Chin J Plan Ecolo ›› 2005, Vol. 29 ›› Issue (2): 311-317.doi: 10.17521/cjpe.2005.0040

• Research Articles • Previous Articles     Next Articles


PAN Qing-Min, BAI Yong-Fei, HAN Xing-Guo, and Yang Jing-Cheng   

  1. (Inner Mongolia Grassland Ecosystem Research Station, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China)
  • Online:2005-03-10 Published:2005-03-10


Leymus chinensis, a rhizomatous graminoid, is a dominant species in the grasslands of northern China. The characteristics of L. chinensis populations have been well documented in many research papers. Because of overgrazing, grasslands of northern China have become degraded since the 1980s. As a result, the density and biomass of L. chinensis populations have decreased significantly. Fertilization is a common technique for management of pastures in many countries; however, it is not widely used in the grasslands of China. Nitrogen is an important driver of community succession in grassland ecosystems, but the response of L. chinensis populations to nitrogen additions in typical steppe, a semiarid area of northern China, remains unclear. We conducted a sequential nitrogen addition experiment in a lightly degraded grassland plot that was fenced in 1999. Nitrogen (NH4NO3) was applied on July 5 for two years at application rates of: 0, 1.75, 5.25, 10.5, 17.5, and 28 g N·m-2,respectively. There were 9 replicate 5 m×5 m plots of each of the six treatments with each plot spaced 1 m apart. A completely randomized design was used for this experiment. Before the experiment, soil samples were collected and dry bulk density, pH, soil nitrogen and soil carbon were analyzed. After two years of nitrogen fertilization, we measured the density, height, aboveground biomass and belowground biomass of L. chinensis in each plot. The results showed that L. chinensis population characteristics were highly responsive to nitrogen additions. With an increase in nitrogen application rates, the density, height, aboveground biomass, belowground biomass and total biomass of L. chinensis increased significantly whereas the ratio of aboveground biomass/belowground biomass decreased. The allocation of biomass among plant parts was significantly affected by nitrogen additions: the proportion of biomass allocated to rhizomes decreased remarkably with increasing nitrogen rates whereas that allocated to leaves and roots increased significantly. The relative biomass and relative density of L. chinensis also increased with increasing nitrogen additions. In summary, adding nitrogen to lightly degraded grassland not only increased the density and biomass of L. chinensis population but changed the resource partitioning among plant parts as well.

No related articles found!
Full text



[1] Yuliang Chen;Feixiong Zhang;Guiyou Zhang*. Key Caspase-like Enzymes in Programmed Cell Death in Plants[J]. Chin Bull Bot, 2008, 25(05): 616 -623 .
[2] Zhu Zheng-ge;Pan Yan-yun;Zhang Zhao-duo and Liu Zhi-yi. The Extraction and Analysis of Mitochondriat DNA from Common Wheat[J]. Chin Bull Bot, 1995, 12(增刊): 42 -45 .
[3] Guan Jun-feng. Effect of Water Loss and Wilting of Harvested Spinach Leaves on Membrane Permeability and Lipid Perexidation[J]. Chin Bull Bot, 1992, 9(04): 38 -40 .
[4] Li Rong-hui;Zhang Shu-ying and Zhang Zhi-min. Embryo Culture of Viburnum lantana in Vitro[J]. Chin Bull Bot, 1989, 6(02): 104 -107 .
[5] Jian Ling-cheng. Germplasm Long-term Conservation Associated with Cryobiology in Plant[J]. Chin Bull Bot, 1988, 5(02): 65 -68 .
[6] Yongmei Wu, Xue Mao, Shujian Wang, Jinai Xue, Xiaoyun Jia, Jiping Wang, Zhirong Yang, Runzhi Li. Systematic Metabolic Engineering of ω-7 Fatty Acids in Plants[J]. Chin Bull Bot, 2011, 46(5): 575 -585 .
[7] Niu Zi-mian Fang Yao-ren. Study on the ABSCISIC Acid in Leaf of Spur-type Variety of Apple[J]. Chin Bull Bot, 1994, 11(02): 49 -50 .
[8] Hongmei Xi, Wenzhong Xu, Mi Ma. Advances in Biological Function of Arabidopsis Bifunctional Enzyme SAL1[J]. Chin Bull Bot, 2016, 51(3): 377 -386 .
[9] Dandan Qin, Songchao Xie, Gang Liu, Zhongfu Ni, Yingyin Yao, Qixin Sun, Huiru Peng. Isolation and Functional Characterization of Heat-stressresponsive Gene TaWTF1 from Wheat[J]. Chin Bull Bot, 2013, 48(1): 34 -41 .
[10] Shuhua Guo, Yongjiang Sun, Yanjie Niu, Ning Han, Heng Zhai, Yuanpeng Du. Effect of Alkaline Salt Stress on Photosystem Activity of Grape F1 Generation Hybrids[J]. Chin Bull Bot, 2018, 53(2): 196 -202 .