Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (1): 105-114.DOI: 10.17521/cjpe.2016.0217
Special Issue: 中国灌丛生态系统碳储量的研究
• Research Articles • Previous Articles Next Articles
Yang WANG1,2, Wen-Ting XU1, Gao-Ming XIONG1, Jia-Xiang LI1,3, Chang-Ming ZHAO1, Zhi-Jun LU4, Yue-Lin LI5, Zong-Qiang XIE1,*()
Received:
2016-07-04
Accepted:
2016-12-16
Online:
2017-01-10
Published:
2017-01-23
Contact:
Zong-Qiang XIE
About author:
KANG Jing-yao(1991-), E-mail: Yang WANG, Wen-Ting XU, Gao-Ming XIONG, Jia-Xiang LI, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Biomass allocation patterns of Loropetalum chinense[J]. Chin J Plant Ecol, 2017, 41(1): 105-114.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0217
径级 Diameter class | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
A | 96 | 0.125 | -0.090 | 0.341 | 0.945 | 0.846 | 1.057 | <0.001 | 0.704 | |
B | 136 | 0.272 | 0.136 | 0.407 | 0.979 | 0.879 | 1.090 | <0.001 | 0.601 | |
C | 63 | 0.355 | 0.186 | 0.524 | 0.927 | 0.750 | 1.147 | <0.001 | 0.300 | |
D | 32 | 0.429 | 0.311 | 0.546 | 0.975 | 0.724 | 1.313 | <0.001 | 0.343 | |
叶-茎 ML-MS | ||||||||||
A | 96 | -0.601 | -0.774 | -0.429 | 1.029 | 0.943 | 1.124 | <0.001 | 0.815 | |
B | 136 | -0.690 | -0.826 | -0.554 | 1.089 | 0.970 | 1.221 | <0.001 | 0.546 | |
C | 63 | -0.733 | -0.876 | -0.589 | 1.268 | 1.031 | 1.559 | <0.001 | 0.339 | |
D | 32 | -1.047 | -1.168 | -0.926 | 1.681 | 1.311 | 2.157 | <0.001 | 0.545 | |
叶-根 ML-MR | ||||||||||
A | 96 | -0.556 | -0.802 | -0.311 | 0.983 | 0.870 | 1.110 | <0.001 | 0.644 | |
B | 136 | -0.446 | -0.629 | -0.262 | 1.096 | 0.963 | 1.247 | <0.001 | 0.422 | |
C | 63 | -0.332 | -0.582 | -0.082 | 1.226 | 0.969 | 1.551 | 0.002 | 0.141 | |
D | 32 | -0.429 | -0.657 | -0.201 | 1.586 | 1.129 | 2.227 | 0.036 | 0.138 |
Table 2 Allometric relationships between organs of Loropetalum chinense in four basal diameter classes (in log-log scale)
径级 Diameter class | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
A | 96 | 0.125 | -0.090 | 0.341 | 0.945 | 0.846 | 1.057 | <0.001 | 0.704 | |
B | 136 | 0.272 | 0.136 | 0.407 | 0.979 | 0.879 | 1.090 | <0.001 | 0.601 | |
C | 63 | 0.355 | 0.186 | 0.524 | 0.927 | 0.750 | 1.147 | <0.001 | 0.300 | |
D | 32 | 0.429 | 0.311 | 0.546 | 0.975 | 0.724 | 1.313 | <0.001 | 0.343 | |
叶-茎 ML-MS | ||||||||||
A | 96 | -0.601 | -0.774 | -0.429 | 1.029 | 0.943 | 1.124 | <0.001 | 0.815 | |
B | 136 | -0.690 | -0.826 | -0.554 | 1.089 | 0.970 | 1.221 | <0.001 | 0.546 | |
C | 63 | -0.733 | -0.876 | -0.589 | 1.268 | 1.031 | 1.559 | <0.001 | 0.339 | |
D | 32 | -1.047 | -1.168 | -0.926 | 1.681 | 1.311 | 2.157 | <0.001 | 0.545 | |
叶-根 ML-MR | ||||||||||
A | 96 | -0.556 | -0.802 | -0.311 | 0.983 | 0.870 | 1.110 | <0.001 | 0.644 | |
B | 136 | -0.446 | -0.629 | -0.262 | 1.096 | 0.963 | 1.247 | <0.001 | 0.422 | |
C | 63 | -0.332 | -0.582 | -0.082 | 1.226 | 0.969 | 1.551 | 0.002 | 0.141 | |
D | 32 | -0.429 | -0.657 | -0.201 | 1.586 | 1.129 | 2.227 | 0.036 | 0.138 |
起源 Origin | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
次生 Secondary | 209 | 0.376 | 0.296 | 0.455 | 1.032 | 0.977 | 1.090 | <0.001 | 0.840 | |
原生 Primary | 118 | 0.396 | 0.269 | 0.522 | 1.097 | 1.015 | 1.185 | <0.001 | 0.822 | |
叶-茎 ML-MS | ||||||||||
次生 Secondary | 209 | -0.745 | -0.809 | -0.681 | 0.949 | 0.898 | 1.002 | <0.001 | 0.840 | |
原生 Primary | 118 | -1.049 | -1.129 | -0.970 | 0.876 | 0.819 | 0.937 | <0.001 | 0.867 | |
叶-根 ML-MR | ||||||||||
次生 Secondary | 209 | -0.449 | -0.549 | -0.349 | 1.002 | 0.934 | 1.075 | <0.001 | 0.735 | |
原生 Primary | 118 | -0.726 | -0.853 | -0.600 | 0.983 | 0.902 | 1.072 | <0.001 | 0.779 |
Table 3 Allometric relationships between organs of Loropetalum chinense in primary and secondary shrublands (in log-log scale)
起源 Origin | 样本数 n | 回归常数 Regression constant | 尺度系数 Scaling coefficient | p | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
α | 置信下限 Lower CI | 置信上限 Upper CI | β | 置信下限 Lower CI | 置信上限 Upper CI | |||||
地上-根 MA-MR | ||||||||||
次生 Secondary | 209 | 0.376 | 0.296 | 0.455 | 1.032 | 0.977 | 1.090 | <0.001 | 0.840 | |
原生 Primary | 118 | 0.396 | 0.269 | 0.522 | 1.097 | 1.015 | 1.185 | <0.001 | 0.822 | |
叶-茎 ML-MS | ||||||||||
次生 Secondary | 209 | -0.745 | -0.809 | -0.681 | 0.949 | 0.898 | 1.002 | <0.001 | 0.840 | |
原生 Primary | 118 | -1.049 | -1.129 | -0.970 | 0.876 | 0.819 | 0.937 | <0.001 | 0.867 | |
叶-根 ML-MR | ||||||||||
次生 Secondary | 209 | -0.449 | -0.549 | -0.349 | 1.002 | 0.934 | 1.075 | <0.001 | 0.735 | |
原生 Primary | 118 | -0.726 | -0.853 | -0.600 | 0.983 | 0.902 | 1.072 | <0.001 | 0.779 |
Fig. 2 Allometric relationships between different organs of Loropetalum chinense in four basal diameter classes. ML, MS and MR are the dry mass of leaf, stem and root, respectively; MA = ML + MS).
Fig. 4 Dry mass ratio of leaf, stem, root and the root to shoot ratio of Loropetalum chinense in four basal diameter classes (mean ± SD). A, 0.1-1 cm; B, 1-2 cm; C, 2-3 cm; D, 3-6 cm; d, basal diameter. Different small letters indicate significant difference (p < 0.05) among diameter classes.
Fig. 5 Dry mass ratio of leaf, stem, root and the root to shoot ratio of Loropetalum chinense in primary and secondary shrub lands (mean ± SD). Different small letters indicate significant difference (p < 0.05) among different regeneration origins.
[1] | Bessler H, Temperton VM, Roscher C, Buchmann N, Schmid B, Schulze ED, Weisser WW, Engels C (2009). Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs.Ecology, 90, 1520-1530. |
[2] | Cheng DL, Niklas KJ (2007). Above- and below-ground biomass relationships across 1534 forested communities.Annals of Botany, 99, 95-102. |
[3] | Coomes DA (2006). Challenges to the generality of WBE theory.Trendsin Ecology & Evolution, 21, 593-596. |
[4] | Duncanson LI, Dubayah RO, Enquist BJ (2015). Assessing the general patterns of forest structure: Quantifying tree and forest allometric scaling relationships in the United States.Global Ecology and Biogeography, 24, 1465-1475. |
[5] | Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007). A general integrative model for scaling plant growth, carbon flux, and functional trait spectra.Nature, 449, 218-222. |
[6] | Enquist BJ, Niklas KJ (2001). Invariant scaling relations across tree-dominated communities.Nature, 410, 655-660. |
[7] | Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants.Science, 295, 1517-1520. |
[8] | Fan FL, Zhang FS, Qu Z, Lu YH (2008). Plant carbon partitioning below ground in the presence of different neighboring species.Soil Biology & Biochemistry, 40, 2266-2272. |
[9] | Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB (2009). Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia.Journal of Arid Environments, 73, 521-528. |
[10] | Hu HF, Wang ZH, Liu GH, Fu BJ (2006). Vegetation carbon storage of major shrublands in China.Journal of Plant Ecology (Chinese Version), 30, 539-544. (in Chinese with English abstract)[胡会峰, 王志恒, 刘国华, 傅博杰 (2006). 中国主要灌丛植被碳储量. 植物生态学报, 30, 539-544.] |
[11] | Luken JO (1988). Population structure and biomass allocation of the naturalized shrub Lonicera maackii(Rupr.) Maxim. in forest and open habitats. The American Midland Naturalist, 119, 258-267. |
[12] | McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation.Functional Ecology, 21, 713-720. |
[13] | McConnaughay KDM, Coleman JS (1999). Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients.Ecology, 80, 2581-2593. |
[14] | Nie XQ, Yang YH, Yang LC, Zhou GY (2016). Above- and belowground biomass allocation in shrub biomes across the northeast Tibetan Plateau.PLOS ONE, 11, e0154251. doi:10.1371/journal.pone.0154251. |
[15] | Niklas KJ (2004). Plant allometry: Is there a grand unifying theory?Biological Reviews, 79, 871-889. |
[16] | Perkins SR, Owens MK (2003). Growth and biomass allocation of shrub and grass seedlings in response to predicted changes in precipitation seasonality.Plant Ecology, 168, 107-120. |
[17] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control.New Phytologist, 193, 30-50. |
[18] | Robinson D (2004). Scaling the depths: Below-ground allocation in plants, forests and biomes.Functional Ecology, 18, 290-295. |
[19] | Ryser P, Eek L (2000). Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources.American Journal of Botany, 87, 402-411. |
[20] | Sack L, Maranon T, Grubb PJ (2002). Global allocation rules for patterns of biomass partitioning.Science, 296, 1923a. |
[21] | Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation.Functional Ecology, 16, 326-331. |
[22] | Wang XP, Fang JY, Zhu B (2008). Forest biomass and root- shoot allocation in northeast China.Forest Ecology and Management, 255, 4007-4020. |
[23] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
[24] | Weiner J (2004). Allocation, plasticity and allometry in plants.Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[25] | Xie JY, Chen LZ (1997). The studies of some aspects of biodiversity on scrubs in the warm temperate zone in China.Acta Phytoecologica Sinica, 21, 197-207. (in Chinese with English abstract)[谢晋阳, 陈灵芝 (1997). 中国暖温带若干灌丛群落多样性问题的研究. 植物生态学报, 21, 197-207.] |
[26] | Yang HT, Li XR, Liu LC, Jia RL, Wang ZJ, Li XJ, Li G (2013). Biomass allocation patterns of four shrubs in desert grassland.Journal of Desert Research, 33, 1340-1348. (in Chinese with English abstract)[杨昊天, 李新荣, 刘立超, 贾荣亮, 王增加, 李小军, 李刚 (2013). 荒漠草地4种灌木生物量分配特征. 中国沙漠, 33, 1340-1348.] |
[27] | Yang YH, Luo YQ (2011). Isometric biomass partitioning pattern in forest ecosystems: Evidence from temporal observations during stand development.Journal of Ecology, 99, 431-437. |
[28] | Zhang H, Wang KL, Xu XL, Song TQ, Xu YF, Zeng FP (2015). Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests.Scientific Reports, 5, 15997. doi: 10.1038/srep15997. |
[29] | Zhou HK, Zhou L, Zhao XQ, Sheng ZX, Li YN, Zhou XM, Yan ZL, Liu W (2002). Study of formation pattern of below-ground biomass in Potentilla fruticosa shrub. Acta Prataculturae Sinica, 11, 59-65. (in Chinese with English abstract)[周华坤, 周立, 赵新全, 沈振西, 李英年, 周兴民, 严作良, 刘伟 (2002). 金露梅灌丛地下生物量形成规律的研究. 草业学报, 11, 59-65.] |
[1] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[2] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[3] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[4] | YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou [J]. Chin J Plant Ecol, 2021, 45(2): 187-196. |
[5] | XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(11): 1138-1153. |
[6] | MO Dan, WANG Zhen-Meng, ZUO You-Lu, XIANG Shuang. Trade-off between shooting and leaf developing of woody species saplings in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2020, 44(10): 995-1006. |
[7] | Yue YAN, Jian-Jun ZHU, Bin ZHANG, Yan-Jie ZHANG, Shun-Bao LU, Qing-Min PAN. A review of belowground biomass allocation and its response to global climatic change in grassland ecosystems [J]. Chin J Plan Ecolo, 2017, 41(5): 585-596. |
[8] | Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 529-538. |
[9] | Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plant Ecol, 2017, 41(1): 71-80. |
[10] | Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plant Ecol, 2017, 41(1): 53-61. |
[11] | Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Effects of nitrogen addition on soil respiration in shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plant Ecol, 2017, 41(1): 81-94. |
[12] | Yan-Pei GUO, Xian YANG, Anwar MOHHAMOT, Hong-Yan LIU, Wen-Hong MA, Shun-Li YU, Zhi-Yao TANG. Storage of carbon, nitrogen and phosphorus in temperate shrubland ecosystems across Northern China [J]. Chin J Plant Ecol, 2017, 41(1): 14-21. |
[13] | Qiang ZHANG, Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Zong-Qiang XIE. Estimation of biomass allocation and carbon density of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plant Ecol, 2017, 41(1): 43-52. |
[14] | Xiao-Hong LI, Jian-Cheng XU, Yi-An XIAO, Wen-Hai HU, Yu-Song CAO. Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China [J]. Chin J Plant Ecol, 2016, 40(9): 871-882. |
[15] | Ming ZHOU, Zhi-Li LIU, Guang-Ze JIN. Improving the accuracy of indirect methods in estimating leaf area index using three correction schemes in a Larix gmelinii plantation [J]. Chin J Plant Ecol, 2016, 40(6): 574-584. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4247
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1584
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn