Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (2): 140-158.doi: 10.17521/cjpe.2015.0014

• Orginal Article • Previous Articles     Next Articles

Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains, China

HU Hai-Qing1, LUO Bi-Zhen1, WEI Shu-Jing1,2,3, WEI Shu-Wei4, SUN Long1, LUO Si-Sheng1, MA Hong-Bin1,*()   

  1. 1College of Forestry, Northeast Forestry University, Harbin 150040, China
    2College of Civil Engineering and Architecture, Guilin University of Technology, Guilin, Guangxi 541004, China
    3Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin, Guangxi 541004, China
    4College of Design Art, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2014-08-11 Accepted:2014-12-01 Online:2015-03-10 Published:2015-02-01
  • Contact: Hong-Bin MA E-mail:w150040@126.com
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

Forests are the world’s largest carbon (C) pool and sink among the terrestrial ecosystems. The amount of C in vegetation plays an important role in the global C cycle and balance. Our objectives were to assess C density and sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains, Heilongjiang Province, China and to understand the implication of the C sink to the regional C budget and future forest C management.

<i>Methods</i>

Field surveys were combined with laboratory analysis and allometric equations for obtaining data for a variety of variables. Seven typical forest types in the Xiaoxing’an Mountains were studied based on age groups and plant functional groups (trees, shrubs, herbaceous and litter), including Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, Picea-Abies, Betula platyphylla, Quercus mongolica, and Populus davidiana forests. Surveys were made on C density and annual carbon gains in trees, understory shrubs, herbaceous plants and litter for each forest type. The forest stands were classified into age groups for estimating the biomass and C density of the study area.

<i>Important findings</i>

The C density of the seven forest types in different age groups varied widely. The C density per unit area for young, middle-aged, near mature and mature forests of each forest type were as follows: 31.4, 74.7, 118.4 and 130.2 t·hm-2 in Pinus koraiensis; 28.9, 44.3, 74.2 and 113.3 t·hm-2 in L. gmelinii; 22.8, 52.0, 71.1 and 92.6 t·hm-2 in Pinus sylvestris var. mongolica; 23.1, 44.1, 77.6 and 130.3 t·hm-2 in Picea-Abies; 18.8, 35.3, 66.6 and 88.5 t·hm-2 in B. platyphylla; 25.0, 20.0, 47.4 and 68.9 t·hm-2 in Q. mongolica; and 19.8, 28.7, 43.7 and 76.6 t·hm-2 in Populus davidiana forests, respectively. These results show that biomass C stocks in the Xiao- xing’an Mountains play an important role in the C cycle and regional C balance. Different forest types and stands of different age groups varied greatly in C stocks. Because most growth in the seven forest types occurs in the young and middle-aged forest stands, these age groups are considered to have a great potential to increase the biomass C density. This significant C sink will be further enhanced in the Xiaoxing’an Mountains with the development and restoration designed to provide specific ecological services including C sequestration.

Key words: forest stand biomass, carbon density, carbon sequestration capacity, annual carbon sequestration, carbon sink management path, Xiaoxing’an Mountains

Table 1

Category of age groups of seven main forest types in the Xiaoxing’an Mountains"

林型 Forest type 龄组划分 Age group
幼龄林
Young forest (a)
中龄林
Middle forest (a)
近熟林
Premature forest (a)
成熟林
Mature forest (a)
红松林 Pinus koraiensis forest ≤60 61-100 101-120 120-160
兴安落叶松林 Larix gmelinii forest ≤40 41-80 81-100 101-140
樟子松林 Pinus sylvestris var. mongolica forest ≤40 41-80 81-100 101-140
云冷杉林 Picea-Abies forest ≤60 61-100 101-120 120-160
白桦林 Betula platyphylla forest ≤30 31-50 51-60 61-80
蒙古栎林 Quercus mongolica forest ≤40 41-60 61-80 81-120
山杨林 Populus davidiana forest ≤10 11-15 16-20 21-30

Table 2

Values for fitting biomass regression equation Y = a (D2H)b and coefficient of determination for seven forest types in the Xiaoxing’an Mountains"

林型
Forest type
组分
Component
a b 决定系数
Coefficient of determination (R2)
样本数
No. of samples (N)
红松林
Pinus koraiensis forest
干 Trunk 0.046 65 0.902 37 0.97 30
枝 Branch 0.031 23 0.612 48 0.99 30
叶 Leaf 0.012 35 0.643 47 0.95 30
皮 Bark 0.029 57 0.564 89 0.90 30
根 Root 0.009 25 0.739 65 0.96 30
兴安落叶松林
Larix gmelinii forest
干 Trunk 0.013 02 1.021 54 0.99 30
枝 Branch 0.001 29 1.039 98 0.92 30
叶 Leaf 0.011 12 0.637 45 0.95 30
皮 Bark 0.031 27 0.615 24 0.97 30
根 Root 0.041 25 0.684 51 0.99 30
樟子松林
Pinus sylvestris var. mongolica forest
干 Trunk 0.051 41 0.862 14 0.94 30
枝 Branch 0.014 63 0.724 58 0.97 30
叶 Leaf 0.021 24 0.524 78 0.91 30
皮 Bark 0.057 81 0.442 87 0.92 30
根 Root 0.026 31 0.686 56 0.95 30
云冷杉林
Picea-Abies forest
干 Trunk 0.322 91 0.679 19 0.97 30
枝 Branch 0.022 57 0.635 64 0.90 30
叶 Leaf 0.004 18 0.821 35 0.92 30
皮 Bark 0.024 21 0.572 15 0.94 30
根 Root 0.011 54 0.812 34 0.94 30
白桦林
Betula platyphylla forest
干 Trunk 0.011 75 1.102 52 0.97 30
枝 Branch 0.010 24 0.805 47 0.97 30
叶 Leaf 0.013 47 0.649 47 0.90 30
皮 Bark 0.024 69 0.631 01 0.92 30
根 Root 0.048 87 0.632 46 0.96 30
蒙古栎林
Quercus mongolica forest
干 Trunk 0.011 97 1.092 48 0.91 30
枝 Branch 0.008 45 0.894 18 0.90 30
叶 Leaf 0.006 24 0.828 54 0.91 30
皮 Bark 0.008 72 0.817 59 0.92 30
根 Root 0.010 54 0.835 38 0.93 30
山杨林
Populus davidiana forest
干 Trunk 0.235 14 0.853 24 0.93 30
枝 Branch 0.021 54 0.862 15 0.98 30
叶 Leaf 0.009 79 0.856 14 0.96 30
皮 Bark 0.052 23 0.632 17 0.97 30
根 Root 0.125 87 0.558 74 0.98 30

Table 3

Survey statistics on basic data for seven forest types in the Xiaoxing’an Mountains (mean ± SD)"

林型 Forest type 龄组 Age group 平均林龄
Average forest age (a)
平均胸径
Average diameter at breast height (cm)
平均树高
Average tree height (m)
红松林
Pinus koraiensis forest
幼龄林 Young forest 24.23 ± 2.21 11.94 ± 1.34 9.95 ± 0.97
中龄林 Middle-aged forest 68.54 ± 7.24 17.66 ± 2.45 16.54 ± 3.74
近熟林 Near mature forest 109.19 ± 3.26 20.48 ± 2.18 21.62 ± 5.86
成熟林 Mature forest 123.50 ± 12.34 21.31 ± 5.67 22.46 ± 4.59
兴安落叶松林
Larix gmelinii forest
幼龄林 Young forest 21.66 ± 1.78 9.46 ± 1.15 9.44 ± 0.91
中龄林 Middle-aged forest 63.78 ± 10.51 13.51 ± 2.30 12.13 ± 3.48
近熟林 Near mature forest 84.50 ± 2.96 17.12 ± 6.47 17.59 ± 3.17
成熟林 Mature forest 135.47 ± 7.28 21.04 ± 6.19 20.27 ± 5.89
樟子松林
Pinus sylvestris var. mongolica forest
幼龄林 Young forest 25.48 ± 3.12 9.11 ± 1.62 8.83 ± 1.45
中龄林 Middle-aged forest 62.53 ± 8.84 16.77 ± 3.57 15.38 ± 2.84
近熟林 Near mature forest 89.18 ± 4.16 18.91 ± 3.66 17.01 ± 7.11
成熟林 Mature forest 122.45 ± 10.47 21.31 ± 6.41 19.44 ± 6.97
云冷杉林
Picea-Abies forest
幼龄林 Young forest 29.60 ± 4.15 7.26 ± 1.01 9.77 ± 1.22
中龄林 Middle-aged forest 68.00 ± 6.74 11.89 ± 1.34 13.03 ± 1.42
近熟林 Near mature forest 111.97 ± 3.48 16.57 ± 3.59 16.02 ± 3.47
成熟林 Mature forest 135.46 ± 15.42 21.54 ± 2.49 22.75 ± 5.64
白桦林
Betula platyphylla forest
幼龄林 Young forest 19.73 ± 3.15 9.55 ± 1.32 10.31 ± 1.46
中龄林 Middle-aged forest 42.93 ± 5.85 11.63 ± 2.64 13.59 ± 3.69
近熟林 Near mature forest 56.27 ± 1.42 14.99 ± 4.59 15.03 ± 3.67
成熟林 Mature forest 74.81 ± 3.00 16.29 ± 5.67 18.04 ± 6.68
蒙古栎林
Quercus mongolica forest
幼龄林 Young forest 23.87 ± 4.25 7.53 ± 0.98 5.87 ± 0.89
中龄林 Middle-aged forest 48.00 ± 3.33 11.30 ± 1.28 7.15 ± 0.78
近熟林 Near mature forest 66.59 ± 4.49 14.72 ± 1.94 12.38 ± 2.00
成熟林 Mature forest 101.42 ± 10.29 17.03 ± 2.37 13.43 ± 2.79
山杨林
Populus davidiana forest
幼龄林 Young forest 8.64 ± 0.54 5.47 ± 0.24 5.56 ± 0.51
中龄林 Middle-aged forest 13.75 ± 0.48 6.79 ± 0.84 7.84 ± 0.36
近熟林 Near mature forest 19.53 ± 0.89 8.73 ± 0.74 9.25 ± 0.49
成熟林 Mature forest 27.61 ± 1.12 11.39 ± 1.37 10.76 ± 0.87

Table 4

Biomass for different stand age groups of seven forest types in Xiaoxing’an Mountains (mean ± SD, t·hm-2)"

林型
Forest type
龄组
Age group
乔木层 Tree 灌木层
Shrub layer
草本层
Herbaceous layer
凋落物层
Litter layer
林分生物量
Stand biomass
干 Trunk 枝 Branch 叶 Leaf 皮 Bark 根 Root 小计 Total
红松林
Pinus koraiensis forest
幼龄林 Young forest 32.58 ± 3.27 2.66 ± 0.24 1.32 ± 0.21 1.78 ± 0.45 1.98 ± 0.42 40.33 ± 3.59 10.57 ± 2.16 3.24 ± 0.68 8.99 ± 2.03 63.13 ± 4.26
中龄林 Middle-aged forest 104.45 ± 11.49 5.87 ± 1.03 3.02 ± 0.57 3.70 ± 0.89 5.15 ± 0.67 122.19 ± 13.45 12.34 ± 1.85 4.57 ± 0.94 9.54 ± 1.18 148.64 ± 15.68
近熟林 Near mature forest 173.78 ± 22.37 8.29 ± 1.55 4.35 ± 1.34 5.09 ± 1.32 7.82 ± 1.23 199.32 ± 26.34 15.24 ± 1.97 5.21 ± 0.86 10.55 ± 1.69 230.32 ± 28.56
成熟林 Mature forest 193.23 ± 19.57 8.91 ± 1.33 4.69 ± 0.76 5.44 ± 1.42 8.53 ± 1.67 220.79 ± 21.45 8.24 ± 1.59 5.57 ± 0.74 18.57 ± 2.87 253.17 ± 22.43
兴安落叶松林
Larix gmelinii forest
幼龄林 Young forest 12.72 ± 1.69 1.43 ± 0.17 0.82 ± 0.37 1.98 ± 0.34 4.16 ± 0.86 21.09 ± 2.26 18.66 ± 4.19 7.59 ± 1.47 10.21 ± 2.46 57.55 ± 2.85
中龄林 Middle-aged forest 34.03 ± 4.58 3.89 ± 0.78 1.51 ± 0.56 3.57 ± 0.86 8.04 ± 1.27 51.04 ± 5.26 9.58 ± 1.51 11.28 ± 1.39 14.59 ± 3.45 86.49 ± 6.97
近熟林 Near mature forest 80.70 ± 16.74 9.36 ± 1.67 2.59 ± 0.34 6.01 ± 1.26 14.34 ± 2.19 112.99 ± 18.75 4.24 ± 0.24 8.84 ± 1.75 15.37 ± 3.31 141.44 ± 20.17
成熟林 Mature forest 142.14 ± 25.67 16.66 ± 3.49 3.68 ± 0.81 8.46 ± 1.78 20.95 ± 2.87 191.88 ± 25.79 2.27 ± 0.15 3.21 ± 0.67 16.19 ± 3.60 213.55 ± 27.59
樟子松林
Pinus sylvestris var. mongolica forest
幼龄林 Young forest 15.17 ± 2.10 1.74 ± 0.24 0.68 ± 0.18 1.07 ± 0.24 2.44 ± 0.37 21.10 ± 2.34 10.21 ± 1.51 12.67 ± 2.46 3.27 ± 0.59 47.25 ± 2.85
中龄林 Middle-aged forest 70.11 ± 16.98 6.31 ± 0.97 1.72 ± 0.34 2.36 ± 0.57 8.25 ± 1.28 88.75 ± 17.12 4.37 ± 0.64 7.97 ± 1.10 5.16 ± 1.00 106.25 ± 19.45
近熟林 Near mature forest 94.07 ± 13.56 8.07 ± 1.74 2.06 ± 0.38 2.74 ± 0.45 10.43 ± 2.19 117.37 ± 14.62 7.67 ± 1.27 7.78 ± 1.19 10.27 ± 1.59 143.09 ± 16.51
成熟林 Mature forest 129.70 ± 19.99 10.58 ± 2.18 2.50 ± 0.51 3.23 ± 0.67 13.46 ± 2.26 159.47 ± 20.16 6.63 ± 1.67 6.97 ± 0.98 11.94 ± 2.45 185.01 ± 23.34
云冷杉林
Picea-Abies forest
幼龄林 Young forest 22.43 ± 1.57 1.19 ± 0.28 0.71 ± 0.24 0.86 ± 0.10 1.84 ± 0.26 27.04 ± 1.89 6.57 ± 1.66 0.41 ± 0.08 11.54 ± 2.16 45.56 ± 2.01
中龄林 Middle-aged forest 53.31 ± 9.85 2.69 ± 0.31 2.01 ± 0.39 1.79 ± 0.38 5.18 ± 1.01 64.98 ± 10.85 5.17 ± 1.28 0.23 ± 0.03 15.57 ± 2.85 85.95 ± 12.32
近熟林 Near mature forest 96.29 ± 10.23 4.67 ± 0.86 4.11 ± 0.85 2.94 ± 0.96 10.52 ± 2.27 118.52 ± 11.32 9.47 ± 2.94 2.54 ± 0.34 18.37 ± 2.64 148.9 ± 11.25
成熟林 Mature forest 174.50 ± 30.42 8.15 ± 1.37 8.43 ± 0.64 4.85 ± 1.06 21.41 ± 3.48 217.34 ± 31.28 3.66 ± 0.31 2.37 ± 0.45 24.27 ± 3.88 247.64 ± 2.37
白桦林
Betula platyphylla forest
幼龄林 Young forest 22.29 ± 1.46 2.54 ± 0.89 1.15 ± 0.17 1.86 ± 0.57 3.71 ± 0.46 31.55 ± 2.00 2.45 ± 0.41 5.38 ± 0.76 1.69 ± 0.21 41.07 ± 2.37
中龄林 Middle-aged forest 46.67 ± 7.56 4.36 ± 0.97 1.78 ± 0.29 2.83 ± 0.45 5.67 ± 1.03 61.32 ± 7.99 4.67 ± 1.21 6.87 ± 1.27 3.47 ± 0.79 76.33 ± 9.45
近熟林 Near mature forest 91.27 ± 11.39 7.12 ± 1.46 2.64 ± 0.64 4.16 ± 0.67 8.33 ± 2.18 113.52 ± 12.56 10.11 ± 2.16 9.57 ± 1.61 9.29 ± 1.64 142.49 ± 14.00
成熟林 Mature forest 134.09 ± 16.96 9.43 ± 2.01 3.31 ± 0.54 5.18 ± 1.56 10.39 ± 0.29 162.40 ± 17.85 12.61 ± 2.57 2.14 ± 0.53 10.57 ± 1.57 187.72 ± 19.56
蒙古栎林
Quercus mongolica forest
幼龄林 Young forest 6.82 ± 0.75 1.52 ± 0.34 0.77 ± 0.13 1.01 ± 0.18 1.35 ± 0.27 11.46 ± 1.03 8.17 ± 1.89 19.33 ± 3.59 15.78 ± 3.59 54.74 ± 11.52
中龄林 Middle-aged forest 20.53 ± 2.14 3.75 ± 0.84 1.77 ± 0.49 2.30 ± 0.41 3.13 ± 0.26 31.48 ± 2.75 7.64 ± 1.67 0.58 ± 0.09 2.67 ± 0.44 42.37 ± 5.16
近熟林 Near mature forest 66.63 ± 16.48 9.83 ± 1.29 4.32 ± 1.04 5.54 ± 0.86 7.71 ± 1.08 94.04 ± 17.59 2.54 ± 0.49 0.47 ± 0.06 1.33 ± 0.22 98.38 ± 18.23
成熟林 Mature forest 100.15 ± 17.56 13.72 ± 2.18 5.89 ± 1.15 7.52 ± 1.34 10.53 ± 2.19 137.80 ± 19.75 1.37 ± 0.35 0.51 ± 0.05 1.64 ± 0.34 141.32 ± 24.56
山杨林
Populus davidiana forest
幼龄林 Young forest 18.47 ± 1.75 1.77 ± 0.19 0.78 ± 0.13 1.32 ± 0.25 2.19 ± 0.52 24.54 ± 1.86 10.21 ± 2.57 8.28 ± 2.11 1.14 ± 0.12 44.17 ± 2.31
中龄林 Middle-aged forest 35.81 ± 5.14 3.46 ± 0.61 1.52 ± 0.27 2.16 ± 0.37 3.38 ± 0.49 46.33 ± 6.15 8.46 ± 1.84 5.37 ± 1.35 3.47 ± 0.68 63.63 ± 6.87
近熟林 Near mature forest 63.32 ± 8.79 6.15 ± 0.91 2.69 ± 0.61 3.30 ± 0.86 4.91 ± 0.84 80.36 ± 9.42 4.96 ± 0.78 6.57 ± 1.64 4.75 ± 0.93 96.64 ± 10.34
成熟林 Mature forest 113.41 ± 16.34 11.08 ± 1.93 4.82 ± 0.49 5.08 ± 1.24 7.20 ± 1.42 141.59 ± 17.52 9.34 ± 2.47 8.39 ± 2.02 6.34 ± 1.24 165.66 ± 19.46

Table 5

Biomass carbon content in different stand age groups of seven forest types in Xiaoxing’an Mountains (mean ± SD, %)"

林型
Forest type
龄组
Age group
乔木层 Tree layer 灌木层Shrub layer 草本层Herbaceous layer 凋落物层
Litter layer
干 Trunk 枝 Branch 叶 Leaf 皮 Bark 根 Root
红松林
pinus
koraiensis forest
幼龄林 Young forest 50.17 ± 0.83 50.06 ± 1.25 48.57 ± 1.22 49.76 ± 1.08 50.01 ± 0.80 50.05 ± 1.27 46.27 ± 1.07 49.01 ± 1.29
中龄林 Middle-aged forest 50.59 ± 1.10 50.57 ± 1.06 48.98 ± 1.44 50.27 ± 0.99 50.14 ± 0.97 50.24 ± 1.28 45.11 ± 1.02 49.47 ± 1.07
近熟林 Near mature forest 51.75 ± 1.12 50.87 ± 1.08 50.24 ± 0.99 51.59 ± 1.13 50.47 ± 1.03 50.96 ± 1.05 46.25 ± 1.08 50.45 ± 0.97
成熟林 Mature forest 51.87 ± 1.01 50.74 ± 1.04 50.49 ± 0.94 51.71 ± 0.89 50.57 ± 1.03 50.87 ± 0.83 46.14 ± 1.07 49.63 ± 1.19
兴安落叶松林Larix gmelinii forest 幼龄林 Young forest 52.45 ± 1.00 51.78 ± 1.02 48.76 ± 1.13 50.89 ± 1.25 50.67 ± 1.21 49.87 ± 1.15 46.18 ± 0.94 50.33 ± 1.41
中龄林 Middle-aged forest 53.62 ± 1.22 51.98 ± 1.03 48.58 ± 1.01 50.99 ± 1.01 51.44 ± 0.98 49.99 ± 0.75 46.49 ± 0.90 49.98 ± 1.12
近熟林 Near mature forest 53.79 ± 0.86 52.11 ± 0.81 49.27 ± 1.05 51.17 ± 0.93 51.47 ± 1.13 50.76 ± 0.97 47.27 ± 1.23 50.76 ± 0.93
成熟林 Mature forest 53.81 ± 0.61 52.47 ± 0.88 49.96 ± 0.76 51.37 ± 1.07 52.00 ± 0.82 50.48 ± 0.92 46.49 ± 0.99 51.54 ± 1.03
樟子松林
Pinus sylvestris var. mongolica forest
幼龄林 Young forest 49.18 ± 1.06 48.68 ± 0.89 48.11 ± 1.06 49.11 ± 0.91 49.87 ± 0.89 50.10 ± 0.74 46.00 ± 0.97 45.59 ± 0.91
中龄林 Middle-aged forest 49.25 ± 0.75 49.38 ± 0.71 48.15 ± 0.45 49.47 ± 0.55 49.28 ± 0.34 50.12 ± 0.68 46.85 ± 0.96 45.57 ± 0.71
近熟林 Near mature forest 50.37 ± 0.82 49.87 ± 0.71 47.58 ± 0.78 49.00 ± 0.85 49.67 ± 0.83 49.19 ± 0.74 46.75 ± 0.89 46.79 ± 0.88
成熟林 Mature forest 50.79 ± 0.85 49.24 ± 0.73 48.57 ± 0.87 49.18 ± 0.69 49.29 ± 0.77 49.00 ± 1.20 47.57 ± 0.74 46.47 ± 0.88
云冷杉林
Picea-
Abies forest
幼龄林 Young forest 51.37 ± 0.90 51.44 ± 0.60 49.49 ± 1.06 50.70 ± 0.93 51.21 ± 0.87 50.04 ± 0.83 46.17 ± 0.73 50.17 ± 0.76
中龄林 Middle-aged forest 51.74 ± 0.91 51.63 ± 0.98 49.75 ± 0.96 50.78 ± 0.93 51.75 ± 0.95 50.25 ± 0.72 47.57 ± 0.71 50.57 ± 0.90
近熟林 Near mature forest 52.49 ± 0.94 51.55 ± 0.92 50.00 ± 0.75 51.87 ± 1.01 52.59 ± 0.92 51.24 ± 0.72 46.49 ± 0.81 51.49 ± 0.90
成熟林 Mature forest 53.19 ± 1.18 51.89 ± 0.96 50.76 ± 1.04 51.15 ± 0.71 52.74 ± 0.81 51.25 ± 1.03 45.47 ± 0.64 50.47 ± 0.98
白桦林
Betula platyphylla forest
幼龄林 Young forest 46.54 ± 0.95 45.49 ± 0.49 43.87 ± 0.58 44.17 ± 0.57 45.27 ± 0.64 46.67 ± 0.71 44.32 ± 0.74 44.17 ± 0.48
中龄林 Middle-aged forest 46.87 ± 0.90 45.74 ± 0.69 44.03 ± 0.51 45.87 ± 0.89 45.63 ± 0.62 46.78 ± 0.54 44.63 ± 0.96 44.75 ± 0.58
近熟林 Near mature forest 47.38 ± 0.83 45.97 ± 0.86 44.75 ± 0.78 45.33 ± 0.84 45.14 ± 0.91 46.38 ± 0.66 44.99 ± 0.75 45.87 ± 0.63
成熟林 Mature forest 47.57 ± 0.88 46.48 ± 0.95 44.87 ± 0.64 44.98 ± 0.78 46.13 ± 0.80 47.17 ± 0.81 44.45 ± 1.09 45.94 ± 0.72
蒙古栎林
Quercus mongolica forest
幼龄林 Young forest 47.14 ± 1.07 46.64 ± 0.58 45.47 ± 0.75 46.17 ± 0.79 46.56 ± 0.93 47.11 ± 0.68 45.19 ± 0.59 44.48 ± 0.71
中龄林 Middle-aged forest 47.87 ± 0.60 46.75 ± 0.65 46.97 ± 0.67 46.29 ± 0.82 46.74 ± 0.81 47.47 ± 1.02 44.78 ± 0.79 44.27 ± 0.86
近熟林 Near mature forest 48.79 ± 1.05 47.45 ± 0.38 46.57 ± 0.63 47.74 ± 0.45 46.87 ± 0.63 47.51 ± 0.85 45.75 ± 0.50 45.07 ± 0.48
成熟林 Mature forest 49.28 ± 0.87 47.67 ± 0.66 46.78 ± 0.81 47.34 ± 0.36 47.78 ± 0.85 47.59 ± 1.34 44.89 ± 0.63 45.48 ± 0.34
山杨林
Populus davidiana
forest
幼龄林 Young forest 44.71 ± 0.75 45.22 ± 0.50 44.03 ± 0.51 44.67 ± 1.02 45.15 ± 0.54 45.48 ± 0.46 44.04 ± 0.42 44.15 ± 0.72
中龄林 Middle-aged forest 45.14 ± 0.77 45.26 ± 0.83 44.11 ± 0.49 45.17 ± 0.51 45.75 ± 0.49 45.87 ± 0.60 44.24 ± 0.79 44.34 ± 0.67
近熟林 Near mature forest 45.17 ± 0.73 45.79 ± 0.59 44.26 ± 0.61 45.85 ± 0.61 45.15 ± 0.89 45.47 ± 0.51 45.06 ± 0.73 44.27 ± 0.79
成熟林 Mature forest 46.54 ± 0.83 46.27 ± 0.55 45.09 ± 0.58 45.89 ± 0.70 45.24 ± 0.57 45.63 ± 0.44 44.85 ± 0.85 44.97 ± 0.55

Table 6

Forest stand biomass carbon density in different stand age groups of seven forest types in Xiaoxing’an Mountains (mean ± SD, t·hm-2)"

林型
Forest type
龄组
Age
乔木层Tree layer 灌木层
Shrub layer
草本层
Herbaceous layer
凋落物层
Litter layer
林分碳密度
Forest stand carbon density
干 Trunk 枝 Branch 叶 Leaf 皮 Bark 根 Root 小计 Total
红松林
Pinus koraiensis forest
幼龄林 Young forest 16.4 ± 3.59 1.3 ± 0.27 0.6 ± 0.23 0.9 ± 0.47 1.0 ± 0.45 20.2 ± 3.63 5.3 ± 2.19 1.5 ± 0.70 4.4 ± 2.07 31.4 ± 4.31
中龄林 Middle-aged forest 52.8 ± 11.89 3.0 ± 1.11 1.5 ± 0.58 1.9 ± 0.91 2.6 ± 0.70 61.7 ± 13.94 6.2 ± 1.90 2.1 ± 0.96 4.7 ± 1.21 74.7 ± 15.75
近熟林 Near mature forest 89.9 ± 23.48 4.2 ± 1.64 2.2 ± 1.38 2.6 ± 1.36 4.0 ± 1.27 102.9 ± 26.58 7.8 ± 2.02 2.4 ± 0.89 5.3 ± 1.75 118.4 ± 29.15
成熟林 Mature forest 100.2 ± 20.26 4.5 ± 1.40 2.4 ± 0.80 2.8 ± 1.47 4.3 ± 1.71 114.2 ± 21.76 4.2 ± 1.71 2.6 ± 0.77 9.2 ± 2.89 130.2 ± 23.10
兴安落叶松林
Larix gmelinii forest
幼龄林 Young forest 6.7 ± 1.86 0.7 ± 0.19 0.4 ± 0.38 1.0 ± 0.35 2.1 ± 0.89 10.9 ± 2.54 9.3 ± 4.22 3.5 ± 1.49 5.1 ± 2.49 28.9 ± 2.98
中龄林 Middle-aged forest 18.3 ± 4.67 2.0 ± 0.85 0.7 ± 0.59 1.8 ± 0.89 4.1 ± 1.30 27.0 ± 5.51 4.8 ± 1.56 5.2 ± 1.42 7.3 ± 3.48 44.3 ± 7.51
近熟林 Near mature forest 43.4 ± 17.36 4.9 ± 1.74 1.3 ± 0.36 3.1 ± 1.30 7.4 ± 2.25 60.0 ± 18.87 2.2 ± 0.29 4.2 ± 1.77 7.8 ± 3.36 74.2 ± 20.69
成熟林 Mature forest 76.5 ± 27.19 8.7 ± 3.89 1.8 ± 0.85 4.4 ± 1.81 10.9 ± 2.92 102.3 ± 25.97 1.2 ± 0.17 1.5 ± 0.69 8.3 ± 3.65 113.3 ± 27.86
樟子松林
Pinus sylvestris var. mongolica forest
幼龄林 Young forest 7.5 ± 2.56 0.9 ± 0.27 0.3 ± 0.20 0.5 ± 0.28 1.2 ± 0.41 10.4 ± 2.57 5.1 ± 1.53 5.8 ± 2.48 1.5 ± 0.61 22.8 ± 3.15
中龄林 Middle-aged forest 34.5 ± 17.69 3.1 ± 1.08 0.8 ± 0.39 1.2 ± 0.60 4.1 ± 1.32 43.7 ± 17.36 2.2 ± 0.68 3.7 ± 1.12 2.4 ± 1.03 52.0 ± 20.37
近熟林 Near mature forest 47.4 ± 14.68 4.0 ± 1.87 1.0 ± 0.41 1.3 ± 0.48 5.2 ± 2.22 58.9 ± 14.86 3.8 ± 1.29 3.6 ± 1.21 4.8 ± 1.62 71.1 ± 16.85
成熟林 Mature forest 65.9 ± 20.45 5.2 ± 2.58 1.2 ± 0.55 1.6 ± 0.71 6.6 ± 2.29 80.5 ± 20.37 3.3 ± 1.70 3.3 ± 1.00 5.6 ± 2.48 92.6 ± 23.89
云冷杉林
Picea-Abies forest
幼龄林 Young forest 11.5 ± 1.63 0.6 ± 0.36 0.4 ± 0.28 0.4 ± 0.12 0.9 ± 0.28 13.9 ± 1.94 3.3 ± 1.69 0.2 ± 0.12 5.8 ± 2.18 23.1 ± 2.67
中龄林 Middle-aged forest 27.6 ± 9.99 1.4 ± 0.36 1.0 ± 0.42 0.9 ± 0.41 2.7 ± 1.06 33.6 ± 10.96 2.6 ± 1.31 0.1 ± 0.06 7.9 ± 2.91 44.1 ± 12.86
近熟林 Near mature forest 50.5 ± 10.54 2.4 ± 0.91 2.1 ± 0.88 1.5 ± 0.98 5.5 ± 2.32 62.1 ± 11.51 4.9 ± 2.97 1.2 ± 0.37 9.5 ± 2.67 77.6 ± 11.97
成熟林 Mature forest 92.8 ± 30.87 4.2 ± 1.42 4.3 ± 0.67 2.5 ± 1.09 11.3 ± 3.52 115.1 ± 31.49 1.9 ± 0.36 1.1 ± 0.48 12.3 ± 3.98 130.3 ± 33.56
白桦林
Betula platyphylla forest
幼龄林 Young forest 10.4 ± 1.58 1.2 ± 0.92 0.5 ± 0.20 0.8 ± 0.60 1.7 ± 0.48 14.5 ± 2.33 1.1 ± 0.44 2.4 ± 0.79 0.8 ± 0.23 18.8 ± 2.88
中龄林 Middle-aged forest 21.9 ± 7.88 2.0 ± 0.99 0.8 ± 0.32 1.3 ± 0.47 2.6 ± 1.05 28.5 ± 8.49 2.2 ± 1.27 3.1 ± 1.30 1.6 ± 0.83 35.3 ± 10.47
近熟林 Near mature forest 43.2 ± 11.54 3.3 ± 1.50 1.2 ± 0.66 1.9 ± 0.69 3.8 ± 2.19 53.3 ± 12.87 4.7 ± 2.18 4.3 ± 1.64 4.3 ± 1.69 66.6 ± 14.85
成熟林 Mature forest 63.8 ± 17.25 4.4 ± 2.06 1.5 ± 0.57 2.3 ± 1.58 4.8 ± 0.31 76.8 ± 18.16 6.0 ± 2.59 1.0 ± 0.58 4.9 ± 1.59 88.5 ± 20.37
蒙古栎林
Quercus mongolica forest
幼龄林 Young forest 3.2 ± 0.84 0.7 ± 0.40 0.4 ± 0.16 0.5 ± 0.20 0.6 ± 0.30 5.4 ± 1.34 3.9 ± 1.92 8.7 ± 3.62 7.0 ± 3.62 25.0 ± 12.69
中龄林 Middle-aged forest 9.8 ± 2.19 1.8 ± 0.88 0.8 ± 0.52 1.1 ± 0.44 1.5 ± 0.27 14.9 ± 2.87 3.6 ± 1.69 0.3 ± 0.10 1.2 ± 0.47 20.0 ± 6.16
近熟林 Near mature forest 32.5 ± 16.87 4.7 ± 1.31 2.0 ± 1.07 2.6 ± 0.88 3.6 ± 1.11 45.4 ± 17.76 1.2 ± 0.52 0.2 ± 0.07 0.6 ± 0.25 47.5 ± 19.42
成熟林 Mature forest 49.4 ± 17.94 6.5 ± 2.22 2.8 ± 1.18 3.6 ± 1.36 5.0 ± 2.24 67.2 ± 19.86 0.7 ± 0.38 0.2 ± 0.07 0.8 ± 0.38 68.9 ± 25.26
山杨林
Populus davidiana forest
幼龄林 Young forest 8.3 ± 1.76 0.8 ± 0.20 0.3 ± 0.16 0.6 ± 0.26 1.0 ± 0.55 11.0 ± 1.99 4.6 ± 2.59 3.7 ± 2.14 0.5 ± 0.15 19.8 ± 2.58
中龄林 Middle-aged forest 16.2 ± 5.19 1.6 ± 0.67 0.7 ± 0.30 1.0 ± 0.38 1.6 ± 0.52 20.9 ± 6.58 3.9 ± 1.87 2.4 ± 1.37 1.5 ± 0.70 28.7 ± 7.19
近熟林 Near mature forest 28.7 ± 9.42 2.8 ± 0.94 1.2 ± 0.63 1.5 ± 0.91 2.2 ± 0.88 36.3 ± 9.64 2.3 ± 0.82 3.0 ± 1.68 2.1 ± 0.95 43.7 ± 11.75
成熟林Mature forest 52.8 ± 16.83 5.1 ± 1.98 2.2 ± 0.51 2.3 ± 1.25 3.3 ± 1.46 65.7 ± 17.87 4.3 ± 2.51 3.8 ± 2.05 2.9 ± 1.26 76.6 ± 20.45

Fig. 1

Annual biomass carbon sequestration in different stand age groups of seven forest types in the Xiaoxing’an Mountains (t·hm-2). A, Pinus koraiensis forests; B, Larix gmelinii forest; C, Pinus sylvestris var. mongolica forest; D, Picea-Abies forest; E, Betula platyphylla forest; F, Quercus mongolica forest ; G, Populus davidiana forest."

1 Adams JM, Piovesan G (2002). Uncertainties in the role of land vegetation in the carbon cycle.Chemosphere, 49, 805-819.
2 Amiro BD, MacPherson JI, Desjardins RL, Chen JM, Liu J (2003). Post-fire carbon dioxide fluxes in the western Canadian boreal forest: Evidence from towers, aircraft and remote sensing.Agricultural and Forest Meteorology, 115, 91-107.
3 Blackstone NW (1987). Allometry and relative growth: Pattern and process in evolutionary studies.Systematic Zoology, 36, 76-78.
4 Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems.Science, 263, 185-190.
5 Dixon RK, Krankina ON (1993). Forest fires in Russia: Carbon dioxide emissions to the atmosphere.Canadian Journal of Forest Research, 23, 700-705.
6 Fang JY, Chen AP (2001). Dynamic forest biomass carbon pools in China and their significance.Acta Botanica Sinica, 43, 967-973.(in Chinese with English abstract)
[方精云, 陈安平 (2001). 中国森林植被碳库的动态变化及其意义. 植物学报, 43, 967-973.]
7 Fang JY, Liu GH, Xu SL (1996). Biomass and net production of forest vegetation in China.Acta Ecologica Sinica, 16, 497-508.(in Chinese with English abstract)
[方精云, 刘国华, 徐嵩龄 (1996). 我国森林植被的生物量和净生产量. 生态学报, 16, 497-508.]
8 FAO (Food and Agriculture Organization of the United Nations) (2010). Global Forest Resources Assessment 2010. Viale delle Terme di Caracalla, FAO, Rome.
9 Foley JA (1995). An equilibrium model of the terrestrial carbon budget.Tellus, 47, 310-319.
10 González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004). The effect of fire on soil organic matter: A review.Environment International, 30, 855-870.
11 Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2010). Climate Change 2001: The Scientific Basis Cambridge University Press, New York The Scientific Basis. Cambridge University Press, New York.
12 Houghton RA (2005). Aboveground forest biomass and the global carbon balance.Global Change Biology, 11, 945-958.
13 Hu HQ, Luo BZ, Wei SJ, Wei SW, Sun L, Wen ZM (2013a). Estimation of carbonaceous gases emission from forest fires in Xiao Xing’an Mountains of Northeast China in 1953-2011.Chinese Journal of Applied Ecology, 24, 3065-3076.(in Chinese with English abstract)
[胡海清, 罗碧珍, 魏书精, 魏书威, 孙龙, 文正敏 (2013a). 1953- 2011年小兴安岭森林火灾含碳气体排放的估算. 应用生态学报, 24, 3065-3076.]
14 Hu HQ, Wei SJ, Sun L (2012a). Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010.Chinese Journal of Plant Ecology, 36, 629-644.(in Chinese with English abstract)
[胡海清, 魏书精, 孙龙 (2012a). 1965-2010年大兴安岭森林火灾碳排放的估算研究, 植物生态学报, 36, 629-644.]
15 Hu HQ, Wei SJ, Sun L (2012b). Estimating carbon emissions from forest fires during 2001 to 2010 in Daxing’anling Mountain.Acta Ecologica Sinica, 32, 5373-5386.(in Chinese with English abstract)
[胡海清, 魏书精, 孙龙 (2012b). 大兴安岭2001—2010年森林火灾碳排放的计量估算. 生态学报, 32, 5373-5386.]
16 Hu HQ, Wei SJ, Jin S, Sun L (2012c). Measurement model of carbon emission from forest fire: A review.Chinese Journal of Applied Ecology, 23, 1423-1434.(in Chinese with English abstract)
[胡海清, 魏书精, 金森, 孙龙 (2012c). 森林火灾碳排放计量模型研究进展. 应用生态学报, 23, 1423-1434.]
17 Hu HQ, Wei SJ, Sun L (2012d). Estimating carbon emissions from forest fires in 2010 from huzhong of Daxing’anling Mountain.Scientia Silvae Sinicae, 48(10), 109-119.(in Chinese with English abstract)
[胡海清, 魏书精, 孙龙 (2012d). 大兴安岭呼中区2010年森林火灾碳排放的计量估算, 林业科学, 48(10), 109-119.]
18 Hu HQ, Wei SJ, Sun L, Wang MY (2013b). Interaction among climate change, fire disturbance and ecosystem carbon cycle.Arid Land Geography, 36, 57-75.(in Chinese with English abstract)
[胡海清, 魏书精, 孙龙, 王明玉 (2013b). 气候变化、火干扰与生态系统碳循环. 干旱区地理, 36, 57-75.]
19 Huang CD, Zhang J, Yang WQ, Tang X, Zhao AJ (2008). Dynamics on forest carbon stock in Sichuan Province and Chongqing City.Acta Ecologica Sinica, 28, 966-975.(in Chinese with English abstract)
[黄从德, 张健, 杨万勤, 唐宵, 赵安玖 (2008). 四川省及重庆地区森林植被碳储量动态. 生态学报, 28, 966-975.]
20 Huxley JS (1932). Problems of Relative Growth. Dial Press, New York. 1-9.
21 IPCC (Intergovernmental Panel on Climate Change) (2000). Land use, land-use change, and forestry. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ eds. A Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
22 IPCC (Intergovernmental Panel on Climate Change) (2006). Agriculture, forestry and other land use. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K eds. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Kanagawa, Japan.
23 Isaev AS, Korovin GN, Bartalev SA, Ershov DV, Janetos A, Kasischke ES, Shugart HH, French NHF, Orlick BE, Murphy TL (2002). Using remote sensing to assess Russian forest fire carbon emissions.Climatic Change, 55, 235-249.
24 Jiao Y, Hu HQ (2005). Carbon storage and its dynamics of forest vegetations in Heilongjiang Province. Chinese Journal of Applied Ecology, 16, 2248-2252.(in Chinese with English abstract)
[焦燕, 胡海清 (2005). 黑龙江省森林植被碳储量及其动态变化. 应用生态学报, 16, 2248-2252.]
25 Jiang YL, Zhou GS (2001). Carbon equilibrium in Larix gmelinii forest and impact of global change on it.Chinese Journal of Applied Ecology, 12, 481-484.(in Chinese with English abstract)
[蒋延玲, 周广胜 (2001). 兴安落叶松林碳平衡和全球变化影响研究. 应用生态学报, 12, 481-484.]
26 Keeling CD, Chin JFS, Whorf TP (1996). Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146-149.
27 King AW, Emanuel WR, Wullschleger SD, Post WM (1995). In search of the missing carbon sink: A model of terrestrial biospheric response to land-use change and atmospheric CO2.Tellus, 47, 501-519.
28 Kolchugina TP, Vinson TS (1993). Comparison of two methods to assess the carbon budget of forest biomes in the Former Soviet Union.Water, Air, & Soil Pollution, 70, 207-221.
29 Kurz WA, Webb TM, McNamee PJ, Apps MJ (1993). The carbon budget of the Canadian forest sector: Phase I.Simulation, 61, 139-144.
30 Li B, Fang X, Xiang WH, Tian DL (2013). Carbon storage, carbon density, and carbon sequestration potential of cunninghamia lanceolata plantations in Hunan Province.Scientia Silvae Sinicae, 49(3), 25-32.(in Chinese with English abstract)
[李斌, 方晰, 项文化, 田大伦 (2013). 湖南省杉木林植被碳贮量、碳密度及碳吸存潜力. 林业科学, 49(3), 25-32.]
31 Li HK, Lei YC, Zeng WS (2011). Forest carbon storage in China estimated using forestry inventory data.Scientia Silvae Sinicae, 47(7), 7-12.(in Chinese with English abstract)
[李海奎, 雷渊才, 曾伟生 (2011). 基于森林清查资料的中国森林植被碳储量. 林业科学, 47(7), 7-12.]
32 Liu GH, Fu BJ, Fang JY (2000). Carbon dynamics of Chinese forests and its contribution to global carbon balance.Acta Ecologica Sinica, 20, 733-740.(in Chinese with English abstract)
[刘国华, 傅伯杰, 方精云 (2000). 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 20, 733-740.]
33 Liu YC, Yu GR, Wang QF, Zhang YJ (2012). Huge carbon sequestration potential in global forests.Journal of Resources and Ecology, 3, 193-201.
34 Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999). Fire effects on belowground sustainability: A review and synthesis.Forest Ecology and Management, 122, 51-71.
35 Schlesinger WH (1990). Evidence from chronosequence studies for a low carbon-storage potential of soils.Nature, 348, 232-234.
36 Sun L, Lu JY, Wei SJ, Wu C, Hu HQ (2013). Research progress of forest fuel load estimation methods.Forest Engineering, 29(2), 26-31, 37.(in Chinese with English abstract)
[孙龙, 鲁佳宇, 魏书精, 武超, 胡海清 (2013). 森林可燃物载量估测方法研究进展. 森林工程, 29(2), 26-31, 37.]
37 Sun YJ, Zhang J, Han AH, Wang XJ, Wang XJ (2007). Biomass and carbon pool of Larix gmelinii young and middle age forest in Xing’an Mountains Inner Mongolia.Acta Ecologica Sinica, 27, 1756-1762.(in Chinese with English abstract)
[孙玉军, 张俊, 韩爱惠, 王雪军, 王新杰 (2007). 兴安落叶松(Larix gmelinii)幼中龄林的生物量与碳汇功能. 生态学报, 27, 1756-1762.]
38 Tumer DP, Koepper GJ, Harmon ME, Lee JJ (1995). A carbon budget for forests of the conterminous United States.Ecological Applications, 5, 421-436.
39 Vloedbeld M, Leemans R (1993). Quantifying feedback processes in the response of the terrestrial carbon cycle to global change: The modeling approach of image-2.Water, Air, & Soil Pollution, 70, 615-628.
40 Wang HY, Wang WJ, Qiu L, Su DX, An J, Zheng GY, Zu YG (2012). Differences in biomass, litter layer mass and SOC storage changing with tree growth in Larix gmelinii plantations in Northeast China.Acta Ecologica Sinica, 32, 833-843.(in Chinese with English abstract)
[王洪岩, 王文杰, 邱岭, 苏冬雪, 安静, 郑广宇, 祖元刚 (2012). 兴安落叶松林生物量、地表枯落物量及土壤有机碳储量随林分生长的变化差异. 生态学报, 32, 833-843.]
41 Wang SQ, Zhou CH, Luo CW (1999). Studying carbon storage spatial distribution of terrestrial natural vegetation in China.Progress in Geography, 18, 238-244.(in Chinese with English abstract)
[王绍强, 周成虎, 罗承文 (1999). 中国陆地自然植被碳量空间分布特征探讨. 地理科学进展, 18, 238-244.]
42 Wang XK, Feng ZW (2000). The potential to sequester atmospheric carbon through forest ecosystems in China.Chinese Journal of Ecology, 19(4), 72-74.(in Chinese with English abstract)
[王效科, 冯宗炜 (2000). 中国森林生态系统中植物固定大气碳的潜力. 生态学杂志, 19(4), 72-74.]
43 Wang XK, Feng ZW, Ouyang ZY (2001). Vegetation carbon storage and density of forest ecosystems in China.Chinese Journal of Applied Ecology, 12, 13-16.(in Chinese with English abstract)
[王效科, 冯宗炜, 欧阳志云 (2001). 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 12, 13-16.]
44 Wei SJ (2013). Quantitative Evaluation Methods of Carbon Emissions from Forest Fires in Heilongjiang Province, China. PhD dissertation, Northeast Forestry University, Harbin. 1-10.(in Chinese with English abstract)
[魏书精 (2013). 黑龙江省森林火灾碳排放定量评价方法研究. 博士学位论文, 东北林业大学, 哈尔滨. 1-10.]
45 Wei WJ, Wang B, Li SN, Ma XQ, Sun JJ, Chen FJ (2007). Carbon storage and density of tree stratum in forests in Jiangxi Province.Acta Agriculturae Universitatis Jiangxiensis, 29, 767-772.(in Chinese with English abstract)
[魏文俊, 王兵, 李少宁, 马向前, 孙建军, 陈方建 (2007). 江西省森林植被乔木层碳储量与碳密度研究. 江西农业大学学报, 29, 767-772.]
46 World Meteorological Organization (2011). WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2011. World Meteorological Organization, Geneva. 1-4.
47 Xi TT, Li SL (2006). Analysis of forestry carbon mitigation potential in Heilongjiang Province.Problems of Forestry Economics, 26, 519-522, 526.(in Chinese with English abstract)
[郗婷婷, 李顺龙 (2006). 黑龙江省森林碳汇潜力分析. 林业经济问题, 26, 519-522, 526.]
48 Xu XL, Cao MK, Li KR (2007). Temporal-spatial dynamics of carbon storage of forest vegetation in China.Progress in Geography, 26(6), 1-10.(in Chinese with English abstract)
[徐新良, 曹明奎, 李克让 (2007). 中国森林生态系统植被碳储量时空动态变化研究. 地理科学进展, 26(6), 1-10.]
49 Ye JS, She GH (2010). Forest carbon dynamics in Guangdong Province. Journal of Nanjing Forestry University (Natural Science Edition), 34(4), 7-12.(in Chinese with English abstract)
[叶金盛, 佘光辉 (2010). 广东省森林植被碳储量动态研究. 南京林业大学学报(自然科学版), 34(4), 7-12.]
50 Zhang MY, Luo WJ, Liu HY, Zhang CH, Yue YM, Wang KL (2013). Spatial distribution and change of vegetation carbon in Northwest Guangxi, China on the basis of vegetation inventory data.Acta Ecologica Sinica, 33, 5067-5077.(in Chinese with English abstract)
[张明阳, 罗为检, 刘会玉, 章春华, 岳跃民, 王克林 (2013). 基于林业清查资料的桂西北植被碳空间分布及其变化特征. 生态学报, 33, 5067-5077.]
51 Zhao M, Zhou GS (2004). Carbon storage of forest vegetation and its relationship with climatic factors.Scientia Geographica Sinica, 24, 50-54.(in Chinese with English abstract)
[赵敏, 周广胜 (2004). 中国森林生态系统的植物碳贮量及其影响因子分析. 地理科学, 24, 50-54.]
52 Zhou GY, Liu SG, Li ZA, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006). Old-growth forests can accumulate carbon in soils.Science, 314, 1417.
53 Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522.(in Chinese with English abstract)
[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.]
[1] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[2] YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(3): 327-336.
[3] YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plan Ecolo, 2018, 42(3): 288-296.
[4] Xi LI, Fang WANG, Yang CAO, Shou-Zhang PENG, Yun-Ming CHEN. Soil carbon storage and its determinants in the forests of Shaanxi Province, China [J]. Chin J Plan Ecolo, 2017, 41(9): 953-963.
[5] Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plan Ecolo, 2017, 41(1): 53-61.
[6] Lu-Cun YANG, Chang-Bin LI, Yi NING, Xiu-Qing NIE, Wen-Hua XU, Guo-Ying ZHOU. Carbon density and its spatial distribution in the Potentilla fruticosa dominated alpine shrub in Qinghai, China [J]. Chin J Plan Ecolo, 2017, 41(1): 62-70.
[7] Yin LI, Guo-Ke CHEN, Dun-Mei LIN, Bin CHEN, Lei-Ming GAO, Xing JIAN, Bo YANG, Wu-Bing XU, Hong-Xin SU, Jiang-Shan LAI, Xi-Hua WANG, Hai-Bo YANG, Ke-Ping MA. Carbon storage and its distribution of forest ecosystems in Zhejiang Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 354-363.
[8] Wen-Qiang XU, Liao YANG, Xi CHEN, Ya-Qi GAO, Lei WANG. Carbon storage, spatial distribution and the influence factors in Tianshan forests [J]. Chin J Plan Ecolo, 2016, 40(4): 364-373.
[9] Yu-He JI, Ke GUO, Jian NI, Xiao-Niu XU, Zhi-Gao WANG, Shu-Dong WANG. Current forest carbon stocks and carbon sequestration potential in Anhui Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 395-404.
[10] Xiao-Qiong HUANG, Cun-Lin XIN, Zhong-Min HU, Gang-Tie LI, Tong-Hui ZHANG, Wei ZHAO, Hao YANG, Lei-Min ZHANG, Qun GUO, Yong-Jie YUE, Run-Hong Gao, Zhi-Yan WU, Zhi-Gang YAN, Xin-Ping LIU, Yu-Qiang LI, Sheng-Gong LI. Carbon storage of the forests and its spatial pattern in Nei Mongol, China [J]. Chin J Plan Ecolo, 2016, 40(4): 327-340.
[11] Huai YANG, Yi-De LI, Hai REN, Tu-Shou LUO, Ren-Li CHEN, Wen-Jie LIU, De-Xiang CHEN, Han XU, Zhang ZHOU, Ming-Xian LIN, Qiu YANG, Hai-Rong YAO, Guo-Yi ZHOU. Soil organic carbon density and influencing factors in tropical virgin forests of Hainan Island, China [J]. Chin J Plan Ecolo, 2016, 40(4): 292-303.
[12] Jin-Hong GUAN, Sheng DU, Ji-Min CHENG, Chun-Rong WU, Guo-Qing LI, Lei DENG, Jian-Guo ZHANG, Qiu-Yue HE, Wei-Yu SHI. Current stocks and rate of sequestration of forest carbon in Gansu Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 304-317.
[13] Chun-Nan FAN, Shi-Jie HAN, Zhong-Ling GUO, Jin-Ping ZHENG, Yan CHENG. Present status and rate of carbon sequestration of forest vegetation in Jilin Province, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(4): 341-353.
[14] Wei ZHAO, Zhong-Min HU, Hao YANG, Lei-Ming ZHANG, Qun GUO, Zhi-Yan WU, De-Yi LIU, Sheng-Gong LI. Carbon density characteristics of sparse Ulmus pumila forest and Populus simonii plantation in Onqin Daga Sandy Land and their relationships with stand age [J]. Chin J Plan Ecolo, 2016, 40(4): 318-326.
[15] HUANG Zong-Sheng,YU Li-Fei,FU Yu-Hong,YANG Rui. Characteristics of carbon sequestration during natural restoration of Maolan karst forest ecosystems [J]. Chin J Plan Ecolo, 2015, 39(6): 554-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Xiao-hua Cai Zhu-ping. Effects of S-07, PP333 and Triadimefon on Peroxidaseisoentyme of Rice Seedling[J]. Chin Bull Bot, 1995, 12(专辑3): 109 -112 .
[2] . [J]. Chin Bull Bot, 1994, 11(专辑): 13 .
[3] Xiaomin Yu;Xingguo Lan;Yuhua Li. The Ub/26S Proteasome Pathway and Self-incompatible Responses in Flowering Plants[J]. Chin Bull Bot, 2006, 23(2): 197 -206 .
[4] Dai Yun-ling and Xu Chun-hui. Advances in Research on Protein Components of Oxygen-evolving Complex[J]. Chin Bull Bot, 1992, 9(03): 1 -16 .
[5] . Advances in Research on Photosynthesis of Submerged Macrophytes[J]. Chin Bull Bot, 2005, 22(增刊): 128 -138 .
[6] Shaobin Zhang;Guoqin Liu. Research Advances in Plant Actin Isoforms[J]. Chin Bull Bot, 2006, 23(3): 242 -248 .
[7] BU Ren-Cang, CHANG Yu, HU Yuan-Man, LI Xiu-Zhen, HE Hong-Shi. SENSITIVITY OF CONIFEROUS TREES TO ENVIRONMENTAL FACTORS AT DIFFERENT SCALES IN THE SMALL XING’AN MOUNTAINS, CHINA[J]. Chin J Plan Ecolo, 2008, 32(1): 80 -87 .
[8] MA Li-Hui, WU Pu-Te, and WANG You-Ke. Spatial pattern of root systems of dense jujube plantation with jujube age in the semiarid loess hilly region of China[J]. Chin J Plan Ecolo, 2012, 36(4): 292 -301 .
[9] PAN Yu-De, Melillo J. M., Kicklighter D. W., XIAO Xiang-Ming, McGuire A. D.. Modeling Structural and Functional Responses of Terrestria Ecosystems in China to Changes in Climate and Atmospheric CO2[J]. Chin J Plan Ecolo, 2001, 25(2): 175 -189 .
[10] . [J]. Chin J Plan Ecolo, 2013, 37(12): 1172 .