Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (6): 594-605.DOI: 10.17521/cjpe.2020.0372
Special Issue: 凋落物
• Research Articles • Previous Articles Next Articles
SUN Hao-Zhe, WANG Xiang-Ping*(), ZHANG Shu-Bin, WU Peng, YANG Lei
Received:
2020-11-11
Accepted:
2021-03-19
Online:
2021-06-20
Published:
2021-09-09
Contact:
WANG Xiang-Ping
Supported by:
SUN Hao-Zhe, WANG Xiang-Ping, ZHANG Shu-Bin, WU Peng, YANG Lei. Abiotic and biotic modulators of litterfall production and its temporal stability during the succession of broad-leaf and Korean pine mixed forest[J]. Chin J Plant Ecol, 2021, 45(6): 594-605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0372
演替阶段 Succession stage | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 最大树高 Hmax (m) | 最大胸径 DBHmax (cm) | 林分密度 Stem density (tree·hm-2) | 林冠空隙度 Gap fraction (%) | 胸高断面积 TBA (m2·hm-2) |
---|---|---|---|---|---|---|---|
早期 Early stage | 13.3 | 13.2 | 22.6 | 29.8 | 853 | 32.1 | 14.8 |
中期 Middle stage | 8.9 | 11.1 | 24.3 | 43.8 | 1 577 | 13.1 | 30.9 |
中晚期 Mid-late stage | 12.0 | 11.9 | 28.9 | 51.8 | 1 723 | 15.9 | 21.4 |
晚期 Late stage | 13.1 | 16.6 | 28.6 | 67.7 | 1 180 | 6.6 | 42.4 |
Table 1 Stand characteristics for plots of different succession stages of broadleaf Korean pine forest in the Shengshan Nature Reserve, Heilongjiang Province of China
演替阶段 Succession stage | 平均树高 Mean tree height (m) | 平均胸径 Mean DBH (cm) | 最大树高 Hmax (m) | 最大胸径 DBHmax (cm) | 林分密度 Stem density (tree·hm-2) | 林冠空隙度 Gap fraction (%) | 胸高断面积 TBA (m2·hm-2) |
---|---|---|---|---|---|---|---|
早期 Early stage | 13.3 | 13.2 | 22.6 | 29.8 | 853 | 32.1 | 14.8 |
中期 Middle stage | 8.9 | 11.1 | 24.3 | 43.8 | 1 577 | 13.1 | 30.9 |
中晚期 Mid-late stage | 12.0 | 11.9 | 28.9 | 51.8 | 1 723 | 15.9 | 21.4 |
晚期 Late stage | 13.1 | 16.6 | 28.6 | 67.7 | 1 180 | 6.6 | 42.4 |
Fig. 1 Difference in annual litterfall production and its temporal stability among successional stages of Korean pine forest. Different lowercase letters indicate significant differences at p < 0.05 level.
变量 Variable | 凋落物产量 Annual litterfall production | 凋落物产量稳定性 Stability of litterfall production | |
---|---|---|---|
林分因子 Stand factor | 最大树高 Hmax | 0.57** | 0.39* |
最大胸径 DBHmax | 0.45* | 0.55** | |
胸高断面积 TBA | 0.43* | 0.57** | |
林冠空隙度 Gap fraction | -0.68*** | -0.53** | |
功能性状 Functional trait | 叶片碳含量 CWMLC | -0.26 | 0.00 |
叶片氮含量 CWMLN | 0.05 | 0.05 | |
比叶面积 CWMSLA | -0.11 | -0.54** | |
生物多样性 Biodiversity | 物种丰富度 Richness | 0.65** | 0.42* |
物种均匀度 Evenness | 0.59** | 0.28 | |
功能多样性 Rao’s Q | 0.45** | 0.16 | |
系统发育多样性 PD | 0.32 | 0.24 |
Table 2 Coefficients of determination (R2) for different factors in explaining annual litterfall production and its temporal stability across succesional stages of Korean pine forest
变量 Variable | 凋落物产量 Annual litterfall production | 凋落物产量稳定性 Stability of litterfall production | |
---|---|---|---|
林分因子 Stand factor | 最大树高 Hmax | 0.57** | 0.39* |
最大胸径 DBHmax | 0.45* | 0.55** | |
胸高断面积 TBA | 0.43* | 0.57** | |
林冠空隙度 Gap fraction | -0.68*** | -0.53** | |
功能性状 Functional trait | 叶片碳含量 CWMLC | -0.26 | 0.00 |
叶片氮含量 CWMLN | 0.05 | 0.05 | |
比叶面积 CWMSLA | -0.11 | -0.54** | |
生物多样性 Biodiversity | 物种丰富度 Richness | 0.65** | 0.42* |
物种均匀度 Evenness | 0.59** | 0.28 | |
功能多样性 Rao’s Q | 0.45** | 0.16 | |
系统发育多样性 PD | 0.32 | 0.24 |
Fig. 2 Relative importance of variables retained in the models explaining litterfall production (A) and temporal stability of litterfall (B), as obtained by the hierarchical partitioning analyses. CWMLC and CWMLN, community weighted mean of leaf carbon and nitrogen content, respectively; CWMSLA, community weighted mean of specific leaf area; DBHmax, maximum diameter at breast height; Hmax, maximum tree height; PD, phylogenetic diversity; Rao’s Q, Rao’s quadratic entropy; TBA, total basal area.
Fig. 3 Variance partitioning for the effects of stand factors, functional traits and biodiversity factors retained in the models on litterfall production (A) and temporal stability of litterfall (B). a, b, c, the independent effects by each of the three factors; d, e, f, the joint effects between two factors; g, the joint effect among three factors.
[1] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Albrektson A (1988). Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude. Scandinavian Journal of Forest Research, 3, 333-342.
DOI URL |
[3] |
Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS (2019). Big-sized trees overrule remaining treesʼ attributes and species richness as determinants of aboveground biomass in tropical forests. Global Change Biology, 25, 2810-2824.
DOI URL |
[4] |
Anderson KJ (2007). Temporal patterns in rates of community change during succession. The American Naturalist, 169, 780-793.
DOI URL |
[5] | Atkins JW, Fahey RT, Hardiman BS, Gough CM (2018). Forest canopy structural complexity and light absorption relationships at the subcontinental scale. Journal of Geophysical Research, 123, 1387-1405. |
[6] |
Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009). Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLOS ONE, 4, e5695. DOI: 10.1371/journal.pone.0005695.
DOI URL |
[7] |
Caldeira MC, Hector A, Loreau M, Pereira JS (2005). Species richness, temporal variability and resistance of biomass production in a Mediterranean grassland. Oikos, 110, 115-123.
DOI URL |
[8] |
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
DOI URL |
[9] |
Cavanaugh KC, Gosnell JS, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, Jansen PA, O’Brien TG, Rovero F, Sheil D, Vasquez R, Andelman S (2014). Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology and Biogeography, 23, 563-573.
DOI URL |
[10] |
Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001). Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11, 356-370.
DOI URL |
[11] | Cleland EE (2011). Biodiversity and ecosystem stability. Nature Education Knowledge, 3, 10-14. |
[12] | Crawley MJ (2007). The R Book. Wiley, Hoboken,USA. |
[13] |
Faith DP (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
DOI URL |
[14] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD(2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI URL |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪(2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.] | |
[15] |
Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L, Canham C (2015). Does functional trait diversity predict above- ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201.
DOI URL |
[16] |
Forrester DI (2014). The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. Forest Ecology and Management, 312, 282-292.
DOI URL |
[17] |
Fotis AT, Murphy SJ, Ricart RD, Krishnadas M, Whitacre J, Wenzel JW, Queenborough SA, Comita LS (2018). Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 106, 561-570.
DOI URL |
[18] |
Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637.
DOI URL |
[19] |
Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[20] |
Guo Y, Chen HYH, Mallik AU, Wang B, Li D, Xiang W, Li X (2019). Predominance of abiotic drivers in the relationship between species diversity and litterfall production in a tropical karst seasonal rainforest. Forest Ecology and Management, 449, 117452. DOI: 10.1016/j.foreco.2019.117452.
DOI URL |
[21] |
Harpole WS, Tilman D (2007). Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
DOI URL |
[22] |
He JS, Fang J, Wang Z, Guo D, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL |
[23] |
Huang Y, Ma Y, Zhao K, Niklaus PA, Schmid B, He JS (2017). Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. Journal of Plant Ecology, 10, 28-35.
DOI URL |
[24] |
Isbell FI, Polley HW, Wilsey BJ (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 12, 443-451.
DOI URL |
[25] |
Jia BR, Zhou GS, Liu YZ, Jiang YL(2016). Spatial pattern and environmental controls of annual litterfall production in natural forest ecosystems in China. Scientia Sinica Vitae, 46, 1304-1311.
DOI URL |
[ 贾丙瑞, 周广胜, 刘永志, 蒋延玲(2016). 中国天然林凋落物量的空间分布及其影响因子分析. 中国科学: 生命科学, 46, 1304-1311.] | |
[26] |
Johnson JB, Omland KS (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101-108.
DOI URL |
[27] |
King DA, Davies SJ, Noor NSM (2006). Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. Forest Ecology and Management, 223, 152-158.
DOI URL |
[28] |
Klein D, Humpenӧder F, Bauer N, Dietrich JP, Popp A, Bodirsky BL, Bonsch M, Lotze-Campen H (2014). The global economic long-term potential of modern biomass in a climate-constrained world. Environmental Research Letters, 9, 074017. DOI: 10.1088/1748-9326/9/7/074017.
DOI URL |
[29] |
Laliberté E, Legendre P (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[30] |
Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL (2014). The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 17, 1158-1167.
DOI URL |
[31] | Letcher SG, Chazdon RL (2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa rica. Biotropica, 41, 608-617. |
[32] |
Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, et al. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. DOI: 10.1126/science.aaf8957.
DOI |
[33] |
Liang PH, Wang XP, WU YL, Xu K, Wu P, Guo X(2016). Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China. Chinese Journal of Plant Ecology, 40, 425-435.
DOI URL |
[ 梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫(2016). 黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系. 植物生态学报, 40, 425-435.] | |
[34] |
Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252.
DOI URL |
[35] |
Loreau M, de Mazancourt C (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16, 106-115.
DOI URL |
[36] | Martin TA, Brown KJ, Kučera J, Meinzer FC, Sprugel DG, Hinckley TM (2001). Control of transpiration in a 220- year-old Abies amabilis forest. Forest Ecology and Management, 152, 211-224. |
[37] |
Mazzochini GG, Fonseca CR, Costa GC, Santos RM, Oliveira- Filho AT, Ganade G (2019). Plant phylogenetic diversity stabilizes large scale ecosystem productivity. Global Ecology and Biogeography, 28, 1430-1439.
DOI |
[38] |
Mori AS, Furukawa T, Sasaki T (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews, 88, 349-364.
DOI URL |
[39] |
Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014). Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecology Letters, 17, 1526-1535.
DOI URL |
[40] |
Naeem S, Li S (1997). Biodiversity enhances ecosystem reliability. Nature, 390, 507-509.
DOI URL |
[41] |
Needham J, Merow C, Butt N, Malhi Y, Marthews TR, Morecroft M, McMahon SM (2016). Forest community response to invasive pathogens: the case of ash dieback in a British woodland. Journal of Ecology, 104, 315-330.
DOI URL |
[42] |
Niinemets Ü, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G (2002). Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytologist, 153, 243-256.
DOI URL |
[43] |
Ouyang S, Xiang W, Wang XP, Xiao W, Chen L, Li S, Sun H, Deng X, Forrester DI, Zeng L, Lei P, Lei X, Gou X, Peng C (2019). Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology, 107, 2266-2277.
DOI |
[44] |
Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739.
DOI URL |
[45] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[46] |
Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12, 672-685.
DOI URL |
[47] |
Poorter H, De Jong R (1999). A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytologist, 143, 163-176.
DOI URL |
[48] |
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 156, 832-843.
DOI URL |
[49] |
Souza MC, Rossatto DR, Cook GD, Fujinuma R, Menzies NW, Morellato LPC, Habermann G (2016). Mineral nutrition and specific leaf area of plants under contrasting long-term fire frequencies: a case study in a mesic savanna in Australia. Trees, 30, 329-335.
DOI URL |
[50] |
Sterck F, Markesteijn L, Schieving F, Poorter L (2011). Functional traits determine trade-offs and niches in a tropical forest community. Proceedings of the National Academy of Sciences of the United States of America, 108, 20627-20632.
DOI PMID |
[51] |
Sun H, Wang XP, Wu P, Han W, Xu K, Liang PH, Liu C, Yin WL, Xia XL (2017). What causes greater deviations from predictions of metabolic scaling theory in earlier successional forests? Forest Ecology and Management, 405, 101-111.
DOI URL |
[52] |
Tilman D (2000). Causes, consequences and ethics of biodiversity. Nature, 405, 208-211.
DOI URL |
[53] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[54] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research, 15, 303-377. |
[55] | Walsh C, Nally RM (2013). hier. part: Hierarchical partitioning. [2021-04-06]. https://cran.rproject.org/web/packages/hier.part/index.html. |
[56] |
Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
[57] |
Wang XP, Fang JY, Zhu B (2008). Forest biomass and root-shoot allocation in northeast China. Forest Ecology and Management, 255, 4007-4020.
DOI URL |
[58] |
Wen XS, Chen BH, Zhang SB, Xu K, Ye XY, Ni WJ, Wang XP(2019). Relationships of radial growth with climate change in larch plantations of different stand ages and species. Chinese Journal of Plant Ecology, 43, 27-36.
DOI URL |
[ 温晓示, 陈彬杭, 张树斌, 徐凯, 叶新宇, 倪伟杰, 王襄平(2019). 不同林龄、树种落叶松人工林径向生长与气候变化的关系. 植物生态学报, 43, 27-36.] | |
[59] |
Wu X, Wang XP, Tang ZY, Shen ZH, Zheng CY, Xia XL, Fang JY (2015). The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 38, 602-613.
DOI URL |
[60] |
Xu K, Wang XP, Liang PH, Wu YL, An HL, Sun H, Wu P, Wu X, Li QY, Guo X, Wen XS, Han W, Liu C, Fan DY (2019). A new tree-ring sampling method to estimate forest productivity and its temporal variation accurately in natural forests. Forest Ecology and Management, 433, 217-227.
DOI URL |
[61] |
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, et al. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
DOI URL |
[62] |
Zhang QG, Zhang DY (2006). Species richness destabilizes ecosystem functioning in experimental aquatic microcosms. Oikos, 112, 218-226.
DOI URL |
[63] | Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY(2008). Litter fall production in relation to environmental factors in northeast China’s forests. Chinese Journal of Plant Ecology, 32, 1031-1040. |
[ 张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云(2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.] | |
[64] |
Zhang Y, Chen HYH (2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[65] |
Zheng LT, Chen HYH, Yan ER (2019). Tree species diversity promotes litterfall productivity through crown complementarity in subtropical forests. Journal of Ecology, 107, 1852-1861.
DOI URL |
[66] |
Zhou GY, Guan LL, Wei XH, Zhang DQ, Zhang QM, Yan JH, Wen DZ, Liu JX, Liu SG, Huang ZL, Kong GH, Mo JM, Yu QF (2007). Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecology, 188, 77-89.
DOI URL |
[1] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[2] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[3] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[4] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[5] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[6] | YANG Jia-Rong, DAI Dong, CHEN Jun-Fang, WU Xian, LIU Xiao-Lin, LIU Yu. Insight into recent studies on the diversity of arbuscular mycorrhizal fungi in shaping plant community assembly and maintaining rare species [J]. Chin J Plant Ecol, 2023, 47(6): 745-755. |
[7] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[8] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[9] | WANG De-Li, LIANG Cun-Zhu. Restoration state of degraded grasslands: climate climax or disturbance climax? [J]. Chin J Plant Ecol, 2023, 47(10): 1464-1470. |
[10] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[11] | YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 632-641. |
[12] | MA He-Ping, WANG Rui-Hong, QU Xing-Le, YUAN Min, MU Jin-Yong, LI Jin-Hang. Effects of different habitats on the diversity and biomass of ground moss in the southeast Xizang, China [J]. Chin J Plant Ecol, 2022, 46(5): 552-560. |
[13] | TIAN Jia-Yu, WANG Bin, ZHANG Zhi-Ming, LIN Lu-Xiang. Application of spectral diversity in plant diversity monitoring and assessment [J]. Chin J Plant Ecol, 2022, 46(10): 1129-1150. |
[14] | Min FAN, Yi-Tong LU, Zhao-Hua WANG, Ying-Qi HUANG, Yu PENG, Jia-Xin SHANG, Yang ZHANG. Effects of patch pattern on plant diversity and functional traits in center Hunshandak Sandland [J]. Chin J Plant Ecol, 2022, 46(1): 51-61. |
[15] | SUN Wen-Tai, MA Ming. Response of soil physical degradation and fine root growth on long-term film mulching in apple orchards on Loess Plateau [J]. Chin J Plant Ecol, 2021, 45(9): 972-986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn