Chin J Plant Ecol ›› 2009, Vol. 33 ›› Issue (6): 1165-1176.DOI: 10.3773/j.issn.1005-264x.2009.06.017
• Original article • Previous Articles Next Articles
ZHANG Can-Juan1,2, WU Dong-Xiu1,*(), ZHANG Lin1,2, ZHAN Xiao-Yun1,2, ZHOU Shuang-Xi1,2, YANG Yun-Xia1,2
Received:
2009-04-13
Accepted:
2009-04-27
Online:
2009-04-13
Published:
2021-04-29
Contact:
WU Dong-Xiu
ZHANG Can-Juan, WU Dong-Xiu, ZHANG Lin, ZHAN Xiao-Yun, ZHOU Shuang-Xi, YANG Yun-Xia. NODULE CHARACTERISTICS OF THREE-YEAR-OLD CARAGANA MICROPHYLLA AND THEIR RESPONSES TO ENVIRONMENTAL CHANGES IN AN INNER MONGOLIA GRASSLAND[J]. Chin J Plant Ecol, 2009, 33(6): 1165-1176.
处理 Treatment | 根瘤特征 Nodule characteristics | ||
---|---|---|---|
大小及多少 Size and quantity | 颜色及形态 Color and form | 着生部位 Position | |
N0H-C | 很小很少 Few; small | 小球状; 褐色 Small globular; Brown | 着生于主根上部 Nodules on the upper part of taproot |
N0H-E | 较小较少 Less and smaller than CK | 小球状、梨状; 褐色 Small globular or small pyriform; Brown | 主要着生于主根 Nodules on taproot mainly |
N0H0C (CK) | 中等大小, 相对较少 Medium quantity; medium size | 小型(68%): 梨状、球状, 棕黄色或浅黄色; 中型(30%): 棒状、纺锤状, 棕褐色; 大型(2%): Y状, 棕褐色 Miniature (68%): pyriform or globular, tan or buff; Medium (30%): claviform or fusiform, pitchy; Large (2%): Y, pitchy | 多生于侧根 Nodules on lateral roots mainly |
N0H0E | 较大较多 Larger quantity than CK; Larger size than CK | 小型(56%): 球状; 中型(40%): 纺锤状、梨状; 大型(4%): Y状; 均为棕褐色 Miniature (56%): globular, pitchy; Medium (40%): fusiform or pyriform, pitchy; Large (4%): Y, pitchy | 多生于侧根 Nodules on lateral roots mainly |
N0H+C | 大、多且饱满 Many; large and plump, more and larger than N0H0E | 小型(55%): 梨状、球状, 棕黄色或浅黄色; 中型(40%): 棒状、梨状, 褐色; 大型(5%): 掌状、珊瑚状, 深褐色 Miniature (55%): pyriform or globular, tan or buff; Medium (40%): claviform or pyriform, brown; Large (5%): palmated or coralliform, dark brown | 主要着生于侧根和须根 Nodules on lateral roots or fibres mainly |
N0H+E | 很大很多且饱满 Maximum in quantity and size, plump | 小型(50%): 球状, 棕黄色; 中型(40%): 梨形, 褐色; 大型(10%): 棒状、掌状、珊瑚状和纺锤状, 深褐色 Miniature (50%): globular, tan; Medium (40%): pyriform, brown; Large (10%): claviform, palmated, coralliform or fusiform, dark brown | 主要着生于侧根和须根 Nodules oin lateral roots or fibres mainly |
N+H-C | 仅有几个干瘪根瘤 No live nodules, only a couple of wizened nodules | – | – |
N+H-E | 几乎没有活根瘤, 有少量干瘪根瘤 Almost no live nodules, a few wizened nodules | – | – |
N+H0C | 几乎没有活根瘤, 有少量干瘪根瘤 Almost no live nodules, a few wizened nodules | – | – |
N+H0E | 活根瘤极小极少, 有少量干瘪根瘤 Very few and very small live nodules; a few wizened nodules | 小球形, 黑褐色 Small globular; Black brown | 着生于主根 Nodules on taproot |
N+H+C | 活根瘤极小极少, 比N+H0E稍多; 干瘪根瘤较多 Very few and very small live nodules, slightly more than N+H0E; more wizened nodules than N+H0E | 小球状、粒状, 黑褐色 Small globular or granular; Black brown | 簇生于主根 Nodules fascinated on taproot |
N+H+E | 活根瘤极小极少, 比N+H+C稍多; 干瘪根瘤较多 Very few and very small live nodules, slightly more than N+H+C; more wizened nodules than N+H0E | 椭圆状、小球状, 黑褐色 Ellipsoid or small globular; Black brown | 簇生于主根 Nodules fascinated on taproot |
Table 1 The nodule characteristics of Caragana microphylla under different nitrogen, water and CO2 concentration treatments
处理 Treatment | 根瘤特征 Nodule characteristics | ||
---|---|---|---|
大小及多少 Size and quantity | 颜色及形态 Color and form | 着生部位 Position | |
N0H-C | 很小很少 Few; small | 小球状; 褐色 Small globular; Brown | 着生于主根上部 Nodules on the upper part of taproot |
N0H-E | 较小较少 Less and smaller than CK | 小球状、梨状; 褐色 Small globular or small pyriform; Brown | 主要着生于主根 Nodules on taproot mainly |
N0H0C (CK) | 中等大小, 相对较少 Medium quantity; medium size | 小型(68%): 梨状、球状, 棕黄色或浅黄色; 中型(30%): 棒状、纺锤状, 棕褐色; 大型(2%): Y状, 棕褐色 Miniature (68%): pyriform or globular, tan or buff; Medium (30%): claviform or fusiform, pitchy; Large (2%): Y, pitchy | 多生于侧根 Nodules on lateral roots mainly |
N0H0E | 较大较多 Larger quantity than CK; Larger size than CK | 小型(56%): 球状; 中型(40%): 纺锤状、梨状; 大型(4%): Y状; 均为棕褐色 Miniature (56%): globular, pitchy; Medium (40%): fusiform or pyriform, pitchy; Large (4%): Y, pitchy | 多生于侧根 Nodules on lateral roots mainly |
N0H+C | 大、多且饱满 Many; large and plump, more and larger than N0H0E | 小型(55%): 梨状、球状, 棕黄色或浅黄色; 中型(40%): 棒状、梨状, 褐色; 大型(5%): 掌状、珊瑚状, 深褐色 Miniature (55%): pyriform or globular, tan or buff; Medium (40%): claviform or pyriform, brown; Large (5%): palmated or coralliform, dark brown | 主要着生于侧根和须根 Nodules on lateral roots or fibres mainly |
N0H+E | 很大很多且饱满 Maximum in quantity and size, plump | 小型(50%): 球状, 棕黄色; 中型(40%): 梨形, 褐色; 大型(10%): 棒状、掌状、珊瑚状和纺锤状, 深褐色 Miniature (50%): globular, tan; Medium (40%): pyriform, brown; Large (10%): claviform, palmated, coralliform or fusiform, dark brown | 主要着生于侧根和须根 Nodules oin lateral roots or fibres mainly |
N+H-C | 仅有几个干瘪根瘤 No live nodules, only a couple of wizened nodules | – | – |
N+H-E | 几乎没有活根瘤, 有少量干瘪根瘤 Almost no live nodules, a few wizened nodules | – | – |
N+H0C | 几乎没有活根瘤, 有少量干瘪根瘤 Almost no live nodules, a few wizened nodules | – | – |
N+H0E | 活根瘤极小极少, 有少量干瘪根瘤 Very few and very small live nodules; a few wizened nodules | 小球形, 黑褐色 Small globular; Black brown | 着生于主根 Nodules on taproot |
N+H+C | 活根瘤极小极少, 比N+H0E稍多; 干瘪根瘤较多 Very few and very small live nodules, slightly more than N+H0E; more wizened nodules than N+H0E | 小球状、粒状, 黑褐色 Small globular or granular; Black brown | 簇生于主根 Nodules fascinated on taproot |
N+H+E | 活根瘤极小极少, 比N+H+C稍多; 干瘪根瘤较多 Very few and very small live nodules, slightly more than N+H+C; more wizened nodules than N+H0E | 椭圆状、小球状, 黑褐色 Ellipsoid or small globular; Black brown | 簇生于主根 Nodules fascinated on taproot |
变量 Source of variation | df | 单株根瘤数量 Number of root nodules per plant | 单株根瘤重量 Weight of root nodules per plant | 根瘤平均长度 Mean length of root nodules | 根瘤平均重量 Mean weight of root nodules |
---|---|---|---|---|---|
N | 1 | 44.12** | 19.64** | 64.21** | 53.45** |
H2O | 2 | 17.01** | 9.37** | 17.89** | 21.60** |
CO2 | 1 | 1.72 NS | 1.12 NS | 2.77 NS | 2.60 NS |
N×H2O | 2 | 13.41** | 8.13** | 0.84 NS | 1.47 NS |
N×CO2 | 1 | 0.46 NS | 0.72 NS | 1.25 NS | 0.13 NS |
H2O×CO2 | 2 | 0.45 NS | 0.30 NS | 0.35 NS | 1.16 NS |
N×H2O×CO2 | 2 | 0.76 NS | 0.33 NS | 0.08 NS | 1.28 NS |
Table 2 Results (F-values) of Three-Way ANOVA on the effects of nitrogen, water and CO2 concentration treatments for the number and weight of root nodules per plant, mean length and mean weight of root nodules
变量 Source of variation | df | 单株根瘤数量 Number of root nodules per plant | 单株根瘤重量 Weight of root nodules per plant | 根瘤平均长度 Mean length of root nodules | 根瘤平均重量 Mean weight of root nodules |
---|---|---|---|---|---|
N | 1 | 44.12** | 19.64** | 64.21** | 53.45** |
H2O | 2 | 17.01** | 9.37** | 17.89** | 21.60** |
CO2 | 1 | 1.72 NS | 1.12 NS | 2.77 NS | 2.60 NS |
N×H2O | 2 | 13.41** | 8.13** | 0.84 NS | 1.47 NS |
N×CO2 | 1 | 0.46 NS | 0.72 NS | 1.25 NS | 0.13 NS |
H2O×CO2 | 2 | 0.45 NS | 0.30 NS | 0.35 NS | 1.16 NS |
N×H2O×CO2 | 2 | 0.76 NS | 0.33 NS | 0.08 NS | 1.28 NS |
[1] |
Almeida JPF, Hartwig UA, Frehner M, Nosberger J, Luscher A (2000). Evidence that P deficiency induces N feedback regulation of symbiotic N 2 fixation in white clover ( Trifolium repens L.). Journal of Experimental Botany, 51,1289-1297.
URL PMID |
[2] |
Aranjuelo I, Irigoyen JJ, Nogues S, Sanchez-Diaz M (2009). Elevated CO 2 and water-availability effect on gas exchange and nodule development in N 2-fixing alfalfa plants. Environmental and Experimental Botany, 65,18-26.
DOI URL |
[3] |
Armstrong RD, Kuskopf BJ, Millar G, Whitbread AM, Standley J (1999). Changes in soil chemical and physical properties following legumes and opportunity cropping on a cracking clay soil. Australian Journal of Experimental Agriculture, 39,445-456.
DOI URL |
[4] |
Arnone JA, Gordon JC (1990). Effect of nodulation, nitrogen fixation and CO 2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytologist, 116,55-66.
DOI URL |
[5] |
Bai YF, Han XG, Wu JG, Chen ZG, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431,181-184.
URL PMID |
[6] |
Becker M, Diekmann KH, Ladha JK, Dedatta SK, Ottow JCG (1991). Effect of NPK on growth and nitrogen fixation of Sesbania rostrata as a green manure for lowland rice ( Oryza sativa L.). Plant and Soil, 132,149-158.
DOI URL |
[7] | Bordeleau LM, Prévost D (1994). Nodulation and nitrogen fixation in extreme environments. Plant and Soil, 161,115-125. |
[8] | Chen SP (陈世苹), Bai YF (白永飞), Han XG (韩兴国), An JL (安吉林), Guo FC (郭富存) (2004). Variations in foliar carbon isotope composition and adaptive strategies of Carex korshinskyi along a soil moisture gradient. Acta Phytoecologica Sinica(植物生态学报), 28,515-522. (in Chinese with English abstract) |
[9] | Djekoun A, Planchon C (1991). Water status effect on dinitrogen fixation and photosynthesis in soybean. Agronomy Journal, 83,316-322. |
[10] | Ebersberger D, Niklaus PA, Kandeler E (2003). Long term CO 2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biology & Biochemistry, 35,965-972. |
[11] | Editorial Group of Inner Mongolia Flora (内蒙古植物志编写组) (1977). Flora China Intramongolicae (内蒙古植物志). Vol.3. Inner Mongolia People’s Press, Huhhot, 29, 175. (in Chinese) |
[12] | Glasener KM, Wagger MG, Mackown CT, Volk RJ (2002). Contributions of shoot and root nitrogen-15 labeled legume nitrogen sources to a sequence of three cereal crops. Soil Science Society of America Journal, 66,523-530. |
[13] | Goi SR, Sprent JI, JacobNeto J (1997). Effect of different sources of N 2 on the structure of Mimosa caesalpiniaefolia root nodules. Soil Biology & Biochemistry, 29,983-987. |
[14] | Graham PH (1992). Stress tolerance in rhizobium and bradyrhizobium, and nodulation under adverse soil- conditions. Canadian Journal of Microbiology, 38,475-484. |
[15] | Haase S, Neumann G, Kania A, Kuzyakov Y, Romheld V, Kandeler E (2007). Elevation of atmospheric CO 2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biology & Biochemistry, 39,2208-2221. |
[16] | Hafner H, Ndunguru BJ, Bationo A, Marschner H (1992). Effect of nitrogen, phosphorus and molybdenum application on growth and symbiotic N 2-fixation of groundnut in an acid sandy soil in Niger. Fertilizer Research, 31,69-77. |
[17] | Hartwig UA, Sadowsky MJ (2006). Biological nitrogen fixation:a key process for the response of grassland ecosystems to elevated atmospheric [CO 2]. In:Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H eds. Ecological Studies. Heidelberg, Springer, Berlin, 325-336. |
[18] | He HB (何恒斌), Hao YG (郝玉光), Ding Q (丁琼), Jia GX (贾桂霞) (2006). Characteristics of plant community of Ammopiptanthus mongolicus and the diversity of its nodules. Journal of Beijing Forestry University (北京林业大学学报), 28,123-128. (in Chinese with English abstract) |
[19] | Hu SJ, Tu C, Chen X, Gruver JB (2006). Progressive N limitation of plant response to elevated CO 2: a microbiological perspective. Plant and Soil, 289,47-58. |
[20] | Hua L (华珞), He ZJ (何忠俊), Wei DP (韦东普), Chen SB (陈世宝), Bai LY (白玲玉) (2003). Influences of the compound effects between nitrogen and zinc on growth, N-fixation and transfer of fixed nitrogen of white clover in mixed culture. Acta Ecologica Sinica(生态学报), 23,264-270. (in Chinese with English abstract) |
[21] |
Huang CY, Boyer JS, Vanderhoef LN (1975). Limitation of acetylene reduction (nitrogen-fixation) by photosynthesis in soybean having low water potentials. Plant Physiology, 56,228-232.
DOI URL PMID |
[22] | Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999). Elevated CO 2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology, 5,781-789. |
[23] |
Hungate BA, Stiling PD, Dijkstra P, Johnson DW, Ketterer ME, Hymus GJ, Hinkle CR, Drake BG (2004). CO 2 elicits long-term decline in nitrogen fixation. Science, 304,1291-1291.
URL PMID |
[24] | IPCC (2007). Climate Chang 2007: the Physical Science Basis. Contribution of Working GroupⅠ to the Fourth Assessment Report of the IPCC. Cambridge University Press,Cambridge,UK. |
[25] | Kirda C, Danso SKA, Zapata F (1989). Temporal water-stress effects on nodulation, nitrogen accumulation and growth of soybean. Plant and Soil, 120,49-55. |
[26] | Ledgard SF, Sprosen MS, Steele KW (1996). Nitrogen fixation by nine white clover cultivars in grazed pasture, as affected by nitrogen fertilization. Plant and Soil, 178,193-203. |
[27] |
Ladrera R, Marino D, Larrainzar E, Gonzalez EM, Arrese-Igor C (2007). Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiology, 145,539-546.
DOI URL PMID |
[28] | Li XZ (李香真), Chen ZZ (陈佐忠) (1998). Influences of stocking rates on C, N, P contents in plant-soil system. Acta Agrestia Sinica(草地学报), 6,90-98. (in Chinese with English abstract) |
[29] | Mytton LR, Cresswell A, Colbourn P (1993). Improvement in soil structure associated with white clover. Grass and Forage Science, 48,84-90. |
[30] | Niu SL (牛书丽), Jiang GM (蒋高明) (2004). The importance of legume in China grassland ecosystem and the advances in physiology and ecology studies. Chinese Bulletin of Botany(植物学通报), 21,9-18. (in Chinese with English abstract) |
[31] | Pan QM (潘庆民), Bai YF (白永飞), Han XG (韩兴国), Yang JC (杨景成) (2005). Effects of nitrogen addition on a Leymus chinensis population in typical steppe of Inner Mongolia. Acta Phytoecologica Sinica(植物生态学报), 29,311-317. (in Chinese with English abstract) |
[32] | Peoples MB, Herridge DF, Ladha JK (1995). Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant and Soil, 174,3-28. |
[33] |
Rainbird RM, Thorne JH, Hardy RWF (1984). Role of amides, amino acids, and ureides in the nutrition of developing soybean seeds. Plant Physiology, 74,329-334.
DOI URL PMID |
[34] | Rigaud J (1981). Comparison of the efficiency of nitrate and nitrogen fixation in crop yield. In: Bewley JD ed. Nitrogen and Carbon Metabolism. Martinus Nijhoff, the Hague Press, Netherlands, 18-46. |
[35] |
Serraj R (2003). Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms. Indian Journal of Experimental Biology, 41,1136-1141.
URL PMID |
[36] | Serraj R, Sinclair TR, Purcell LC (1999). Symbiotic N 2 fixation response to drought. Journal of Experimental Botany, 50,143-155. |
[37] | Streeter J, Wong PP (1988). Inhibition of legume nodule formation and N 2 fixation by nitrate. Critical Reviews in Plant Sciences, 7,1-23. |
[38] | Sun ZR (孙志蓉), Zhai MP (翟明普), Wang WQ (王文全) (2006). Study on seedling nodule characteristics of Caragana microphylla. Forestry Science & Technology(林业科技), 31,6-9. (in Chinese with English abstract) |
[39] | Tao L (陶林), Gao HW (高洪文), Fan FC (樊奋成) (2005). The dynamics of nitrogen fixation ability to root nodule of Caragana microphylla Lam. Grassland of China(中国草地), 27,53-56. (in Chinese with English abstract) |
[40] | Thomas RB, Bashkin MA, Richter DD (2000). Nitrogen inhibition of nodulation and N 2 fixation of a tropical N 2-fixing tree ( Gliricidia sepium) grown in elevated atmospheric CO 2. New Phytologist, 145,233-243. |
[41] | Thomas RJ (1992). The role of the legume in the nitrogen cycle of productive and sustainable pastures. Grass and Forage Science, 47,133-142. |
[42] | Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57,1-45. |
[43] |
Volk M, Niklaus PA, Korner C (2000). Soil moisture effects determine CO 2 responses of grassland species. Oecologia, 125,380-388.
DOI URL PMID |
[44] | Wang FJ (王芳玖) (1985). Primary investigation on the root nodulation of wild legume plants. In: Inner Mongolia Grassland Ecosystem Research Station, the Chinese Academy of Sciences ed.Research on Grassland Ecosystem No.5 (草原生态系统研究第五集). Science Press, Beijing, 124-134. (in Chinese) |
[45] | Wang WW (王卫卫), Hu ZH (胡正海) (2003). Characteristics related to symbiotic nitrogen fixation of legumes in northwest arid zone of China. Acta Botanica Boreali-occidentalia Sinica(西北植物学报), 23,1163-1168. (in Chinese with English abstract) |
[46] | Xiong XG (熊小刚), Han XG (韩兴国), Bai YF (白永飞), Pan QM (潘庆民) (2003). Increased distribution of Caragana microphylla in rangelands and its causes and consequences in Xilin River Basin. Acta Pratacultural Science(草业学报), 12,57-62. (in Chinese with English abstract) |
[47] | Yao XC (姚新春), Shi SL (师尚礼), Wang YL (王亚玲) (2007). Effect of intermittent drought on nodule formation of alfalfa. Acta Agrestia Sinica (草地学报), 15,216-220. (in Chinese with English abstract) |
[48] | Zhao XY (赵献英), Yao YC (姚彦臣), Yang RR (杨汝荣) (1988). Eco-geographical characteristics and its prospect of natural rangelands in Xilin River Basin. In: Inner Mongolia Grassland Ecosystem Research Station, The Chinese Academy of Sciences ed. Research on Grassland Ecosystem No.3 (草原生态系统研究第三册). Science Press, Beijing, 227-268. |
[49] | Zuo YM (左元梅), Liu YX (刘永秀), Zhang FS (张福锁) (2003). Effects of the NO 3 --N on nodule formation and nitrogen fixing of peanut. Acta Ecologica Sinica(生态学报), 23,758-764. (in Chinese with English abstract) |
[1] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[2] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[3] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[4] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[5] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[6] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[7] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[8] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[9] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[10] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[11] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[12] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[13] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[14] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[15] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn