶 Acid phosphatase | 0.778 7 | 0.935 0** | 0.443 7 | 0.293 1 | 0.887 3* | |
纤维素酶Cellulase | 0.768 1 | 0.013 4 | -0.882 8 | -0.479 1 | 0.098 3 | |
多酚氧化酶Polyphenoloxidase | 0.242 3 | -0.088 6 | 0.258 5 | 0.585 2 | 0.153 4 | |
LS | 脲酶Urease | 0.289 2 | 0.924 0** | 0.777 1 | 0.873 2* | 0.501 1 |
蔗糖酶Sucrase | 0.121 2 | 0.617 3 | -0.696 4 | -0.560 8 | -0.157 8 | |
酸性磷酸酶 Acid phosphatase | 0.513 9 | 0.001 7 | 0.700 9 | 0.030 3 | 0.418 2 | |
纤维素酶Cellulase | 0.375 5 | -0.430 7 | 0.075 1 | -0.067 3 | 0.385 7 | |
多酚氧化酶Polyphenoloxidase | 0.658 1 | 0.692 8 | 0.710 0 | 0.831 8* | 0.849 2* |
[1] | Allison SD, Vitousek PM (2004). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285-296. |
[2] | Bao SD (鲍士旦) (2000). Soil and Agricultural Chemistry Analysis (土壤农化分析). China Agricultural Press, Beijing. (in Chinese) |
[3] | Burns RG, Dick RP (2002). Enzymes in the Environment: Activity, Ecology and Applications. Marcel Dekker Inc., New York. |
[4] | Cao H (曹慧), Sun H (孙辉), Yang H (杨浩), Sun B (孙波), Zhao QG (赵其国) (2003). A review of soil enzyme activity and its indication for soil quality. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 9(1), 105-109. (in Chinese with English abstract) |
[5] |
Couteaux M, Bottner P, Berg B (1995). Litter decomposition, climate and litter quality. Tree, 10, 63-66.
URL PMID |
[6] | Chamier AC, Dixoon PA (1982). Pectinases in leaf degradation by aquatic hyphomycetes: the enzymes and leaf maceration. Journal of Genetic Microbiology, 128, 2469-2483. |
[7] | Chapin III FS, Matson PM, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Spring-Verlag, New York. |
[8] |
Chen H, Harmon ME, Griffiths RP (2001). Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest. Canadian Journal of Forest Research, 31, 246-260.
DOI URL |
[9] | Dai QH (戴全厚), Liu GB (柳国彬), Jiang J (姜峻), Xue S (薛箑), Zhai S (翟胜) (2008). Effect of soil enzyme activities under different vegetation restoration in eroded hilly Loess Plateau. Chinese Agricultural Science Bulletin (中国农学通报), 24, 429-434. (in Chinese with English abstract) |
[10] |
Diamantidis G, Effosse A, Potier P, Bally R (2000). Purification and characterization of the first bacterial Laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology & Biochemistry, 32, 919-927.
DOI URL |
[11] |
Emmerling C, Liebner C, Haubold-Rosar M, Katzur J, Schröder D (2000). Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region. Plant and Soil, 220, 129-138.
DOI URL |
[12] | Gray DB, Mary KT, Julie EJ (2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34, 1073-1082. |
[13] | Guan SY (关松荫) (1986). Soil Enzyme and Study Method (土壤酶及其研究方法). China Agricultural Press, Beijing. (in Chinese) |
[14] | Huang ZQ, Liao LP, Wang SL, Cao GQ (2000). Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland. Journal of Chemical Ecology, 26, 2211-2219. |
[15] | Insam H (2000). Development in soil microbiology since the mid 1960s. Geoderma, 100, 389-402. |
[16] | Jagadish CT, Subhash CM, Shyam K (2001). Influence of straw size on activity and biomass of soil microorganisms during decomposition. European Journal of Soil Biology, 37, 157-160. |
[17] | Joshi SR, Mishra RR, Sharma GD (1993). Microbial enzyme activities related to litter decomposition near a highway in a sub-tropical forest of North East India. Soil Biology and Biochemistry, 24, 1763-1770. |
[18] | Kim JG, Rejmánková E (2004). Decomposition of macrophytes and dynamics of enzyme activities in subalpine marshes in Lake Tahoe basin, U.S.A. Plant and Soil, 266, 303-313. |
[19] | Kourtev PS, Ehrenfeld JG, Huan WZ (2000). Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biology and Biochemistry, 34, 1207-1218. |
[20] | Kshattriya S, Sharma GD, Mishra RR (1992). Enzyme activities related to litter decomposition in forests of different age and altitude in North East India. Soil Biology and Biochemistry, 24, 265-270. |
[21] | Li CR (李传荣), Xu JW (许景伟), Song HY (宋海燕), Li CY (李春艳), Zheng L (郑莉), Wang WD (王卫东), Wang YH (王月海) (2006). Soil enzyme activities in different plantations in lowlands of the Yellow River delta, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 802-809. (in Chinese with English abstract) |
[22] | Liang BC, Wang XL, Ma BL (2002). Maize root-induced change in soil organic carbon pools. Soil Science and Society of America Journal, 66, 845-847. |
[23] | Lü WG (吕卫光), Shen QR (沈其荣), Yu TY (余庭园), Zhu HT (诸海涛) (2006). The effect of added phenolic acids on soil enzyme activities and nutrients. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 12, 845-849. (in Chinese with English abstract) |
[24] | Microbiology Department, Nanjing Institute of Soil Science, Chinese Academy of Sciences (中国科学院南京土壤微生物所微生物实验室) (1985). Research Methods of Soil Microorganism (土壤微生物研究方法). Science Press, Beijing. (in Chinese) |
[25] | Nannipieri P, Muccini L, Ciardi C (1983). Microbial biomass and enzyme activities: production and persistence. Soil Biology & Biochemistry, 15, 676-685. |
[26] | Rong L (荣丽), Li XW (李贤伟), Zhang J (张健), Zhu TH (朱天辉), Fan C (范川), Pu DQ (蒲德强) (2009). Major microbial functional groups related to fine root and grass root decomposition in different models of conversion of farmland to forest in the rainy zone of west China. Journal of Natural Resources (自然资源学报), 24, 1069-1079. (in Chinese with English abstract) |
[27] | Sinsabaugh RL, Antibus R, Linkins AE, Raybum L, Repert D, Weiland T (1992). Wood decomposition over a first-order watershed: mass loss as a function of lignocellulase activity. Soil Biology & Biochemistry, 24, 743-749. |
[28] |
Sinsabaugh RL, Findlay S (1995). Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River Estuary. Microbial Ecology, 30, 127-141.
URL PMID |
[29] | Sinsabaugh RL, Moorhead DL, Linkins AE (1994). The enzyme basis of plant litter decomposition: emergence of an ecological process. Applied Soil Ecology, 1, 97-111. |
[30] | Tanaka Y (1991). Microbial decomposition of reed (Phragmites communis) leaves in saline lake. Hydrobiologia, 220, 119-129. |
[31] | Vance ED, Chapin III FS (2001). Substrate limitations to microbial activity in taiga forest floors. Soil Biology & Biochemistry, 33, 173-188. |
[32] | van Soest PJ, Wine RH (1968). Determination of lignin and cellulose in acid-detergent fibre with permanganate. Journal of the Association of Official Agricultural Chemists, 51, 780-785. |
[33] | Wan ZM (万忠梅), Wu JG (吴景贵) (2005). Study progress on factors affecting soil enzyme activity. Journal of Northwest Sci-Tech University of Agricultural and Forestry (Natural Science Edition) 西北农林科技大学学报(自然科学版)), 22(6), 87-92. (in Chinese with English abstract) |
[34] | Wang Q (王巧), Li XW (李贤伟), Yang M (杨渺), Li DH (李德会), Rong L (荣丽) (2007). Biomass and spatial distribution of the fine root of Betula luminifera-Hemarthria compressa composite mode. Journal of Sichuan Agricultural University (四川农业大学学报), 25, 430-435. (in Chinese with English abstract) |
[35] | Wood TG (1991). Field investigation on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors. Pedobiologia, 14, 343-371. |
[36] | Yang WQ (杨万勤) (2006). Forest Soil Ecology (森林土壤生态学). Sichuan Science Press, Chengdu. (in Chinese) |
[37] | Yang WQ (杨万勤), Wang KY (王开运) (2004). Advances in forest soil enzymology. Scientia Silvae Sinicae (林业科学), 40(2), 152-159. (in Chinese with English abstract) |
[38] | Yang WQ (杨万勤), Zhong ZC (钟章成), Tao JP (陶建平), He WM (何维明) (2001). Study on relationship between soil enzymic activities and plant species diversity in forest ecosystem of Mt. Jin Yun. Scientia Silvae Sinicae (林业科学), 27(4), 124-128. (in Chinese with English abstract) |
[39] | Yang YG (杨云贵), Long MX (龙明秀), Wang Y (王莺), Jiang ZL (江中良) (2004). Evaluation on the nutrition value of forage, silage corn and straw using Van-Soest method. Acta Agrestia Sinica (草地学报), 12, 132-135. (in Chinese with English abstract) |
[40] | Zhang JE (章家恩) (2006). Frequently-Used Method and Technology in Ecology (生态学常用试验研究方法与技术). Chemical Industry Press, Beijing. (in Chinese) |
[41] | Zhang P (张鹏), Tian XJ (田兴军), He XB (何兴兵), Song FQ (宋富强), Ren LL (任利利) (2007). Enzyme activities in litter, fragmentation and humus layers of subtropical forests. Ecology and Environment (生态环境), 16, 1024-1029. (in Chinese with English abstract) |
[42] | Zhao B (赵斌), He SJ (何绍江) (2002). Microbiology Experiment (微生物学试验). Science Press, Beijing. (in Chinese) |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[4] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[5] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[6] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[7] | DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(5): 660-671. |
[8] | LI Xiao-Ling, ZHU Dao-Ming, YU Yu-Rong, WU Hao, MOU Li, HONG Liu, LIU Xue- Fei, BU Gui-Jun, XUE Dan, WU Lin. Effects of simulated nitrogen deposition on growth and decomposition of two bryophytes in ombrotrophic peatland, southwestern Hubei, China [J]. Chin J Plant Ecol, 2023, 47(5): 644-659. |
[9] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[10] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[11] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[12] | CHEN Lin-Kang, ZHAO Ping, WANG Ding, XIANG Rui, LONG Guang-Qiang. Non-additive effect of mixed decomposition of maize and potato straw [J]. Chin J Plant Ecol, 2023, 47(12): 1728-1738. |
[13] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[14] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China [J]. Chin J Plant Ecol, 2022, 46(4): 473-483. |
[15] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn