Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (2): 252-268.DOI: 10.17521/cjpe.2016.0195
Special Issue: 全球变化与生态系统
• Reviews • Previous Articles Next Articles
Feng GAO1,2, Pin LI1, Zhao-Zhong FENG1,2,*()
Received:
2016-06-12
Accepted:
2016-12-16
Online:
2017-02-10
Published:
2017-03-16
Contact:
Zhao-Zhong FENG
About author:
KANG Jing-yao(1991-), E-mail:
Feng GAO, Pin LI, Zhao-Zhong FENG. Interactive effects of ozone and drought stress on plants: A review[J]. Chin J Plan Ecolo, 2017, 41(2): 252-268.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0195
植物类型 Plant type | 植物种类 Plants species | 树龄(年) Tree-age (year) | 实验方法Experimental method | O3处理 O3 treatment (nmol·mol-1) | 干旱处理 Drought treatment | 研究内容 Research content | 参考文献 Reference |
---|---|---|---|---|---|---|---|
草本Herbaceous | 冬小麦 Triticum aestivum | - | 温室 Greenhouse | 80 | SWC 60%, 45%, 35% | 叶片O3吸收与产量 Leaf ozone uptake and grain yield | Khan & Soja, 2003 |
冬小麦 Triticum aestivum | - | OTC | 125 | SWC 35%-40% | 生理生长 Physiology and biochemistry | Xu et al., 2007 | |
冬小麦 Triticum aestivum, 圆锥小麦 Triticum turgidum ssp. durum | - | OTC | 83 | SWC 42% | 生理生化、产量 Physiology and biochemistry, grain yield | Biswas & Jiang, 2011 | |
春小麦 Triticum aestivum, Triticum durum | - | OTC | AA + 50 | 40%对照SWC 40% SWC of control | 抗氧化系统 Antioxidant defense systems | Herbinger et al., 2002 | |
大豆 Glycine max | - | OTC | 0.70 × AA, 60 | -0.8MPa黎明前叶片水势 - 0.8 MPa Pre-dawn leaf water potential | 蒸散 Evapotranspiration | Rana et al., 2012 | |
菜豆 Pharsalus vulgaris | - | GC | 48, 87, 150 | SWC 6%-15% | 气孔 Stomata | Hoshika et al., 2013 | |
番茄 Lycopersicon esculentum | - | 大田 Field | AA, AA + 80 | 18%-33%田间持水量 18%-33% Field capacity | 果实自由基含量 Radical contents in fruit | Pirker et al., 2003 | |
Leontodon hispidus | - | GC | 70 | 50%田间持水量 50% Field capacity | 脱落酸(ABA)作用机制 Mechanisms of action of abscisic acid | Wilkinson & Davies, 2009 | |
Medicago runcatula | - | GC | 70 | 以测定量灌溉 Adding measured amounts of water | 生理生化、分子 Physiological, biochemical and molecular response | Iyer et al., 2013 | |
烟草 Nicotiana tabacum | - | GC | 200 | 适当灌溉 With holding water from the plants | 分子(DHAR表达) Molecular (dehydroascorbate reductase overexpressing) | Eltayeb et al., 2006 | |
常绿、落叶乔木 Evergreen and deciduous trees | 欧洲云杉 Picea abies, Fagus sylvatica | 50; 60 | 开放式熏 气系统 A free-air fumigation system | 2 × AA | NE (2年不同气候) NE (Climatic variation in two years) | 地下影响(土壤呼吸、 根系生物量) Belowground effects (soil respiration, fine-root biomass) | Nikolova et al., 2010 |
欧洲云杉 Picea abies, Fagus sylvatica | - | NE | AA | NE (两种树分别12个和4个不同地点) NE (12 and 4 different site conditions were used, respectively) | 规模性生长关系 Size-growth relationship | Pretzsch & Dieler, 2011 | |
阿巴拉契亚山脉南部森林 Southern Appalachian forest | 成熟林 Mature forest trees | NE | AA | NE (3个不同地点在2-3年的不同气候) (Three sites over 2-3 years) | 生长和液流速率 Growth and sap flow velocity | McLaughlin et al., 2007 | |
常绿乔木 Evergreen trees | 欧洲云杉 Picea abies | 4 | OTC | 37 | 胁迫期停止灌溉 The irrigation system was turned off during the dry periods | 叶肉细胞显微结构 Microscopic structures of mesophyll cells | Kivimäenpää et al., 2001 |
欧洲云杉 Picea abies | 2-5 | OTC | 26-30, 25-29, 29-33 | 以土壤水势确定灌溉水量 Watered by the soil water potential | 叶绿素、养分和生长 Chlorophyll, mineral nutrients and growth | Wallin et al., 2002 | |
欧洲云杉 Picea abies | 2-5 | OTC | 1.5 × AA | 以土壤水势确定灌溉水量 Watered by the soil water potential | 叶片细胞结构 Cell structural changes in the needles | Kivimäenpää et al., 2003 | |
Abies veitchii | 6 | GC | 50 | 土壤水势6.19-30.96 kPa; 30.96-97.98 kPa Soil water potential 6.19-30.96 kPa; 30.96-97.98 kPa | 生长 Growth | Feng & Shimizu, 2005 | |
Abies concolor | 2; 53 | OTC, NE | 52, 30-35 | 0, 10%, 25%, 50%的年降水量减少 0, 10%, 25%, 50% Reductions in total annual precipitation | 模型模拟胁迫下生长 Simulation growth by model under stress | Retzlaff et al., 2000 | |
Pinus halepensis | 2 | OTC | 69 | 50%对照灌溉水量 Half the water supplied to control | 叶片抗氧化酶类 Antioxidative enzymes in needles | Alonso et al., 2001 | |
Pinus halepensis | 4 | GC | 300 | 以叶片水势和气体交换临界值确定灌水量 Characterized by very low leaf water potential and gas exchange values | 叶片生理 Physiological response of needles | Manes et al., 2001 | |
植物类型 Plant type | 植物种类 Plants species | 树龄(年) Tree-age (year) | 实验方法Experimental method | O3处理 O3 treatment (nmol·mol-1) | 干旱处理 Drought treatment | 研究内容 Research content | 参考文献 Reference |
常绿乔木 Evergreen trees | Pinus halepensis | 3 | GC | 200 | 100%-50%缓慢水分散失(中度); 以黎明前叶片水势确定灌溉水量(重度) From 100% to 50% of the water loss by evapotranspiration (mild); watered by pre-dawn needle water potential (intensity) | 叶片酶(PEPC) Phosphoenolpyruvatecarboxylase in needles | Fontaine et al., 2003 |
Pinus halepensis | 2 | OTC | AA + 40 | 50%对照灌溉水量 Half the water supplied to control | 生理生化补偿过程 Compensation processes in physiology and biochemistry | Inclan et al., 2005 | |
Quercus ilex | 3 | 气候室 Climatic chambers | 250 | 20 mL水每间隔一周灌溉 20 mL of water per plant every week | 生理响应 Physiological responses | Vitale et al., 2008 | |
Quercus ilex ssp. ilex, 长角豆 Ceratonia siliqua | 1 | OTC | 37; 57 | 50%对照灌溉次数 Half the watered times to control | 生理生化 Physiology and biochemistry | Ribas et al., 2005 | |
Quercus ilex ssp. ilex, Q. ilex ssp. ballota | 1-2 | OTC | 31; 49 | 50%对照灌溉水量 Half the water supplied to control | 气体交换、生长和生物量 Gas exchange, growth and biomass | Alonso et al., 2014 | |
西黄松 Pinus ponderosa | 6-8 | NE | 40-70 | NE | O3和碳吸收 O3 and carbon uptake | Panek & Goldstein, 2001 | |
西黄松 Pinus ponderosa | 40 | NE | 58-60, 64-67, 80 | 黎明前木质部水势< -1.2 MPa Xylem potentials <-1.2 MPa at predawn | 碳获取 Carbon acquisition | Grulke et al., 2002 | |
西黄松 Pinus ponderosa | 5-7 | NE | 53 | NE (2年不同气候) NE (Climatic variation in two years) | O3暴露度量参数 O3 exposure metrics parameters | Panek et al., 2002 | |
西黄松 Pinus ponderosa | 7 | NE | AA | NE (4个不同地点) NE (Four sites) | 吸收模型参数 Parameters for O3 uptake modeling | Panek, 2004 | |
落叶乔木Deciduous trees | 海南蒲桃 Syzygium hainanense, 糖胶树 Alstonia scholaris | 当年 Current year | OTC | 75 | 40%-50%土壤相对含水量 40%-50% Relative soil water content | 光合生理 Photosynthetic physiology | Hao et al., 2014 |
长芒杜英 Elaeocarpus apiculatus, 壳菜果Mytilaria laosensis,黧蒴锥 Castanopsis fissa 醉香含笑 Michelia macclurei, 樟 Cinnamomum camphora, 红花荷Rhodoleia championii, 壳菜果 Mytilaria laosensis | 当年 Current year 1 | OTC OTC | 150 20 | 50%对照灌溉次数 Half the watered times to control 两天一次灌溉 Watered once in two days | 荧光生理 Chlorophyll a fluorescence 根、茎、叶和总生物量及根茎比 Root biomass, stem biomass, leaf biomass, total biomass and root/shoot ratio | Li et al., 2015 Ye et al., 2014 | |
Fagus crenata | 3 | GC | 60 | 70%对照灌溉水量 70% Water supplied to control | 叶片物候和芽抗寒性 Leaf phenological characteristics and bud frost hardiness | Yonekura et al., 2004 | |
Fagus crenata | 3 | GC | 60 | 70%对照灌溉水量 70% Water supplied to control | 叶片抗氧化系统 Leaf antioxidative systems | Watanabe et al., 2005 | |
Fagus sylvatica | 60 | NE | 2 × AA | NE (3年不同气候) NE (Climatic variation in three years) | 生理生化 Physiology and biochemistry | Löw et al., 2006 | |
Fagus sylvatica | 60 | NE | 2 × AA | NE (2年不同气候) NE (Climatic variation in two years) | 细根抗氧化物 Antioxidants in fine roots | Haberer et al., 2008 | |
Fagus sylvatica | - | NE | AA | NE (9个不同地点) NE (Nine sites) | 日生长 Daily growth | Kuehn et al., 2015 | |
Fagus sylvatica, 夏栎 Quercus robur, 辽杨×中东杨 Populus maximowiczii × P. berolinensis | 1 | OTC | 0.95 × AA | 50%田间持水量 50% Field capacity | 生长和生理响应 Growth and physiological responses | Pollastrini et al., 2010 | |
岳桦 Betula ermanii | 2 | GC | 50 | 土壤水势 6.19-30.96 kPa, 30.96-97.98 kPa Soil water potential 6.19-30.96 kPa, 30.96-97.98 kPa | 生长、生理生化 Growth、physiology and biochemistry | Shimizu & Feng, 2007 | |
元宝槭 Acer truncatum | 1 | OTC | 102-147 | 40%-50%田间持水量 40%-50% Field capacity | 气孔响应 Stomatal response | Wen et al., 2014 | |
元宝槭 Acer truncatum | 1 | OTC | 102-147 | 40%-50%田间持水量 40%-50% Field capacity | 生长和生理 Growth and physiology | Li et al., 2015 | |
植物类型 Plant type | 植物种类 Plants species | 树龄(年) Tree-age (year) | 实验方法Experimental method | O3处理 O3 treatment (nmol·mol-1) | 干旱处理 Drought treatment | 研究内容 Research content | 参考文献 Reference |
落叶乔木Deciduous trees | 辽杨×中东杨 Populus maximowiczii × P. berolinensis | 当年 Current year | OTC | 0.95 × AA | 150 mL水每天灌溉 150 mL of water a day | 不同冠层叶绿素荧光 Chlorophyll a fluorescence along a crown | Desotgiu et al., 2012 |
辽杨×中东杨 Populus maximowiczii × P. berolinensis | 当年 Current year | OTC | 0.95 × AA | 150 mL水每天灌溉 150 mL water a day | 光合、生长和同位素 Photosynthesis、growth and stable isotope | Pollastrini et al., 2013 | |
欧洲山杨×银白杨 Populus tremula × P. alba | 当年 Current year | GC | CF + 120 | SWC 35% | 生理、蛋白质组 Physiological and proteomic | Bohler et al., 2013 | |
辽杨×中东杨 Populus maximowiczii × P. berolinensis | 当年 Current year | OTC | 44-53 | 60%, 20%对照灌溉水量 60%, 20% Water respect to control | 生理生化、生长和同位素 Physiological and biochemistry、biomass and isotope | Pollastrini et al., 2014 |
Table 1 A list on the combined effects of ozone and drought on plants between 2000 and 2016
植物类型 Plant type | 植物种类 Plants species | 树龄(年) Tree-age (year) | 实验方法Experimental method | O3处理 O3 treatment (nmol·mol-1) | 干旱处理 Drought treatment | 研究内容 Research content | 参考文献 Reference |
---|---|---|---|---|---|---|---|
草本Herbaceous | 冬小麦 Triticum aestivum | - | 温室 Greenhouse | 80 | SWC 60%, 45%, 35% | 叶片O3吸收与产量 Leaf ozone uptake and grain yield | Khan & Soja, 2003 |
冬小麦 Triticum aestivum | - | OTC | 125 | SWC 35%-40% | 生理生长 Physiology and biochemistry | Xu et al., 2007 | |
冬小麦 Triticum aestivum, 圆锥小麦 Triticum turgidum ssp. durum | - | OTC | 83 | SWC 42% | 生理生化、产量 Physiology and biochemistry, grain yield | Biswas & Jiang, 2011 | |
春小麦 Triticum aestivum, Triticum durum | - | OTC | AA + 50 | 40%对照SWC 40% SWC of control | 抗氧化系统 Antioxidant defense systems | Herbinger et al., 2002 | |
大豆 Glycine max | - | OTC | 0.70 × AA, 60 | -0.8MPa黎明前叶片水势 - 0.8 MPa Pre-dawn leaf water potential | 蒸散 Evapotranspiration | Rana et al., 2012 | |
菜豆 Pharsalus vulgaris | - | GC | 48, 87, 150 | SWC 6%-15% | 气孔 Stomata | Hoshika et al., 2013 | |
番茄 Lycopersicon esculentum | - | 大田 Field | AA, AA + 80 | 18%-33%田间持水量 18%-33% Field capacity | 果实自由基含量 Radical contents in fruit | Pirker et al., 2003 | |
Leontodon hispidus | - | GC | 70 | 50%田间持水量 50% Field capacity | 脱落酸(ABA)作用机制 Mechanisms of action of abscisic acid | Wilkinson & Davies, 2009 | |
Medicago runcatula | - | GC | 70 | 以测定量灌溉 Adding measured amounts of water | 生理生化、分子 Physiological, biochemical and molecular response | Iyer et al., 2013 | |
烟草 Nicotiana tabacum | - | GC | 200 | 适当灌溉 With holding water from the plants | 分子(DHAR表达) Molecular (dehydroascorbate reductase overexpressing) | Eltayeb et al., 2006 | |
常绿、落叶乔木 Evergreen and deciduous trees | 欧洲云杉 Picea abies, Fagus sylvatica | 50; 60 | 开放式熏 气系统 A free-air fumigation system | 2 × AA | NE (2年不同气候) NE (Climatic variation in two years) | 地下影响(土壤呼吸、 根系生物量) Belowground effects (soil respiration, fine-root biomass) | Nikolova et al., 2010 |
欧洲云杉 Picea abies, Fagus sylvatica | - | NE | AA | NE (两种树分别12个和4个不同地点) NE (12 and 4 different site conditions were used, respectively) | 规模性生长关系 Size-growth relationship | Pretzsch & Dieler, 2011 | |
阿巴拉契亚山脉南部森林 Southern Appalachian forest | 成熟林 Mature forest trees | NE | AA | NE (3个不同地点在2-3年的不同气候) (Three sites over 2-3 years) | 生长和液流速率 Growth and sap flow velocity | McLaughlin et al., 2007 | |
常绿乔木 Evergreen trees | 欧洲云杉 Picea abies | 4 | OTC | 37 | 胁迫期停止灌溉 The irrigation system was turned off during the dry periods | 叶肉细胞显微结构 Microscopic structures of mesophyll cells | Kivimäenpää et al., 2001 |
欧洲云杉 Picea abies | 2-5 | OTC | 26-30, 25-29, 29-33 | 以土壤水势确定灌溉水量 Watered by the soil water potential | 叶绿素、养分和生长 Chlorophyll, mineral nutrients and growth | Wallin et al., 2002 | |
欧洲云杉 Picea abies | 2-5 | OTC | 1.5 × AA | 以土壤水势确定灌溉水量 Watered by the soil water potential | 叶片细胞结构 Cell structural changes in the needles | Kivimäenpää et al., 2003 | |
Abies veitchii | 6 | GC | 50 | 土壤水势6.19-30.96 kPa; 30.96-97.98 kPa Soil water potential 6.19-30.96 kPa; 30.96-97.98 kPa | 生长 Growth | Feng & Shimizu, 2005 | |
Abies concolor | 2; 53 | OTC, NE | 52, 30-35 | 0, 10%, 25%, 50%的年降水量减少 0, 10%, 25%, 50% Reductions in total annual precipitation | 模型模拟胁迫下生长 Simulation growth by model under stress | Retzlaff et al., 2000 | |
Pinus halepensis | 2 | OTC | 69 | 50%对照灌溉水量 Half the water supplied to control | 叶片抗氧化酶类 Antioxidative enzymes in needles | Alonso et al., 2001 | |
Pinus halepensis | 4 | GC | 300 | 以叶片水势和气体交换临界值确定灌水量 Characterized by very low leaf water potential and gas exchange values | 叶片生理 Physiological response of needles | Manes et al., 2001 | |
植物类型 Plant type | 植物种类 Plants species | 树龄(年) Tree-age (year) | 实验方法Experimental method | O3处理 O3 treatment (nmol·mol-1) | 干旱处理 Drought treatment | 研究内容 Research content | 参考文献 Reference |
常绿乔木 Evergreen trees | Pinus halepensis | 3 | GC | 200 | 100%-50%缓慢水分散失(中度); 以黎明前叶片水势确定灌溉水量(重度) From 100% to 50% of the water loss by evapotranspiration (mild); watered by pre-dawn needle water potential (intensity) | 叶片酶(PEPC) Phosphoenolpyruvatecarboxylase in needles | Fontaine et al., 2003 |
Pinus halepensis | 2 | OTC | AA + 40 | 50%对照灌溉水量 Half the water supplied to control | 生理生化补偿过程 Compensation processes in physiology and biochemistry | Inclan et al., 2005 | |
Quercus ilex | 3 | 气候室 Climatic chambers | 250 | 20 mL水每间隔一周灌溉 20 mL of water per plant every week | 生理响应 Physiological responses | Vitale et al., 2008 | |
Quercus ilex ssp. ilex, 长角豆 Ceratonia siliqua | 1 | OTC | 37; 57 | 50%对照灌溉次数 Half the watered times to control | 生理生化 Physiology and biochemistry | Ribas et al., 2005 | |
Quercus ilex ssp. ilex, Q. ilex ssp. ballota | 1-2 | OTC | 31; 49 | 50%对照灌溉水量 Half the water supplied to control | 气体交换、生长和生物量 Gas exchange, growth and biomass | Alonso et al., 2014 | |
西黄松 Pinus ponderosa | 6-8 | NE | 40-70 | NE | O3和碳吸收 O3 and carbon uptake | Panek & Goldstein, 2001 | |
西黄松 Pinus ponderosa | 40 | NE | 58-60, 64-67, 80 | 黎明前木质部水势< -1.2 MPa Xylem potentials <-1.2 MPa at predawn | 碳获取 Carbon acquisition | Grulke et al., 2002 | |
西黄松 Pinus ponderosa | 5-7 | NE | 53 | NE (2年不同气候) NE (Climatic variation in two years) | O3暴露度量参数 O3 exposure metrics parameters | Panek et al., 2002 | |
西黄松 Pinus ponderosa | 7 | NE | AA | NE (4个不同地点) NE (Four sites) | 吸收模型参数 Parameters for O3 uptake modeling | Panek, 2004 | |
落叶乔木Deciduous trees | 海南蒲桃 Syzygium hainanense, 糖胶树 Alstonia scholaris | 当年 Current year | OTC | 75 | 40%-50%土壤相对含水量 40%-50% Relative soil water content | 光合生理 Photosynthetic physiology | Hao et al., 2014 |
长芒杜英 Elaeocarpus apiculatus, 壳菜果Mytilaria laosensis,黧蒴锥 Castanopsis fissa 醉香含笑 Michelia macclurei, 樟 Cinnamomum camphora, 红花荷Rhodoleia championii, 壳菜果 Mytilaria laosensis | 当年 Current year 1 | OTC OTC | 150 20 | 50%对照灌溉次数 Half the watered times to control 两天一次灌溉 Watered once in two days | 荧光生理 Chlorophyll a fluorescence 根、茎、叶和总生物量及根茎比 Root biomass, stem biomass, leaf biomass, total biomass and root/shoot ratio | Li et al., 2015 Ye et al., 2014 | |
Fagus crenata | 3 | GC | 60 | 70%对照灌溉水量 70% Water supplied to control | 叶片物候和芽抗寒性 Leaf phenological characteristics and bud frost hardiness | Yonekura et al., 2004 | |
Fagus crenata | 3 | GC | 60 | 70%对照灌溉水量 70% Water supplied to control | 叶片抗氧化系统 Leaf antioxidative systems | Watanabe et al., 2005 | |
Fagus sylvatica | 60 | NE | 2 × AA | NE (3年不同气候) NE (Climatic variation in three years) | 生理生化 Physiology and biochemistry | Löw et al., 2006 | |
Fagus sylvatica | 60 | NE | 2 × AA | NE (2年不同气候) NE (Climatic variation in two years) | 细根抗氧化物 Antioxidants in fine roots | Haberer et al., 2008 | |
Fagus sylvatica | - | NE | AA | NE (9个不同地点) NE (Nine sites) | 日生长 Daily growth | Kuehn et al., 2015 | |
Fagus sylvatica, 夏栎 Quercus robur, 辽杨×中东杨 Populus maximowiczii × P. berolinensis | 1 | OTC | 0.95 × AA | 50%田间持水量 50% Field capacity | 生长和生理响应 Growth and physiological responses | Pollastrini et al., 2010 | |
岳桦 Betula ermanii | 2 | GC | 50 | 土壤水势 6.19-30.96 kPa, 30.96-97.98 kPa Soil water potential 6.19-30.96 kPa, 30.96-97.98 kPa | 生长、生理生化 Growth、physiology and biochemistry | Shimizu & Feng, 2007 | |
元宝槭 Acer truncatum | 1 | OTC | 102-147 | 40%-50%田间持水量 40%-50% Field capacity | 气孔响应 Stomatal response | Wen et al., 2014 | |
元宝槭 Acer truncatum | 1 | OTC | 102-147 | 40%-50%田间持水量 40%-50% Field capacity | 生长和生理 Growth and physiology | Li et al., 2015 | |
植物类型 Plant type | 植物种类 Plants species | 树龄(年) Tree-age (year) | 实验方法Experimental method | O3处理 O3 treatment (nmol·mol-1) | 干旱处理 Drought treatment | 研究内容 Research content | 参考文献 Reference |
落叶乔木Deciduous trees | 辽杨×中东杨 Populus maximowiczii × P. berolinensis | 当年 Current year | OTC | 0.95 × AA | 150 mL水每天灌溉 150 mL of water a day | 不同冠层叶绿素荧光 Chlorophyll a fluorescence along a crown | Desotgiu et al., 2012 |
辽杨×中东杨 Populus maximowiczii × P. berolinensis | 当年 Current year | OTC | 0.95 × AA | 150 mL水每天灌溉 150 mL water a day | 光合、生长和同位素 Photosynthesis、growth and stable isotope | Pollastrini et al., 2013 | |
欧洲山杨×银白杨 Populus tremula × P. alba | 当年 Current year | GC | CF + 120 | SWC 35% | 生理、蛋白质组 Physiological and proteomic | Bohler et al., 2013 | |
辽杨×中东杨 Populus maximowiczii × P. berolinensis | 当年 Current year | OTC | 44-53 | 60%, 20%对照灌溉水量 60%, 20% Water respect to control | 生理生化、生长和同位素 Physiological and biochemistry、biomass and isotope | Pollastrini et al., 2014 |
[1] | Abrams MD, Kubiske ME, Mostoller SA (1994). Relating wet and dry year ecophysiology to leaf structure in contrastingtemperate tree species.Ecology, 75, 123-133. |
[2] | Alonso R, Elvira S, Castillo FJ, Gimeno BS (2001). Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis.Plant, Cell & Environment, 24, 905-916. |
[3] | Alonso R, Elvira S, González-Fernández I, Calvete H, García- Gómez H, Bermejo V (2014). Drought stress does not protect Quercus ilex L. from ozone effects: Results from a comparative study of two subspecies differing in ozone sensitivity.Plant Biology, 16, 375-384. |
[4] | Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003). Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents.Pakistan Journal of Agricultural Sciences, 40(1-2), 45-49. |
[5] | Asada K (1997). The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants.Oxidatives Stress and the Molecular Biology of Antioxidant Defenses, 34, 715-735. |
[6] | Ashmore MR (2005). Assessing the future global impacts of ozone on vegetation.Plant, Cell & Environment, 28, 949-964. |
[7] | Avnery S, Mauzerall DL, Liu JF, Horowitz LW (2011). Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution.Atmospheric Environment, 45, 2297-2309. |
[8] | Biehler K, Fock H (1996). Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat.Plant Physiology, 112, 265-272. |
[9] | Biswas DK, Jiang GM (2011). Differential drought-induced modulation of ozone tolerance in winter wheat species.Journal of Experimental Botany, 62, 4153-4162. |
[10] | Bohler S, Bagard M, Oufir M, Planchon S, Hoffmann L, Jolivet Y, Hausman J-F, Dizengremel P, Renaut J (2007). A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism.Proteomics, 7, 1584-1599. |
[11] | Bohler S, Sergeant K, Hoffmann L, Dizengremel P, Hausman J-F, Renaut J, Jolivet Y (2011). A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins.Journal of Proteome Research, 10, 3003-3011. |
[12] | Bohler S, Sergeant K, Jolivet Y, Hoffmann L, Hausman J-F, Dizengremel P, Renaut J (2013). A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought.Proteomics, 13, 1737-1754. |
[13] | Bohler S, Sergeant K, Lefevre I, Jolivet Y, Hoffmann L, Renaut J, Dizengremel P, Hausman J-F (2010). Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves.Tree Physiology, 30, 1415-1432. |
[14] | Bota J, Medrano H, Flexas J (2004). Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress?New phytologist, 162, 671-681. |
[15] | Bréda N, Huc R, Granier A, Dreyer E (2006). Temperate forest trees and stands under severe drought: A review of eco- physiological responses, adaptation processes and long- term consequences.Annals of Forest Science, 63, 625-644. |
[16] | Brendley BW, Pell EJ (1998). Ozone-induced changes in biosynthesis of Rubisco and associated compensation to stress in foliage of hybrid poplar.Tree Physiology, 18, 81-90. |
[17] | Broadmeadow M (1998). Ozone and forest trees.New Phytologist, 139, 123-125. |
[18] | Buckland SM, Price AH, Hendry GAF (1991). The role of ascorbate in drought-treated Cochlearia atlantica Pobed. and Armeria maritima (Mill.) Willd.New Phytologist, 119, 155-160. |
[19] | Chang SC, Lee CT (2006). Ozone variations through vehicle emissions reductions based on air quality monitoring data in Taipei City, Taiwan, from 1994 to 2003.Atmospheric Environment, 40, 3513-3526. |
[20] | Chen Z, Gallie DR (2005). Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance.Plant Physiol- ogy, 138, 1673-1689. |
[21] | Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003.Nature, 437, 529-533. |
[22] | Comte DL (1998). Weather highlights around the world.Weatherwise, 51(2), 26-31. |
[23] | Conklin PL, Barth C (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence.Plant, Cell & Environment, 27, 959-970. |
[24] | Cowan IR (1978). Stomatal behaviour and environment.Advances Botanical Research, 4, 117-228. |
[25] | Creissen GP, Mullineaux PM (2002). The molecular biology of the ascorbate-glutathione cycle in higher plants. In: Inzé D, Montagu MV eds. Oxidative Stress in Plants. Taylor & Francis, Abingdon, UK. 247-270. |
[26] | Dai A (2011). Drought under global warming: A review.Climate Change, 2(1), 45-65. |
[27] | Desotgiu R, Pollastrini M, Cascio C, Gerosa G, Marzuoli R, Bussotti F (2012). Chlorophyll a fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress.Tree Physiology, 32, 976-986. |
[28] | D’Haese D, Vandermeiren K, Asard H, Horemans N (2005). Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L.Plant, Cell & Environment, 28, 623-632. |
[29] | Dizengremel P (2001). Effects of ozone on the carbon metabolism of forest trees.Plant Physiology and Biochemistry, 39, 729-742. |
[30] | Dizengremel P, Jolivet Y, Tuzet A, Ranieri A, Le Thiec D (2013). Integrative leaf-level phytotoxic ozone dose assessment for forest risk modelling.Developments in Environmental Science, 13, 267-288. |
[31] | Dizengremel P, Le Thiec D, Bagard M, Jolivet Y (2008). Ozone risk assessment for plants: Central role of metabolism-dependent changes in reducing power.Environmental Pollution, 156, 11-15. |
[32] | Dizengremel P, Le Thiec D, Hasenfratz-Sauder MP, Vaultier MN, Bagard M, Jolivet Y (2009). Metabolic-dependent changes in plant cell redox power after ozone exposure.Plant Biology, 11(Suppl. 1), 35-42. |
[33] | Dumont J, Spicher F, Montpied P, Dizengremel P, Jolivet Y, Le Thiec D (2013). Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes.Environmental Pollution, 173, 85-96. |
[34] | Edwards IP, Zak DR (2011). Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3.Global Change Biology, 17, 2184-2195. |
[35] | Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol.Physiologia Plantarum, 127, 57-65. |
[36] | Ernst D, Jürgensen M, Bahnweg G, Heller W, Müller-Starck G (2012). Common links of molecular biology with biochemistry and physiology in plants under ozone and pathogen attack. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch CJ, Pretzsch H eds. Growth and Defence in Plants: Resource Allocation at Multiple Scales. Springer, Berlin. 29-51. |
[37] | Fedina IS, Popova AV (1996). Photosynthesis, photorespiration and proline accumulation in water-stressed pea leaves.Photosynthetica, 32, 213-220. |
[38] | Feng YW, Shimizu H (2005). Effects of ozone and/or water stress on the growth of Abies veitchii seedlings.Phyton- Annales Rei Botanicae, 45, 591-594. |
[39] | Feng ZZ, Sun JS, Wan WX, Hu EZ, Calatayud V (2014). Evidence of widespread ozone-induced visible injury on plants in Beijing, China.Environmental Pollution, 193, 296-301. |
[40] | Feng ZZ, Kobayashi K (2009). Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment, 43, 1510-1519. |
[41] | Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002). Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations.Functional Plant Biology, 29, 461-471. |
[42] | Fontaine V, Cabane M, Dizengremel P (2003). Regulation of phosphoenolpyruvate carboxylase in Pinus halepensis needles submitted to ozone and water stress.Physiologia Plantarum, 117, 445-452. |
[43] | Foyer CH, Noctor G (2000). Oxygen processing in photosynthesis: Regulation and signalling.New Phytologist, 146, 359-388. |
[44] | Fu JM, Huang BR (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress.Environmental and Experimental Botany, 45, 105-114. |
[45] | Gerant D, Podor M, Grieu P, Afif D, Cornu S, Morabito D, Banvoy J, Robin C, Dizengremel P (1996). Carbon metabolism enzyme activities and carbon partitioning in Pinus halepensis Mill. exposed to mild drought and ozone.Journal of Plant Physiology, 148, 142-147. |
[46] | Grulke NE, Johnson R, Esperanza A, Jones D, Nguyen T, Posch S, Tausz M (2003a). Canopy transpiration of Jeffrey pine in mesic and xeric microsites: O3 uptake and injury response.Trees, 17, 292-298. |
[47] | Grulke NE, Johnson R, Monschein S, Nikolova P, Tausz M (2003b). Variation in morphological and biochemical O3 injury attributes of mature Jeffrey pine within canopies and between microsites.Tree Physiology, 23, 923-929. |
[48] | Grulke NE, Preisler HK, Rose C, Kirsch J, Balduman L (2002). O3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural stands.New Phytologist, 154, 621-631. |
[49] | Grünhage L, Jager HJ (2003). From critical levels to critical loads for ozone: A discussion of a new experimental and modelling approach for establishing flux-response relationships for agricultural crops and native plant species.Environmental Pollution, 125, 99-110. |
[50] | Guidi L, Nali C, Lorenzini G, Filippi F, Soldatini GF (2001). Effect of chronic ozone fumigation on the photosynthetic process of poplar clones showing different sensitivity.Environmental Pollution, 113, 245-254. |
[51] | Gupta P, Duplessis S, White H, Karnosky DF, Martin F, Podila GK (2005). Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3.New Phytologist, 167, 129-142. |
[52] | Haberer K, Herbinger K, Alexou M, Rennenberg H, Tausz M (2008). Effects of drought and canopy ozone exposure on antioxidants in fine roots of mature European beech (Fagus sylvatica).Tree Physiology, 28, 713-719. |
[53] | Hao YT, Lin M, Xue L, Wang ZY, Lin JT, Liang ZY, Sun BC, Tian MT (2014). Effects of ozone stress and drought stress on photosynthesis characteristics of Syzygium hainanense and Alstonia scholaris seedlings.Journal of Anhui Agricultural University, 41, 193-197. (in Chinese with English abstract)[郝云亭, 林敏, 薛立, 王志云, 林婧庭, 梁梓毅, 孙冰超, 田茂涛 (2014). 臭氧与干旱胁迫对海南蒲桃和盆架子幼苗光合生理的影响. 安徽农业大学学报, 41, 193-197.] |
[54] | Hatch M, Slack C, Bull T (1969). Light-induced changes in the content of some enzymes of the C4-dicarboxylic acid pathway of photosynthesis and its effect on other characteristics of photosynthesis.Phytochemistry, 8, 697-706. |
[55] | Heath RL (1994). Alterations of plant metabolism by ozone exposure. In: Alscher RG, Wellburn AR eds. Plant Responses to the Gaseous Environment: Molecular, Metabolic and Physiological aspects. Springer Netherlands, Dordrecht. 121-145. |
[56] | Heath RL (2008). Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change?Environmental Pollution, 155, 453-463. |
[57] | Heath RL, Taylor GE (1997). Physiological processes and plant responses to ozone exposure. In: Sandermann H, Wellburn AR, Heath RL eds. Forest Decline and Ozone: A Comparison of Controlled Chamber and Field Experiments. Springer, Berlin. 317-368. |
[58] | Heber U, Kaiser W, Luwe M, Kindermann G, Veljovic- Javonovic S, Yin Z, Pfanz H, Slovik S (1997). Air pollution, photosynthesis and forest decline: Interactions and consequences. In: Schulze E-D, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer, Berlin. 279-296. |
[59] | Herbinger K, Tausz M, Wonisch A, Soja G, Sorger A, Grill D (2002). Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars.Plant Physiology and Biochemistry, 40, 691-696. |
[60] | Herbinger K, Then C, Low M, Haberer K, Alexous M, Koch N, Remele K, Heerdt C, Grill D, Rennenberg H, Haberle KH, Matyssek R, Tausz M, Wieser G (2005). Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure.Environmental Pollution, 137, 476-482. |
[61] | Hoshika Y, Carriero G, Feng ZZ, Zhang YL, Paoletti E (2014). Determinants of stomatal sluggishness in ozone-exposed deciduous tree species.Science of the Total Environment, 481, 453-458. |
[62] | Hoshika Y, Omasa K, Paoletti E (2013). Both ozone exposure and soil water stress are able to induce stomatal sluggishness.Environmental and Experimental Botany, 88, 19-23. |
[63] | Hoshika Y, Watanabe M, Inada N, Koike T (2012). Ozone-induced stomatal sluggishness develops progressively in Siebold’s beech (Fagus crenata).Environmental Pollution, 166, 152-156. |
[64] | Huang BR, Fu JM (2000). Photosynthesis, respiration, and carbon allocation of two cool-season perennial grasses in response to surface soil drying.Plant and Soil, 227(1-2), 17-26. |
[65] | Huseynova IM, Aliyeva DR, Aliyev JA (2014). Subcellular localization and responses of superoxide dismutase isoforms in local wheat varieties subjected to continuous soil drought.Plant Physiology and Biochemistry, 81, 54-60. |
[66] | ICP Vegetation (2014). Ozone pollution: A hidden threat to food security. Programme Coordination Centre for the ICP Vegetation. In: Mills G, Harmens H eds. Programme Coordination Centre for the ICP Vegetation. NERC/Centre for Ecology and Hydrology, Bangor, UK. 116. |
[67] | Inclan R, Gimeno BS, Dizengremel P, Sanchez M (2005). Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress.Environmental Pollution, 137, 517-524. |
[68] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA. 1552. |
[69] | Iyer NJ, Tang Y, Mahalingam R (2013). Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula.Plant, Cell & Environment, 36, 706-720. |
[70] | Karlsson PE, Medin EL, Wickstrom H, Sellden G, Wallin G, Ottosson S, Skarby L (1995). Ozone and drought stress— Interactive effects on the growth and physiology of Norway spruce (Picea abies (L) Karst).Water, Air, & Soil Pollution, 85, 1325-1330. |
[71] | Karlsson PE, Pleijel H, Karlsson GP, Medin EL, Skarby L (2000). Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers.Environmental Pollution, 109, 443-451. |
[72] | Karnosky DF, Pregitzer KS, Zak DR, Kubiske ME, Hendrey GR, Weinstein D, Nosal M, Percy KE (2005). Scaling ozone responses of forest trees to the ecosystem level in a changing climate.Plant, Cell & Environment, 28, 965-981. |
[73] | Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007). Free-air exposure systems to scale up ozone research to mature trees.Plant Biology, 9, 181-190. |
[74] | Kaya MD, Okcu G, Atak M, Cikili Y, Kolsarici O (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.).European Journal of Agronomy, 24, 291-295. |
[75] | Khan S, Soja G (2003). Yield responses of wheat to ozone exposure as modified by drought-induced differences in ozone uptake.Water, Air, & Soil Pollution, 147, 299-315. |
[76] | Kivimäenpää M, Sutinen S, Karlsson PE, Sellden G (2003). Cell structural changes in the needles of Norway spruce exposed to long-term ozone and drought.Annals of Botany, 92, 779-793. |
[77] | Kivimäenpää M, Sutinen S, Medin EL, Karlsson PE, Sellden G (2001). Diurnal changes in microscopic structures of mesophyll cells of Norway spruce, Picea abies (L.) Karst., and the effects of ozone and drought.Annals of Botany, 88, 119-130. |
[78] | Kou TJ, Chang HQ, Zhang LH, Xu XF, Guo DY, Zhou WL, Zhu JG, Miao YF (2009). Effects of ground-level O3 pollution on the terrestrial ecosystem. Ecology and Environmental Sciences, 18, 704-710. (in Chinese with English abstract)[寇太记, 常会庆, 张联合, 徐晓峰, 郭大勇, 周文利, 朱建国, 苗艳芳 (2009). 近地层O3污染对陆地生态系统的影响. 生态环境学报, 18, 704-710.] |
[79] | Kronfuß G, Polle A, Tausz M, Havranek WM, Wieser G (1998). Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce [Picea abies (L.) Karst].Trees, 12, 482-489. |
[80] | Kuehn AR, Grill S, Baumgarten M, Ankerst DP, Matyssek R (2015). Daily growth of European beech (Fagus sylvatica L.) on moist sites is affected by short-term drought rather than ozone uptake.Trees, 29, 1501-1519. |
[81] | Landolt W, Günthardt-Goerg M, Pfenninger I, Scheidegger C (1994). Ozone induced microscopical changes and quantitative carbohydrate contents of hybrid poplar (Populus × euramericana).Trees, 8, 183-190. |
[82] | Le Thiec D, Dixon M, Garrec JP (1994). The effects of slightly elevated ozone concentrations and mild drought stress on the physiology and growth of Norway Spruce, Picea abies (L.) Karst. and beech, Fagus sylvatica L., in open-top chambers.New Phytologist, 128, 671-678. |
[83] | Li L, Chen CH, Huang C, Huang HY, Zhang GF, Wang YJ, Chen MH, Wang HL, Chen YR, Streets DG, Fu JM (2011). Ozone sensitivity analysis with the MM5-CMAQ modeling system for Shanghai.Journal of Environmental Sciences, 23, 1150-1157. |
[84] | Li L, Manning WJ, Tong L, Wang XK (2015). Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China.Environmental Pollution, 201, 34-41. |
[85] | Li QJ, Lu GC, Xue L, Tian MT, Lin M, Lin JT (2015). Effects of ozone and drought on fluorescence physiology of seedlings of three afforestation tree species in South China.Journal of South China Agricultural University, 36, 91-95. (in Chinese with English abstract)[李秋静, 卢广超, 薛立, 田茂涛, 林敏, 林婧庭 (2011). 臭氧与干旱胁迫对华南地区3种绿化树种. 华南农业大学学报, 36, 91-95.] |
[86] | Löw M, Herbinger K, Nunn AJ, Haeberle KH, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006). Extraordinary drought of 2003 overrules ozone impact on adult beech trees (Fagus sylvatica).Trees, 20, 539-548. |
[87] | Lutz C, Anegg S, Gerant D, Alaoui-Sosse B, Gerard J, Dizengremel P (2000). Beech trees exposed to high CO2 and to simulated summer ozone levels: Effects on photosynthesis, chloroplast components and leaf enzyme activity.Physiologia Plantarum, 109, 252-259. |
[88] | Luwe MWF, Takahama U, Heber U (1993). Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves.Plant Physiology, 101, 969-976. |
[89] | Maier-Maercker U (1998). Image analysis of the stomatal cell walls of Picea abies (L.) Karst. in pure and ozone-enriched air.Trees, 12, 181-185. |
[90] | Manderscheid R, Jäger H-J, Schoeneberger M (1991). Dose- response relationships of ozone effects on foliar levels of antioxidants, soluble polyamines and peroxidase activity of Pinus taeda (L.): Assessment of the usefulness as early ozone indicators.Angewandte Botanik, 29, 188. |
[91] | Manes F, Donato E, Vitale M (2001). Physiological response of Pinus halepensis needles under ozone and water stress conditions.Physiologia Plantarum, 113, 249-257. |
[92] | Matyssek R, Innes JL (1999). Ozone—A risk factor for trees and forests in Europe?Water, Air, & Soil Pollution, 116, 199-226. |
[93] | Matyssek R, Kozovits AR, Schnitzler J-P, Pretzsch H, Dieler J, Wieser G (2014). Forest trees under air pollution as a factor of climate change. In: Tausz M, Grulke N eds. Trees in a Changing Environment: Ecophysiology, Adaptation, and Future Survival. Springer, Dordrecht, The Netherlands. 117-163. |
[94] | Matyssek R, Le Thiec D, Löw M, Dizengremel P, Nunn AJ, Häberle KH (2006). Interactions between drought and O3 stress in forest trees.Plant Biology, 8, 11-17. |
[95] | Matyssek R, Sandermann H (2003). Impact of ozone on trees: An ecophysiological perspective.Progress in Botany, 64, 349-404. |
[96] | Matyssek R, Wieser G, Calfapietra C, de Vries W, Dizengremel P, Ernst D, Jolivet Y, Mikkelsen TN, Mohren GMJ, Le Thiec D, Tuovinen JP, Weatherall A, Paoletti E (2012). Forests under climate change and air pollution: Gaps in understanding and future directions for research.Environmental Pollution, 160, 57-65. |
[97] | Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Loew M, Nunn AJ, Werner H, Wipfler P, Osswaldg W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenroether M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Haeberle KH (2010). Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica)—Resume from the free-air fumigation study at Kranzberg Forest.Environmental Pollution, 158, 2527-2532. |
[98] | McLaughlin SB, Nosal M, Wullschleger SD, Sun G (2007). Interactive effects of ozone and climate on tree growth and water use in a southern Appalachian forest in the USA.New Phytologist, 174, 109-124. |
[99] | Miller PR, McBride JR (1999). Oxidant air pollution impacts in the montane forests of southern California—A case study of the San Bernardino Mountains—Introduction. In: Miller PR, McBride JR eds. Oxidant Air Pollution Impacts in the Montane Forests of Southern California. Springer, New York. |
[100] | Mills G, Hayes F, Simpson D, Emberson L, Norris D, Harmens H, Buker P (2011). Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990-2006) in relation to AOT40- and flux-based risk maps.Global Change Biology, 17, 592-613. |
[101] | Ministry of Water Resources, China (2006-2010). Bulletin of Flood and Drought Disasters in China. . Cited: 2016-6.(in Chinese)[中国水利部 (2006-2010). 中国水旱灾害公报. . Cited: 2016-6. |
[102] | Mittler R, Zilinskas BA (1994). Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought.Plant Journal, 5, 397-405. |
[103] | Monakhova OF, Chernyadèv II (2002). Protective role of kartolin-4 in wheat plants exposed to soil draught.Applied Biochemistry and Microbiology, 38, 373-380. |
[104] | Morgan PB, Ainsworth EA, Long SP (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield.Plant, Cell & Environment, 26, 1317-1328. |
[105] | Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004). Ecophysiological and biochemical, strategies of response to ozone in Mediterranean evergreen broadleaf species.Atmospheric Environment, 38, 2247-2257. |
[106] | National Bureau of Statistics of China (2007-2012). China Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)[国家统计局 (2007-2012). 中国统计年鉴. 中国统计出版社, 北京.] |
[107] | Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Haeberle K-H (2010). Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies (L.) Karst.).Environmental Pollution, 158, 1071-1078. |
[108] | Noctor G, Foyer CH (1998). Ascorbate and glutathione: Keeping active oxygen under control.Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249-279. |
[109] | Nonami H (1998). Plant water relations and control of cell elongation at low water potentials.Journal of Plant Research, 111, 373-382. |
[110] | Oksanen E (2003). Responses of selected birch (Betula pendula Roth) clones to ozone change over time.Plant, Cell & Environment, 26, 875-886. |
[111] | Pääkkönen E, Seppänen S, Holopainen T, Kokko H, Kärenlampi S, Kärenlampi L, Kangasjärvi J (1998). Induction of genes for the stress proteins PR-10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought.New Phytologist, 138, 295-305. |
[112] | Pandey D, Goswami C, Kumar B, Jain S (2001). Hormonal regulation of photosynthetic enzymes in cotton under water stress.Photosynthetica, 38, 403-407. |
[113] | Panek JA (2004). Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: Measured trends and parameters for uptake modeling.Tree Physiology, 24, 277-290. |
[114] | Panek JA, Goldstein AH (2001). Response of stomatal conductance to drought in ponderosa pine: Implications for carbon and ozone uptake.Tree Physiology, 21, 337-344. |
[115] | Panek JA, Kurpius MR, Goldstein AH (2002). An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.Environmental Pollution, 117, 93-100. |
[116] | Paoletti E (2006). Impact of ozone on Mediterranean forests: A review.Environmental Pollution, 144, 463-474. |
[117] | Paoletti E, Grulke NE (2010). Ozone exposure and stomatal sluggishness in different plant physiognomic classes.Environmental Pollution, 158, 2664-2671. |
[118] | Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002). Rubisco activity: Effects of drought stress.Annals of Botany, 89, 833-839. |
[119] | Pasqualini S, Batini P, Ederli L, Porceddu A, Piccioni C, de Marchis F, Antonielli M (2001). Effects of short-term ozone fumigation on tobacco plants: Response of the scavenging system and expression of the glutathione reductase.Plant, Cell & Environment, 24, 245-252. |
[120] | Pearson M, Mansfield T (1993). Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.).New Phytologist, 123, 351-358. |
[121] | Pell EJ, Sinn JP, Eckardt N, Johansen CV, Winner WE, Mooney HA (1993). Response of radish to multiple stresses. 2. Influence of season and genotype on plant- response to ozone and soil-moisture deficit.New Phytologist, 123, 153-163. |
[122] | Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001). Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought.Plant, Cell & Environment, 24, 123-131. |
[123] | Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003). The function of ascorbate oxidase in tobacco.Plant Physiology, 132, 1631-1641. |
[124] | Pirker KF, Reichenauer TG, Pascual EC, Kiefer S, Soja G, Goodman BA (2003). Steady state levels of free radicals in tomato fruit exposed to drought and ozone stress in a field experiment.Plant Physiology and Biochemistry, 41, 921-927. |
[125] | Pollastrini M, Desotgiu R, Camin F, Ziller L, Gerosa G, Marzuoli R, Bussotti F (2014). Severe drought events increase the sensitivity to ozone on poplar clones.Environmental and Experimental Botany, 100, 94-104. |
[126] | Pollastrini M, Desotgiu R, Camin F, Ziller L, Marzuoli R, Gerosa G, Bussotti F (2013). Intra-annual pattern of photosynthesis, growth and stable isotope partitioning in a poplar clone subjected to ozone and water stress.Water, Air, & Soil Pollution, 224, 1761. |
[127] | Pollastrini M, Desotgiu R, Cascio C, Bussotti F, Cherubini P, Saurer M, Gerosa G, Marzuoli R (2010). Growth and physiological responses to ozone and mild drought stress of tree species with different ecological requirements.Trees, 24, 695-704. |
[128] | Potters G, de Gara L, Asard H, Horemans N (2002). Ascorbate and glutathione: Guardians of the cell cycle, partners in crime?Plant Physiology and Biochemistry, 40, 537-548. |
[129] | Pretzsch H, Dieler J (2011). The dependency of the size-growth relationship of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.) in forest stands on long-term site conditions, drought events, and ozone stress.Trees-Structure and Function, 25, 355-369. |
[130] | Qiu HJ, Cao MM, Hao JQ, Wang YL, Wang YM (2013). Analysis the relationship between drought frequency and scale of China in 1950-2010.Scientia Geographica Sinica, 33, 576-580. (in Chinese)[邱海军, 曹明明, 郝俊卿, 王雁林, 王彦民 (2013). 1950~2010年中国干旱灾情频率-规模关系分析. 地理科学, 33, 576-580.] |
[131] | Quartacci MF, Navari-Izzo F (1992). Water-stress and free-radical mediated changes in sunflower seedlings.Journal of Plant Physiology, 139, 621-625. |
[132] | Rana G, Katerji N, Mastrorilli M (2012). Method for automatic determination of soybean actual evapotranspiration under open top chambers (OTC) subjected to effects of water stress and air ozone concentration.Environmental Monitoring and Assessment, 184, 6377-6394. |
[133] | Rao MV, Koch JR, Davis KR (2000). Ozone: A tool for probing programmed cell death in plants.Plant Molecular Biology, 44, 345-358. |
[134] | Renaut J, Bohler S, Hausman J-F, Hoffmann L, Sergeant K, Ahsan N, Jolivet Y, Dizengremel P (2009). The impact of atmospheric composition on plants: A case study of ozone and poplar.Mass Spectrometry Reviews, 28, 495-516. |
[135] | Retzlaff WA, Arthur MA, Grulke NE, Weinstein DA, Gollands B (2000). Use of a single-tree simulation model to predict effects of ozone and drought on growth of a white fir tree.Tree Physiology, 20, 195-202. |
[136] | Ribas A, Penuelas J, Elvira S, Gimeno BS (2005). Contrasting effects of ozone under different water supplies in two Mediterranean tree species.Atmospheric Environment, 39, 685-693. |
[137] | Sadras VO, Milroy SP (1996). Soil-water thresholds for the responses of leaf expansion and gas exchange: A review.Field Crops Research, 47, 253-266. |
[138] | Sandermann H (1996). Ozone and plant health.Annual Review of Phytopathology, 34, 347-366. |
[139] | Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003). Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone.Planta, 216, 918-928. |
[140] | Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004). On the cause of the 1930s Dust Bowl.Science, 303, 1855-1859. |
[141] | Schuppler U, He PH, John PCL, Munns R (1998). Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves.Plant Physiology, 117, 667-678. |
[142] | Sergeant K, Spiess N, Renaut J, Wilhelm E, Hausman JF (2011). One dry summer: A leaf proteome study on the response of oak to drought exposure.Journal of Proteomics, 74, 1385-1395. |
[143] | Sharma PN, Malik CP (1993). Photosynthetic responses of groundnut to moisture stress.Photosynthetica, 29, 157-160. |
[144] | Shimizu H, Feng YW (2007). Ozone and/or water stresses could have influenced the Betula ermanii Cham. forest decline observed at Oku-Nikko, Japan.Environmental Monitoring and Assessment, 128, 109-119. |
[145] | Showman RE (1991). A comparison of ozone injury to vegetation during moist and drought years.Journal of the Air & Waste Management Association, 41, 63-64. |
[146] | Šircelj H, Tausz M, Grill D, Batic F (2005). Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought.Journal of Plant Physiology, 162, 1308-1318. |
[147] | Sitch S, Cox PM, Collins WJ, Huntingford C (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink.Nature, 448, 791-794. |
[148] | Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998). Impacts of ozone on forests: A European perspective.New Phytologist, 139, 109-122. |
[149] | Sofo A, Tuzio AC, Dichio B, Xiloyannis C (2005). Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids.Plant Science, 169, 403-412. |
[150] | Sun MX, Zu CL, Xu JN (2004). Advances research on the impact of drought on plant: A review.Journal of Anhui Agricultural Sciences, 32, 365-367, 384. (in Chinese)[孙梅霞, 祖朝龙, 徐经年 (2004). 干旱对植物影响的研究进展. 安徽农业科学, 32, 365-367, 384.] |
[151] | Talbi S, Romero-Puertas MC, Hernandez A, Terron L, Fer- chichi A, Sandalio LM (2015). Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences.Environmental and Experimental Botany, 111, 114-126. |
[152] | Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005). Ethylene inhibits abscisic acid- induced stomatal closure in Arabidopsis.Plant Physiology, 138, 2337-2343. |
[153] | Tezara W, Mitchell V, Driscoll S, Lawlor D (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP.Nature, 401, 914-917. |
[154] | Tian HQ, Xu XF, Song X (2007). Drought impacts on terrestrial ecosystem productivity. Journal of Plant Ecology (Chinese Version), 31, 231-241. (in Chinese with English abstract)[田汉勤, 徐小锋, 宋霞 (2007). 干旱对陆地生态系统生产力的影响. 植物生态学报, 31, 231-241.] |
[155] | Tietz S, Wild A (1991). Investigations on the phosphoenolpyruvate carboxylase activity of spruce needles relative to the occurrence of novel forest decline.Journal of Plant Physiology, 137, 327-331. |
[156] | Torsethaugen G, Pell EJ, Assmann SM (1999). Ozone inhibits guard cell K+ channels implicated in stomatal opening.Proceedings of the National Academy of Sciences of the United States of America, 96, 13577-13582. |
[157] | Vitale M, Salvatori E, Loreto F, Fares S, Manes F (2008). Physiological responses of Quercus ilex leaves to water stress and acute ozone exposure under controlled conditions.Water, Air, & Soil Pollution, 189, 113-125. |
[158] | Wagg S, Mills G, Hayes F, Wilkinson S, Cooper D, Davies WJ (2012). Reduced soil water availability did not protect two competing grassland species from the negative effects of increasing background ozone.Environmental Pollution, 165, 91-99. |
[159] | Wallin G, Karlsson PE, Sellden G, Ottosson S, Medin EL, Pleijel H, Skarby L (2002). Impact of four years exposure to different levels of ozone, phosphorus and drought on chlorophyll, mineral nutrients, and stem volume of Norway spruce, Picea abies.Physiologia Plantarum, 114, 192-206. |
[160] | Wang XL, Chen QC (1974). Plants as “atmospheric pollution monitoring alarm”. The Plant Journal, (4), 29-31. (in Chinese)[王勋陵, 陈庆诚 (1974). 利用植物作为大气污染“监测警报器”. 植物学杂志, (4), 29-31.] |
[161] | Watanabe M, Yonekura T, Honda Y, Yoshidome M, Nakaji T, Izuta T (2005). Effects of ozone and soil water stress, singly and in combination, on leaf antioxidative systems of Fagus crenata seedlings.Journal of Agricultural Meteorology, 60, 1105-1108. |
[162] | Wellburn FAM, Lau KK, Milling PMK, Wellburn AR (1996). Drought and air pollution affect nitrogen cycling and free radical scavenging in Pinus halepensis (Mill).Journal of Experimental Botany, 47, 1361-1367. |
[163] | Wen Z, Wang L, Wang XK, Li L, Cui J (2014). Combined effects of O3 and drought on leaf stomata of Acer truncatum.Chinese Journal of Ecology, 33, 560-566. (in Chinese with English abstract)[文志, 王丽, 王效科, 李丽, 崔健 (2014). O3和干旱胁迫对元宝枫叶片气孔特征的复合影响. 生态学杂志, 33, 560-566.] |
[164] | Wilkinson S, Davies WJ (2009). Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism.Plant, Cell & Environment, 32, 949-959. |
[165] | Wilkinson S, Davies WJ (2010). Drought, ozone, ABA and ethylene: New insights from cell to plant to community.Plant, Cell & Environment, 33, 510-525. |
[166] | Wittig VE, Ainsworth EA, Long SP (2007). To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta- analytic review of the last 3 decades of experiments.Plant, Cell & Environment, 30, 1150-1162. |
[167] | Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis.Global Change Biology, 15, 396-424. |
[168] | Xu H, Biswas DK, Li WD, Chen SB, Zhang L, Jiang GM, Li YG (2007). Photosynthesis and yield responses of ozone- polluted winter wheat to drought.Photosynthetica, 45, 582-588. |
[169] | Xu H, Yang JC, Chen SB, Jiang GB, Li KY (2007). Review of plant responses to ozone pollution. Journal of Plant Ecology (Chinese Version), 31, 1205-1213. (in Chinese with English abstract)[许宏, 杨景成, 陈圣宾, 蒋高明, 李永庚 (2007). 植物的臭氧污染胁迫效应研究进展. 植物生态学报, 31, 1205-1213.] |
[170] | Yang F, Miao LF, Xu Xiao, Li CY (2007). Progress in research of plant responses to drought stress.Chinese Journal of Applied and Environmental Biology, 13, 586-591. (in Chinese with English abstract)[杨帆, 苗灵凤, 胥晓, 李春阳 (2007). 植物对干旱胁迫的响应研究进展. 应用与环境生物学报, 13, 586-591.] |
[171] | Yao YQ, Liu XP, Li ZZ, Ma XF, Rennenberg H, Wang X, Li HC (2013). Drought-induced H2O2 accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves.Planta, 238, 217-227. |
[172] | Ye LH, Bao HY, Wang ZY, Lie GW, Chen HY, Zhang XP, Chen X, Ke H, Tian XQ, Tan JD (2014). Effects of ozone and drought on biomass allocation of four seedlings in South China. Advanced Materials Research, 864-867, 2478-2484. |
[173] | Yonekura THY, Oksanen E, Yoshidome M, Watanabe M, Funada R KT, Izuta T (2001b). The influences of ozone and soil water stress, singly and in combination, on leaf gas exchange rates, leaf ultrastructural characteristics and annual ring width of Fagus crenata seedlings.Journal of Japan Society for Atmospheric Environment, 36, 333-351. |
[174] | Yonekura T, Dokiya Y, Fukami M, Izuta T (2001a). Effects of ozone and/or soil water stress on growth and photosynthesis of Fagus crenata seedlings.Water, Air, & Soil Pollution, 130, 965-970. |
[175] | Yonekura T, Yoshidome M, Watanabe M, Honda Y, Ogiwara I, Izuta T (2004). Carry-over effects of ozone and water stress on leaf phenological characteristics and bud frost hardiness of Fagus crenata seedlings.Trees, 18, 581-588. |
[176] | Zhang JX, Kirkham MB (1994). Drought-stress-induced chang- es in activities of superoxide-dismutase, catalase, and peroxidase in wheat species.Plant & Cell Physiology, 35, 785-791. |
[177] | Zhang JX, Kirkham MB (1996). Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants.Plant Science, 113, 139-147. |
[178] | Zhao MS, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science, 329, 940-943. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn