Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (7): 682-713.DOI: 10.17521/cjpe.2020.0331
Special Issue: 生态化学计量
• Hou Xueyu Review • Previous Articles Next Articles
TIAN Di1(), YAN Zheng-Bing2, FANG Jing-Yun3,**()
Received:
2020-10-10
Accepted:
2021-01-07
Online:
2021-07-20
Published:
2021-10-22
Contact:
** FANG Jing-Yun jyfang@urban.pku.edu.cn
Supported by:
TIAN Di, YAN Zheng-Bing, FANG Jing-Yun. Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chin J Plant Ecol, 2021, 45(7): 682-713.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0331
功能群 Functional group | N (mg∙g-1) | P (mg∙g-1) | N:P (g∙g-1) | n | |
---|---|---|---|---|---|
所有生活型 All functional groups | 18.74 (±8.33) | 1.21 (±0.94) | 15.55 (±9.95) | 12 721 | |
所有木本 All woody species | 18.22 (±7.77) | 1.10 (±0.81) | 16.53 (±9.30) | 9 098 | |
常绿针叶 Evergreen conifers | 12.79 (±4.25) | 1.06 (±0.81) | 12.07 (±8.39) | 480 | |
常绿阔叶 Evegreen broadleaved | 15.29 (±6.66) | 0.79 (±0.56) | 19.29 (±10.60) | 3 476 | |
落叶阔叶 Deciduous broadleaved | 21.29 (±7.53) | 1.40 (±0.86) | 15.24 (±7.66) | 4 981 | |
其他木本 Other woody species | 18.63 (±8.32) | 1.23 (±0.64) | 16.58 (±8.77) | 101 | |
草本 Herbaceous species | 20.56 (±9.33) | 1.56 (±1.12) | 13.17 (±11.03) | 3 489 | |
蕨 Ferns | 11.46 (±4.75) | 0.65 (±0.62) | 17.75 (±13.06) | 134 |
Table 1 Leaf nitrogen (N), phosphorus (P) content and N:P mass ratio across different lifeforms of global terrestrial plants
功能群 Functional group | N (mg∙g-1) | P (mg∙g-1) | N:P (g∙g-1) | n | |
---|---|---|---|---|---|
所有生活型 All functional groups | 18.74 (±8.33) | 1.21 (±0.94) | 15.55 (±9.95) | 12 721 | |
所有木本 All woody species | 18.22 (±7.77) | 1.10 (±0.81) | 16.53 (±9.30) | 9 098 | |
常绿针叶 Evergreen conifers | 12.79 (±4.25) | 1.06 (±0.81) | 12.07 (±8.39) | 480 | |
常绿阔叶 Evegreen broadleaved | 15.29 (±6.66) | 0.79 (±0.56) | 19.29 (±10.60) | 3 476 | |
落叶阔叶 Deciduous broadleaved | 21.29 (±7.53) | 1.40 (±0.86) | 15.24 (±7.66) | 4 981 | |
其他木本 Other woody species | 18.63 (±8.32) | 1.23 (±0.64) | 16.58 (±8.77) | 101 | |
草本 Herbaceous species | 20.56 (±9.33) | 1.56 (±1.12) | 13.17 (±11.03) | 3 489 | |
蕨 Ferns | 11.46 (±4.75) | 0.65 (±0.62) | 17.75 (±13.06) | 134 |
Fig. 1 Changes of carbon (C), nitrogen (N), and phosphorus (P) content in leaves, stems, and roots of terrestrial plants in China with mean annual air temperature (cited from Tang et al. (2018)).
Fig. 2 Natural log response ratios of plant carbon (C), nitrogen (N), phosphorus (P) and their stoichiometric ratios to N and P additions, respectively (replotted based on Yuan & Chen (2015)). Circles are for results in natural environments with grey and green representing insignificant (p > 0.05) and significant (p ≤ 0.05) difference between the log response ratio and zero, respectively. Triangles are for results in controlled environments with grey and red representing insignificant (p > 0.05) and significant (p ≤ 0.05) difference between the log response ratio and zero, respectively. Error bars are the 95% confidence intervals for the mean. The numbers out- and inside parentheses represent the numbers of observations for experiments in natural and controlled environments, respectively.
Fig. 3 Main theories and hypotheses in plant stoichiometry. Three categaries are included: (1) function-associated hypotheses (annotated in blue), (2) environment-associated hypotheses (annotated in brown), and (3) evolution-associated hypotheses (annotated in green). The cartoon graphs and phylogenetic tree graph are cited from the google image website (https://www.google.com/imghp?hl=en) in December 10, 2020.
Fig. 4 Bivariate plots of lg-transformed data for growth rates vs leaf phosphorus (P) content and N:P, respectively, of Eranthis hyemalis and Arabidopsis thaliana. A and B are replotted based on Niklas & Cobb (2005). C and D are plotted based on data from Yan’s nutrient enrichment manipulation experiment on A. thaliana (Yan, 2017).
Fig. 5 Original proposition and re-evaluation of the N:P Threshold Hypothesis. A, The N:P threshold values of 14 and 16 as the judgement standard for N and P limitations proposed by Koerselman & Meuleman (1996), redrawn from Koerselman & Meuleman (1996). B, Re-evaluation of the N:P Threshold Hypothesis by Yan et al. (2017) with a larger dataset following the same statistic method as Koerselman & Meuleman (1996), redrawn from Yan et al. (2017). Nutrient limitation here is judged by results of field nutrient fertilization experiments. Each point indicates a field experiment site.
Fig. 6 Leaf N-P scaling relationship at global level, site level and nutrient fertilization experimental level. A, Replotted based on Tian et al. (2018b), showing the significant variation of leaf N-P scaling relationship at site levels. B, C, Replotted based on Yan et al. (2018), indicating the effects of N and P fertilizations on leaf N-P scaling relationship of Arabidopsis thaliana.
Fig. 7 Relationship between ecosystem gross primary productivity (GPP) and leaf nitrogen (N) and phosphorus (P) content, respectively. This figure is replotted using data from Tang et al. (2018).
Fig. 8 Schematic diagram of Stoichiometric Homeostasis Theory. A shows the coordinated variation of organism vs environment nutrient ratios (i.e. no stoichiometric homeostasis). B shows that organism nutrient ratios keep stable with the changing environment nutrient ratios (i.e. strict stoichiometric homeostasis). This figure is replotted from Sterner & Elser (2002).
Fig. 10 Scaling relationships of nitrogen (N) and phosphorus (P) content among different organs from different biomes in China. The scaling exponents from leaf vs stem and leaf nutrient vs root nutrient relationships are all below 1, suggesting that nutrient content in leaves relative to stems and roots is more stable and less sensitive to environmental changes. These results support the Stable Leaf Nutrient Content Hypothesis. This figure is replotted based on Tang et al. (2018).
Fig. 11 Diagram of Relative Resorption Hypothesis, replotted based on Han et al. (2013). The y-axis shows the relative resorption efficiency of nitrogen (N) and phosphorus (P) (NRE - PRE). ① desert; ② tropical forest; ③ subtropical forest; ④ wetland; ⑤ China temperate forest; ⑥ temperate forest; ⑦ China boreal forest; ⑧ meadow; ⑨ boreal forest; ⑩ heathland; ? tallgrass prairie.
Fig. 12 Diagram of Biogeochemical Niche Hypothesis, modified from Peñuelas et al. (2019). A shows biogeochemical niche segregation of multi-nutrients among coexisting plant species based on the principal component analysis. B shows the shift in biogeochemical niche among coexisting plant species in a drought experiment. Ellipses in different colours show specific biogeochemical niches.
[1] |
Aber JD, Magill A, Boone R, Melillo JM, Steudler P (1993). Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecological Applications, 3, 156-166.
DOI URL |
[2] |
Aerts R, Berendse F (1989). Above-ground nutrient turnover and net primary production of an evergreen and a deciduous species in a heathland ecosystem. Journal of Ecology, 77, 343-356.
DOI URL |
[3] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[4] | Ågren GI (1988). Ideal nutrient productivities and nutrient proportions in plant growth. Plant, Cell & Environment, 11, 613-620. |
[5] |
Ågren GI (2004). The C:N:P stoichiometry of autotrophs- Theory and observations. Ecology Letters, 7, 185-191.
DOI URL |
[6] |
Ågren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics, 39, 153-170.
DOI URL |
[7] |
Ågren GI, Weih M (2012). Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytologist, 194, 944-952.
DOI URL |
[8] |
Allen SE, Pearsall WH (1963). Leaf analysis and shoot production in Phragmites. Oikos, 14, 176-189.
DOI URL |
[9] | Aronsson A, Elowson S (1980). Effects of irrigation and fertilization on mineral nutrients in Scots pine needles. Ecological Bulletins, 32, 219-228. |
[10] |
Boyd CE, Vickers DH (1971). Variation in the elemental content of Eichhornia crassipes. Hydrobiologia, 38, 409-414.
DOI URL |
[11] |
Bradshaw AD, Chadwick MJ, Jowett D, Lodge RW, Snaydon RW (1960). Experimental investigations into the mineral nutrition of several grass species: Part III. Phosphate level. Journal of Ecology, 48, 631-637.
DOI URL |
[12] |
Cai Q, Ding JX, Zhang ZL, Hu J, Wang QT, Yin MZ, Liu Q, Yin HJ (2019). Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 43, 1048-1060.
DOI |
[ 蔡琴, 丁俊祥, 张子良, 胡君, 汪其同, 尹明珍, 刘庆, 尹华军 (2019). 青藏高原东缘主要针叶树种叶片碳氮磷化学计量分布格局及其驱动因素. 植物生态学报, 43, 1048-1060.]
DOI |
|
[13] |
Carnicer J, Sardans J, Stefanescu C, Ubach A, Bartrons M, Asensio D, Peñuelas J (2015). Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances. Journal of Plant Physiology, 172, 82-91.
DOI PMID |
[14] |
Chapin III FS (1980a). Nutrient allocation and responses to defoliation in tundra plants. Arctic and Alpine Research, 12, 553-563.
DOI URL |
[15] |
Chapin III FS (1980b). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[16] |
Chapin III FS, Kedrowski RA (1983). Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 64, 376-391.
DOI URL |
[17] | Chapin III FS, Matson PA, Vitousek PM (2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[18] |
Chapin III FS, van Cleve K, Chapin MC (1979). Soil temperature and nutrient cycling in the tussock growth form of Eriophorum vaginatum. Journal of Ecology, 67, 169-189.
DOI URL |
[19] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL |
[20] |
Chen H, Gurmesa GA, Zhang W, Zhu XM, Zheng MH, Mao QG, Zhang T, Mo JM (2016). Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Functional Ecology, 30, 305-313.
DOI URL |
[21] |
Chen YH, Han WX, Tang LY, Tang ZY, Fang JY (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36, 178-184.
DOI URL |
[22] | Cheng B, Zhao YJ, Zhang WG, An SQ (2010). The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 30, 1628-1637. |
[ 程滨, 赵永军, 张文广, 安树青 (2010). 生态化学计量学研究进展. 生态学报, 30, 1628-1637.] | |
[23] |
Cooper LHN (1937). On the ratio of nitrogen to phosphorus in the sea. Journal of the Marine Biological Association of the United Kingdom, 22, 177-182.
DOI URL |
[24] |
Craine JM, Morrow C, Stock WD (2008). Nutrient concentration ratios and co-limitation in South African grasslands. New Phytologist, 179, 829-836.
DOI URL |
[25] |
de Frenne P, Kolb A, Graae BJ, Decocq G, Baltora S, de Schrijver A, Brunet J, Chabrerie O, Cousins SAO, Dhondt R, Diekmann M, Gruwez R, Heinken T, Hermy M, Liira J, Saguez R, Shevtsova A, Baskin CC, Verheyen K (2011). A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa. Plant Biology, 13, 493-501.
DOI PMID |
[26] |
Deng Q, Hui DF, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728.
DOI URL |
[27] |
Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrublands. Plant and Soil, 259, 59-69.
DOI URL |
[28] |
Du EZ, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226.
DOI URL |
[29] |
Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY (2013). NEECF: a project of nutrient enrichment experiments in China’s forests. Journal of Plant Ecology, 6, 428-435.
DOI URL |
[30] |
Eckstein RL, Karlsson PS, Weih M (1999). Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist, 143, 177-189.
DOI URL |
[31] | Elser J (2006). Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. The American Naturalist, 168, S25-S35. |
[32] |
Elser JJ (2000). Ecological stoichiometry: from sea to lake to land. Trends in Ecology & Evolution, 15, 393-394.
DOI URL |
[33] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
DOI URL |
[34] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL |
[35] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684.
DOI URL |
[36] |
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 186, 593-608.
DOI PMID |
[37] |
Elser JJ, Marzolf ER, Goldman CR (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1468-1477.
DOI URL |
[38] |
Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9-19.
DOI PMID |
[39] | Fan JW, Zhang LX, Zhang WY, Zhong HP (2014). Plant root N and P levels and their relationship to geographical and climate factors in a Chinese grassland transect. Acta Prataculturae Sinica, 23(5), 69-76. |
[ 樊江文, 张良侠, 张文彦, 钟华平 (2014). 中国草地样带植物根系N、P元素特征及其与地理气候因子的关系. 草业学报, 23(5), 69-76.] | |
[40] | Fang JY (2000). Chemical element background and its distribution in arctic soils. Acta Scientiae Circumstantiae, 20, 69-75. |
[ 方精云 (2000). 北极冻土的化学元素背景及其分布特征. 环境科学学报, 20, 69-75.] | |
[41] | Fang JY, Liu SC (1999). Contents and distribution of chemical elements in arctic ice. Acta Scientiae Circumstantiae, 19, 677-681. |
[ 方精云, 刘少创 (1999). 北极冰化学元素含量及其分布. 环境科学学报, 19, 677-681.] | |
[42] |
Fong P, Boyer KE, Zedler JB (1998). Developing an indicator of nutrient enrichment in coastal estuaries and lagoons using tissue nitrogen content of the opportunistic alga, Enteromorpha intestinalis (L. Link). Journal of Experimental Marine Biology and Ecology, 231, 63-79.
DOI URL |
[43] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
[44] |
Geng Y, Ma WH, Wang L, Baumann F, Kühn P, Scholten T, He JS (2017). Linking above- and belowground traits to soil and climate variables: an integrated database on China’s grassland species. Ecology, 98, 1471. DOI: 10.1002/ecy.1780.
DOI PMID |
[45] |
Gerloff GC, Krombholz PH (1966). Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnology and Oceanography, 11, 529-537.
DOI URL |
[46] |
Goldman JC, McCarthy JJ, Peavey DG (1979). Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279, 210-215.
DOI URL |
[47] |
Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots. Ecology, 81, 275-280.
DOI URL |
[48] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[49] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[50] |
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI PMID |
[51] |
Han WX, Tang LY, Chen YH, Fang JY (2013). Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLOS ONE, 8, e83366. DOI: 10.1371/journal.pone.0083366.
DOI URL |
[52] |
Hao Z, Kuang YW, Kang M (2015). Untangling the influence of phylogeny, soil and climate on leaf element concentrations in a biodiversity hotspot. Functional Ecology, 29, 165-176.
DOI URL |
[53] | Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack Jr K, Cummins KW (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133-302. |
[54] |
Harper HJ, Daniel HA (1934). Chemical composition of certain aquatic plants. Botanical Gazette, 96, 186-189.
DOI URL |
[55] |
Hassett RP, Cardinale B, Stabler LB, Elser JJ (1997). Ecological stoichiometry of N and P in pelagic ecosystems: comparison of lakes and oceans with emphasis on the zooplankton-phytoplankton interaction. Limnology and Oceanography, 42, 648-662.
DOI URL |
[56] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006a). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL |
[57] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI |
|
[58] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[59] |
He JS, Wang XP, Schmid B, Flynn DFB, Li XF, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes. Journal of Plant Research, 123, 551-561.
DOI URL |
[60] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006b). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL |
[61] | He MS, Luo Y, Peng QW, Yan ZB, Yang SQ, Li KH, Han WX (2019). Carbon, nitrogen and phosphorus stoichiometry in the coarse roots of 45 desert plant species in relation to environmental factors across the deserts in Xinjiang. Chinese Journal of Ecology, 38, 2603-2614. |
[ 何茂松, 罗艳, 彭庆文, 严正兵, 杨思琪, 李凯辉, 韩文轩 (2019). 新疆45种荒漠植物粗根碳、氮、磷计量特征及其与环境的关系. 生态学杂志, 38, 2603-2614.] | |
[62] |
He MZ, Dijkstra FA (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytologist, 204, 924-931.
DOI URL |
[63] |
He MZ, Dijkstra FA, Zhang K, Li XR, Tan HJ, Gao YH, Li G (2014). Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability. Scientific Reports, 4, 6932. DOI: 10.1038/srep06932.
DOI URL |
[64] |
He MZ, Dijkstra FA, Zhang K, Tan HJ, Zhao Y, Li X (2016a). Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert. Plant and Soil, 398, 339-350.
DOI URL |
[65] |
He MZ, Song X, Tian FP, Zhang K, Zhang ZS, Chen N, Li XR (2016b). Divergent variations in concentrations of chemical elements among shrub organs in a temperate desert. Scientific Reports, 6, 20124. DOI: 10.1038/srep20124.
DOI URL |
[66] |
He MZ, Zhang K, Tan HJ, Hu R, Su JQ, Wang J, Huang L, Zhang YF, Li XR (2015). Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecology and Evolution, 5, 1494-1503.
DOI URL |
[67] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[68] |
He NP, Liu CC, Piao SL, Sack L, Xu L, Luo YQ, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR (2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34, 200-210.
DOI URL |
[69] | He NP, Zhang JH, Liu CC, Xu L, Chen Z, Liu Y, Wang RL, Zhao N, Xu ZW, Tian J, Wang Q, Zhu JX, Li Y, Hou JH, Yu GR (2018). Patterns and influencing factors of traits in forest ecosystems: synthesis and perspectives on the synthetic investigation from the north-east transect of eastern China (NETEC). Acta Ecologica Sinica, 38, 6359-6382. |
[ 何念鹏, 张佳慧, 刘聪聪, 徐丽, 陈智, 刘远, 王瑞丽, 赵宁, 徐志伟, 田静, 王情, 朱剑兴, 李颖, 侯继华, 于贵瑞 (2018). 森林生态系统性状的空间格局与影响因素研究进展--基于中国东部样带的整合分析. 生态学报, 38, 6359-6382.] | |
[70] |
He P, Fontana S, Sardans J, Peñuelas J, Gessler A, Schaub M, Rigling A, Li H, Jiang Y, Li MH (2019). The biogeochemical niche shifts of Pinus sylvestris var. mongolica along an environmental gradient. Environmental and Experimental Botany, 167, 103825. DOI: 10.1016/j.envexpbot.2019.103825.
DOI URL |
[71] |
Hessen DO, Jensen TC, Kyle M, Elser JJ (2007). RNA responses to N- and P-limitation: reciprocal regulation of stoichiometry and growth rate in Brachionus. Functional Ecology, 21, 956-962.
DOI URL |
[72] |
Ho YB (1979a). Growth, chlorophyll and mineral nutrient studies on Phalaris arundinacea L. in three Scottish lochs. Hydrobiologia, 63, 33-43.
DOI URL |
[73] |
Ho YB (1979b). Inorganic mineral nutrient level studies on Potamogeton pectinatus L. and Enteromorpha prolifera in Forfar Loch, Scotland. Hydrobiologia, 62, 7-15.
DOI URL |
[74] |
Högberg P, Fan HB, Quist M, Binkley D, Tamm CO (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499.
DOI URL |
[75] |
Hong JT, Wang XD, Wu JB (2014). Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the Northern Tibetan Plateau. PLOS ONE, 9, e109052. DOI: 10.1371/journal.pone.0109052.
DOI URL |
[76] |
Horrocks JL, Stewart GR, Dennison WC (1995). Tissue nutrient content of Gracilaria spp. (Rhodophyta) and water quality along an estuarine gradient. Marine and Freshwater Research, 46, 975-983.
DOI URL |
[77] | Ingestad T (1962). Macro element nutrition of pine, spruce, and birch seedlings in nutrient solutions. Meddelanden Från Statens Skogsforskningsinstitut, 51, 16-21. |
[78] |
Ingestad T (1970). A definition of optimum nutrient requirements in birch seedlings. I. Physiologia Plantarum, 23, 1127-1138.
DOI URL |
[79] |
Ingestad T (1971). A definition of optimum nutrient requirements in birch seedlings. II. Physiologia Plantarum, 24, 118-125.
DOI URL |
[80] |
Ingestad T (1979). Mineral nutrient requirements of Pinus silvestris and Picea abies seedlings. Physiologia Plantarum, 45, 373-380.
DOI URL |
[81] | Jackson LJ, Rasmussen JB, Peters RH, Kalff J (1991). Empirical relationships between the element composition of aquatic macrophytes and their underlying sediments. Biogeochemistry, 12, 71-86. |
[82] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
PMID |
[83] | Kalff J, Downing J (2016). Limnology: Inland Water Ecosystems. 2nd ed. Bibliogenica LLC, Minnesota. |
[84] |
Karimi R, Folt CL (2006). Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecology Letters, 9, 1273-1283.
DOI URL |
[85] | Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin III FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011). TRY-A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[86] | Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122. |
[87] |
Killingbeck KT (1986). The terminological jungle revisited: making a case for use of the term resorption. Oikos, 46, 263-264.
DOI URL |
[88] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[89] |
Koojiman SALM (1995). The stoichiometry of animal energetics. Journal of Theoretical Biology, 177, 139-149.
DOI URL |
[90] |
Körner C (1989). The nutritional status of plants from high altitudes. Oecologia, 81, 379-391.
DOI PMID |
[91] | Lambers H, Chapin III FS, Pons TL (2008). Plant Physiological Ecology. 2nd ed. Springer, New York. |
[92] | Lambers H, Poorter H (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23, 187-261. |
[93] | Leyton L (1957). The mineral nutrient requirements of forest trees. The Ohio Journal of Science, 57, 337-345. |
[94] |
Li A, Guo DL, Wang ZQ, Liu HY (2010). Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Functional Ecology, 24, 224-232.
DOI URL |
[95] | Liebig JF (1843). Organic Chemistry in Its Application to Agriculture and Physiology. J. Owen, Cambridge, USA. |
[96] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159, 2251-2264.
DOI URL |
[97] |
Loladze I, Elser JJ (2011). The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14, 244-250.
DOI PMID |
[98] |
Luo Y, Peng QW, He MS, Zhang MX, Liu YY, Gong YM, Eziz A, Li KH, Han WX (2020). N, P and K stoichiometry and resorption efficiency of nine dominant shrub species in the deserts of Xinjiang, China. Ecological Research, 35, 625-637.
DOI URL |
[99] |
Luo Y, Peng QW, Li KH, Gong YM, Liu YY, Han WX (2021). Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China. Catena, 199, 105105. DOI: 10.1016/j.catena.2020.105100.
DOI URL |
[100] |
Ma YZ, Zhong QL, Jin BJ, Lu HD, Guo BQ, Zheng Y, Li M, Cheng DL (2015). Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chinese Journal of Plant Ecology, 39, 159-166.
DOI URL |
[ 马玉珠, 钟全林, 靳冰洁, 卢宏典, 郭炳桥, 郑媛, 李曼, 程栋梁 (2015). 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子. 植物生态学报, 39, 159-166.]
DOI |
|
[101] |
Makino W, Cotner JB, Sterner RW, Elser JJ (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130.
DOI URL |
[102] |
Marschner H, Kirkby EA, Engels C (1997). Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta, 110, 265-273.
DOI URL |
[103] |
Matzek V, Vitousek PM (2009). N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecology Letters, 12, 765-771.
DOI URL |
[104] |
Mayor JR, Wright SJ, Turner BL (2014). Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36-44.
DOI URL |
[105] |
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology, 85, 2390-2401.
DOI URL |
[106] |
McHargue JS, Roy WR (1932). Mineral and nitrogen content of the leaves of some forest trees at different times in the growing season. Botanical Gazette, 94, 381-393.
DOI URL |
[107] |
Meerts P (2002). Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science, 59, 713-722.
DOI URL |
[108] |
Miatto RC, Batalha MA (2016). Leaf chemistry of woody species in the Brazilian cerrado and seasonal forest: response to soil and taxonomy and effects on decomposition rates. Plant Ecology, 217, 1467-1479.
DOI URL |
[109] |
Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412.
DOI URL |
[110] |
Mohren GMJ, van den Burg J, Burger FW (1986). Phosphorus deficiency induced by nitrogen input in Douglas fir in the Netherlands. Plant and Soil, 95, 191-200.
DOI URL |
[111] |
Niklas KJ (2006). Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Annals of Botany, 97, 155-163.
PMID |
[112] |
Niklas KJ, Cobb ED (2005). N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 92, 1256-1263.
DOI PMID |
[113] |
Niklas KJ, Owens T, Reich PB, Cobb ED (2005). Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 8, 636-642.
DOI URL |
[114] |
Osone Y, Tateno M (2005). Nitrogen absorption by roots as a cause of interspecific variations in leaf nitrogen concentration and photosynthetic capacity. Functional Ecology, 19, 460-470.
DOI URL |
[115] |
Ostertag R (2010). Foliar nitrogen and phosphorus accumulation responses after fertilization: an example from nutrient-limited Hawaiian forests. Plant and Soil, 334, 85-98.
DOI URL |
[116] |
Parfitt RL, Ross DJ, Coomes DA, Richardson SJ, Smale MC, Dahlgren RA (2005). N and P in New Zealand soil chronosequences and relationships with foliar N and P. Biogeochemistry, 75, 305-328.
DOI URL |
[117] |
Pearsall WH (1932). Phytoplankton in the English lakes: II. The composition of the phytoplankton in relation to dissolved substances. Journal of Ecology, 20, 241-262.
DOI URL |
[118] |
Peng HY, Chen YH, Yan ZB, Han WX (2016). Stage-dependent stoichiometric homeostasis and responses of nutrient resorption in Amaranthus mangostanus to nitrogen and phosphorus addition. Scientific Reports, 6, 37219. DOI: 10.1038/srep37219.
DOI URL |
[119] |
Peñuelas J, Fernández-Martínez M, Ciais P, Jou D, Piao SL, Obersteiner M, Vicca S, Janssens IA, Sardans J (2019). The bioelements, the elementome, and the biogeochemical niche. Ecology, 100, e02652. DOI: 10.1002/ecy.2652.
DOI URL |
[120] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 10.1038/ncomms3934.
DOI PMID |
[121] |
Peñuelas J, Sardans J, Llusià J, Owen SM, Carnicer J, Giambelluca TW, Rezende EL, Waite M, Niinemets Ü (2010). Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 16, 2171-2185.
DOI URL |
[122] | Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008). Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Polish Journal of Ecology, 56, 613-622. |
[123] |
Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012). The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology, 18, 3-6.
DOI URL |
[124] | Redfield AC (1960). The biological control of chemical factors in the environment. American Scientist, 46, 205-221. |
[125] |
Reed SC, Townsend AR, Davidson EA, Cleveland CC (2012). Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 196, 173-180.
DOI URL |
[126] |
Reef R, Ball MC, Feller IC, Lovelock CE (2010). Relationships among RNA:DNA ratio, growth and elemental stoichiometry in mangrove trees. Functional Ecology, 24, 1064-1072.
DOI URL |
[127] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[128] |
Reich PB, Oleksyn J, Wright IJ (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160, 207-212.
DOI URL |
[129] |
Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010). Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 277, 877-883.
DOI URL |
[130] |
Reich PB, Walters MB, Ellsworth DS, Uhl C (1994). Photosynthesis-nitrogen relations in Amazonian tree species I. Patterns among species and communities. Oecologia, 97, 62-72.
DOI PMID |
[131] |
Reich PB, Walters MB, Kloeppel BD, Ellsworth DS (1995). Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia, 104, 24-30.
DOI PMID |
[132] | Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC. Environmental Science, 28, 2665-2673. |
[ 任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.] | |
[133] |
Rhee GY, Gotham IJ (1980). Optimum N:P ratios and coexistence of planktonic algae. Journal of Phycology, 16, 486-489.
DOI URL |
[134] | Richter JB (1792-1794). Der Stochiometrie oder Messkunst chemischer Elemente. [2020-12-05]. https://en.wikipedia.org/wiki/Jeremias_Benjamin_Richter. |
[135] |
Riemer DN, Toth SJ (1969). A survey of the chemical composition of Potamogeton and Myriophyllum in New Jersey. Weed Science, 17, 219-223.
DOI URL |
[136] |
Ryther JH, Dunstan WM (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171, 1008-1013.
PMID |
[137] |
Salpagarova FS, van Logtestijn RSP, Onipchenko VG, Akhmetzhanova AA, Agafonov VA (2014). Nitrogen content in fine roots and the structural and functional adaptations of alpine plants. Biology Bulletin Reviews, 4, 243-251.
DOI URL |
[138] |
Sardans J, Grau O, Chen HYH, Janssens IA, Ciais P, Piao SL, Peñuelas J (2017). Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology, 23, 3849-3856.
DOI PMID |
[139] |
Sardans J, Janssens IA, Alonso R, Veresoglou SD, Rillig MC, Sanders TGM, Carnicer J, Filella I, Farré-Armengol G, Peñuelas J (2015). Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Global Ecology and Biogeography, 24, 240-255.
DOI URL |
[140] |
Sardans J, Peñuelas J (2013). Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Global Ecology and Biogeography, 22, 494-507.
DOI URL |
[141] |
Sardans J, Peñuelas J (2014). Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum “biogeochemical niche”. Plant Ecology, 215, 441-455.
PMID |
[142] |
Sardans J, Rivas-Ubach A, Peñuelas J (2011). Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecology and Management, 262, 2024-2034.
DOI URL |
[143] |
Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47.
DOI URL |
[144] | Sardans J, Vallicrosa H, Zuccarini P, Farré-Armengol G, Fernández-Martínez M, Peguero G, Gargallo-Garriga A, Ciais P, Janssens IA, Obersteiner M, Richter A, Peñuelas J (2021). Empirical support for the biogeochemical niche hypothesis in forest trees. Nature Ecology & Evolution, 5, 184-194. |
[145] |
Schreeg LA, Santiago LS, Wright SJ, Turner BL (2014). Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology, 95, 2062-2068.
PMID |
[146] | Serex P (1916). The Plant Food Materials in the Leaves of Forest Trees. PhD dissertation, University of Massachusetts Amherst, Massachusetts. |
[147] |
Shaver GR, Melillo JM (1984). Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology, 65, 1491-1510.
DOI URL |
[148] |
Sherman F, Kuselman I (1999). Stoichiometry and chemical metrology: Karl Fischer reaction. Accreditation and Quality Assurance, 4, 230-234.
DOI URL |
[149] |
Sistla SA, Appling AP, Lewandowska AM, Taylor BN, Wolf AA (2015). Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124, 949-959.
DOI URL |
[150] |
Sistla SA, Schimel JP (2012). Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytologist, 196, 68-78.
DOI PMID |
[151] |
Smart MM (1980). Annual changes of nitrogen and phosphorus in two aquatic macrophytes (Nymphaea tuberosa and Ceratophyllum demersum). Hydrobiologia, 70, 31-35.
DOI URL |
[152] |
Smith ML, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL (2002). Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecological Applications, 12, 1286-1302.
DOI URL |
[153] |
Smith VH (1982). The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnology and Oceanography, 27, 1101-1111.
DOI URL |
[154] | Song J, Wan SQ, Piao SL, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia JY, Liu Q, Ru JY, Zhou ZX, Luo YQ, Guo DL, Langley JA, Zscheischler J, Dukes JS, Tang JW, Chen JQ, Hofmockel KS, Kueppers LM, Rustad L, Liu LL, Smith MD, Templer PH, Thomas RQ, Norby RJ, Phillips RP, Niu SL, Fatichi S, Wang YP, Shao PS, Han HY, Wang DD, Lei LJ, Wang JL, Li XN, Zhang Q, Li XM, Su FL, Liu B, Yang F, Ma GG, Li GY, Liu YC, Liu YZ, Yang ZL, Zhang KS, Miao Y, Hu MJ, Yan C, Zhang A, Zhong MM, Hui Y, Li Y, Zheng MM (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology & Evolution, 3, 1309-1320. |
[155] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Press Princeton University Press, Princeton. |
[156] | Su B, Han XG, Li LH, Huang JH, Bai YF, Qu CM (2000). Responses of δ13C value and water use efficiency of plant species to environmental gradients along the grassland zone of northeast China transect. Acta Phytoecologica Sinica, 24, 648-655. |
[ 苏波, 韩兴国, 李凌浩, 黄建辉, 白永飞, 渠春梅 (2000). 中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应. 植物生态学报, 24, 648-655.] | |
[157] |
Sun X, Kang H, Chen HYH, Björn B, Samuel BF, Liu C (2016). Biogeographic patterns of nutrient resorption from Quercus variabilis Blume leaves across China. Plant Biology, 18, 505-513.
DOI PMID |
[158] |
Szabadváry F translated by Oesper RE (1962). The birth of stoichiometry. Journal of Chemical Education, 39, 267-270.
DOI URL |
[159] | Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038. |
[160] |
Tao Y, Wu GL, Zhang YM, Zhou XB (2016). Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve, Xinjiang, China. Journal of Arid Land, 8, 935-947.
DOI URL |
[161] |
Tett P, Droop MR, Heaney SI (1985). The Redfield ratio and phytoplankton growth rate. Journal of the Marine Biological Association of the United Kingdom, 65, 487-504.
DOI URL |
[162] |
Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
DOI PMID |
[163] | Tian D (2017). Effects of nutrient fertilization on the the main processed of carbon cycling in subtropical forests. PhD dissertation, Peking University, Beijing. |
[ 田地 (2017). 养分添加对亚热带常绿阔叶林碳循环主要过程的影响. 博士学位论文, 北京大学, 北京.] | |
[164] |
Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY (2018a). Responses of forest ecosystems to increasing N deposition in China: a critical review. Environmental Pollution, 243, 75-86.
DOI URL |
[165] |
Tian D, Kattge J, Chen YH, Han WX, Luo YK, He JS, Hu HF, Tang ZY, Ma SH, Yan ZB, Lin QH, Schmid B, Fang JY (2019a). A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology, 100, e02812. DOI: 10.1002/ecy.2812.
DOI |
[166] |
Tian D, Li P, Fang WJ, Xu J, Luo YK, Yan ZB, Zhu B, Wang JJ, Xu XN, Fang JY (2017). Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 14, 3461-3469.
DOI URL |
[167] | Tian D, Yan ZB, Fang JY (2018). Plant stoichiometry: a research frontier in ecology. Chinese Journal of Nature, 40, 235-241. |
[ 田地, 严正兵, 方精云 (2018). 植物化学计量学: 一个方兴未艾的生态学研究方向. 自然杂志, 40, 235-241.] | |
[168] |
Tian D, Yan ZB, Ma SH, Ding YH, Luo YK, Chen YH, Du EZ, Han WX, Kovacs ED, Shen HH, Hu HF, Kattge J, Schmid B, Fang JY (2019b). Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China Life Sciences, 62, 1047-1057.
DOI URL |
[169] | Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY (2018b). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 723-739. |
[170] |
Urbina I, Sardans J, Grau O, Beierkuhnlein C, Jentsch A, Kreyling J, Peñuelas J (2017). Plant community composition affects the species biogeochemical niche. Ecosphere, 8, e01801. DOI: 10.1002/ecs2.1801.
DOI URL |
[171] |
van Andel J, Vera F (1977). Reproductive allocation in Senecio sylvaticus and Chamaenerion angustifolium in relation to mineral nutrition. Journal of Ecology, 65, 747-758.
DOI URL |
[172] |
van den Driessche R (1974). Prediction of mineral nutrient status of trees by foliar analysis. The Botanical Review, 40, 347-394.
DOI URL |
[173] |
Vayreda J, Martínez-Vilalta J, Vilà-Cabrera A (2016). El inventario ecológicoy forestal de Cataluña: una herramienta para la ecologíafunctional (The ecological forest inventory of Catalonia: a tool for functional ecology). Ecosistemas, 25, 70-79.
DOI URL |
[174] |
Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012). Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 82, 205-220.
DOI URL |
[175] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737-750. |
[176] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[177] |
Walker TW, Syers JK (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19.
DOI URL |
[178] |
Wang N, Gao J, Zhang SQ, Wang GX (2014). Variations in leaf and root stoichiometry of Nitraria tangutorum along aridity gradients in the Hexi Corridor, northwest China. Contemporary Problems of Ecology, 7, 308-314.
DOI URL |
[179] |
Weih M, Karlsson PS (2001). Growth response of Mountain birch to air and soil temperature: Is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytologist, 150, 147-155.
DOI URL |
[180] |
Williams RF (1955). Redistribution of mineral elements during development. Annual Review of Plant Physiology, 6, 25-42.
DOI URL |
[181] |
Woodwell GM, Whittaker RH, Houghton RA (1975). Nutrient concentrations in plants in the Brookhaven oak-pine forest. Ecology, 56, 318-332.
DOI URL |
[182] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[183] |
Wright RF, van Breemen N (1995). The NITREX project: an introduction. Forest Ecology and Management, 71, 1-5.
DOI URL |
[184] |
Wu TG, Dong Y, Yu MK, Wang GG, Zeng DH (2012). Leaf nitrogen and phosphorus stoichiometry of Quercus species across China. Forest Ecology and Management, 284, 116-123.
DOI URL |
[185] | Yan ZB (2017). Effects of Nitrogen and Phosphorus Addition on the Transgenerational Growth and Stoichiometry of Arabidopsis thaliana. PhD dissertation, Peking University, Beijing. |
[ 严正兵 (2017). 氮磷添加对不同世代拟南芥生长和化学计量的影响. 博士学位论文, 北京大学, 北京.] | |
[186] |
Yan ZB, Guan HY, Han WX, Han TS, Guo YL, Fang JY (2016a). Reproductive organ and young tissues show constrained elemental composition in Arabidopsis thaliana. Annals of Botany, 117, 431-439.
DOI URL |
[187] |
Yan ZB, Hou XH, Han WX, Ma SH, Shen HH, Guo YL, Fang JY (2019). Effects of nitrogen and phosphorus supply on stoichiometry of six elements in leaves of Arabidopsis thaliana. Annals of Botany, 123, 441-450.
DOI URL |
[188] |
Yan ZB, Kim N, Han WX, Guo YL, Han TS, Du EZ, Fang JY (2015). Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 388, 147-155.
DOI URL |
[189] |
Yan ZB, Li P, Chen YH, Han WX, Fang JY (2016b). Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific Reports, 6, 20099. DOI: 10.1038/srep20099.
DOI URL |
[190] |
Yan ZB, Han WX, Peñuelas J, Sardans J, Elser JJ, Du EZ, Reich PB, Fang JY (2016c). Phosphorus accumulates faster than nitrogen globally in freshwater ecosystems under anthropogenic impacts. Ecology Letters, 19, 1237-1246.
DOI URL |
[191] |
Yan ZB, Li XP, Tian D, Han WX, Hou XH, Shen HH, Guo YL, Fang JY (2018). Nutrient addition affects scaling relationship of leaf nitrogen to phosphorus in Arabidopsis thaliana. Functional Ecology, 32, 2689-2698.
DOI URL |
[192] |
Yan ZB, Tian D, Han WX, Tang ZY, Fang JY (2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany, 120, 937-942.
DOI URL |
[193] |
Yang X, Chi X, Ji C, Liu H, Ma W, Mohhammat A, Shi Z, Wang X, Yu S, Yue M, Tang Z (2016). Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil. Biogeosciences, 13, 4429-4438.
DOI URL |
[194] |
Yang XJ, Huang ZY, Zhang KL, Cornelissen JHC (2015). C:N:P stoichiometry of Artemisia species and close relatives across northern China: unravelling effects of climate, soil and taxonomy. Journal of Ecology, 103, 1020-1031.
DOI URL |
[195] | Yin XJ, Fang JY (1999). A preliminary study on chemical constitutents in Arctic snow. Acta Scientiae Circumstantiae, 19, 682-686. |
[ 殷兴军, 方精云 (1999). 加拿大北极地区雪化学成分的初步研究. 环境科学学报, 19, 682-686.] | |
[196] |
Yu Q, Chen QS, Elser JJ, He NP, Wu HH, Zhang GM, Wu JG, Bai YF, Han XG (2010). Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 13, 1390-1399.
DOI URL |
[197] |
Yu Q, Elser JJ, He NP, Wu HH, Chen QS, Zhang GM, Han XG (2011). Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1-10.
DOI URL |
[198] |
Yu Q, Wilcox K, Pierre KL, Knapp AK, Han XG, Smith MD (2015). Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96, 2328-2335.
DOI URL |
[199] |
Yu Q, Wu HH, He NP, Lü XT, Wang ZP, Elser JJ, Wu JG, Han XG (2012). Testing the growth-rate hypothesis in vascular plants with above- and below-ground biomass. PLOS ONE, 7, e32162. DOI: 10.1371/journal.pone.0032162.
DOI URL |
[200] |
Yuan ZY, Chen HYH (2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences, 29, 204-221.
DOI URL |
[201] |
Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications, 2, 344. DOI: 10.1038/ncomms1346.
DOI PMID |
[202] |
Yuan ZY, Chen HYH (2015). Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nature Climate Change, 5, 465-469.
DOI URL |
[203] | Yuan ZY, Li LH, Han XG (2004). Nitrogen use efficiency of competing individuals in a dense stand of an annual herb, Chenopodium album. Acta Phytoecologica Sinica, 28, 294-299. |
[ 袁志友, 李凌浩, 韩兴国 (2004). 藜个体在高密度种群中的氮素利用效率. 植物生态学报, 28, 294-299.]
DOI |
|
[204] |
Yuan ZY, Li LH, Han XG, Huang JH, Jiang GM, Wan SQ, Zhang WH, Chen QS (2005). Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments, 63, 191-202.
DOI URL |
[205] |
Yue K, Fornara DA, Yang WQ, Peng Y, Li ZJ, Wu FZ, Peng CH (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology, 23, 2450-2463.
DOI URL |
[206] | Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. |
[ 曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
DOI |
|
[207] |
Zhan SX, Wang Y, Zhu ZC, Li WH, Bai YF (2017). Nitrogen enrichment alters plant N:P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environmental and Experimental Botany, 134, 21-32.
DOI URL |
[208] |
Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP (2018). C:N:P stoichiometry in China’s forests: from organs to ecosystems. Functional Ecology, 32, 50-60.
DOI URL |
[209] |
Zhang JJ, Yan XB, Su FL, Li Z, Wang Y, Wei YN, Ji YG, Yang Y, Zhou XH, Guo H, Hu SJ (2018). Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Science of the Total Environment, 625, 440-448.
DOI URL |
[210] | Zhang LX, Bai YF, Han XG (2003). Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica, 45, 1009-1018. |
[211] |
Zhang MX, Luo Y, Yan ZB, Chen J, Eziz A, Li KH, Han WX (2019). Resorptions of 10 mineral elements in leaves of desert shrubs and their contrasting responses to aridity. Journal of Plant Ecology, 12, 358-366.
DOI URL |
[212] |
Zhang SB, Zhang JL, Slik JWF, Cao KF (2012). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecology and Biogeography, 21, 809-818.
DOI URL |
[213] |
Zhang SK, Huang JG, Rossi S, Ma QQ, Yu BY, Zhai LH, Luo DW, Guo XL, Fu SL, Zhang W (2017). Intra-annual dynamics of xylem growth in Pinus massoniana submitted to an experimental nitrogen addition in Central China. Tree Physiology, 37, 1546-1553.
DOI URL |
[214] |
Zhao N, Liu HM, Wang QF, Wang RL, Xu ZW, Jiao CC, Zhu JX, Yu GR, He NP (2018). Root elemental composition in Chinese forests: implications for biogeochemical niche differentiation. Functional Ecology, 32, 40-49.
DOI URL |
[215] |
Zhao N, Yu GR, He NP, Xia FC, Wang QF, Wang RL, Xu ZW, Jia YL (2016). Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. Journal of Plant Research, 129, 647-657.
DOI URL |
[216] |
Zhao N, Yu GR, Wang QF, Wang RL, Zhang JH, Liu CC, He NP (2020). Conservative allocation strategy of multiple nutrients among major plant organs: from species to community. Journal of Ecology, 108, 267-278.
DOI URL |
[217] | Zhou YJ, Wang MT, Wang ZY, Zhu GJ, Sun J, Zhong QL, Cheng DL (2020). Nutrient and ecological stoichiometry of different root order fine roots of 59 evergreen and deciduous tree species in subtropical zone. Acta Ecologica Sinica, 40, 4975-4984. |
[ 周永姣, 王满堂, 王钊颖, 朱国洁, 孙俊, 钟全林, 程栋梁 (2020). 亚热带59个常绿与落叶树种不同根序细根养分及化学计量特征. 生态学报, 40, 4975-4984.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn