Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (6): 593-603.doi: 10.17521/cjpe.2015.0057

• Orginal Article • Previous Articles     Next Articles

Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow

REN Qing-Ji1, LI Hong-Lin2,*(), BU Hai-Yan2   

  1. 1Grassland Workstation of Tibetan Autonomous Prefecture of Gannan, Hezuo, Gansu 747000, China
    2State Key Laboratory of Grassland Agro- ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China
  • Received:2015-03-03 Accepted:2015-04-14 Online:2015-07-02 Published:2015-06-01
  • Contact: Hong-Lin LI E-mail:lihl2009@lzu.edu.cn
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

Trait-based approaches are often widely used in ecological research to predict or explain the complex ecological processes at both individual and ecosystem levels. Leaf function with morphological and physiological traits can play important roles in plan growth, survival, reproduction in natural environments. The aim of this study is 1) to determine the differences of leaf traits between both the species and the functional groups in a swamp meadow; 2) to explore the relationship between different leaf morphological traits and physiological traits.

<i>Methods</i>

Gas exchanges of 51 species (in 14 families) were measured on six fully expand health leaves (from different individual plants) using a portable photosynthesis system in the field during the peak of growing season. The leaf morphological traits was measured based on 6 single leaves form different individuals, include the net photosynthesis rate (Pn), transpiration rate (Tr), specific leaf area (SLA), relative leaf water content (LWC), leaf area (LA) and the water use efficiency (WUE = Pn/Tr).

<i>Important findings</i>

Result showed that there were significant interspecific differences in the investigated traits as described in above methods. Among the traits, the LWC (coefficient of variation, CV = 0.11) was ranged from 58.12% to 81.83%, 0.0088-0.0278 m2·g-1 for the SLA (CV = 0.27), and 0.51 cm2 to 100.90 cm2 for the LA (CV = 1.73), while the range of 4.25-19.23 μmol CO2·m-2·s-1, 2.89-12.81 mmol H2O·m-2·s-1 and 0.56-3.76 μmol CO2·mmol-1 H2O for Pn (CV = 0.33), Tr (CV = 0.33), and WUE (CV = 0.36), respectively. There were also significant differences between the functional groups (sedge, grass and forbs) for these traits. Forbs have larger LA and higher LWC than sedge and grass; Grass have higher WUE and SLA than those of others; while Sedge have higher Pn. Our result also showed there were high correlation between Pn and SLA, WUE and LWC, indicated the strong impacts of leaf morphology on the gas exchange physiology. The SLA was also related to gas exchange traits both among species and functional groups, while the LWC was only among species and LA among functional groups. In conclusion, significant differences in these functional traits among species suggest that these species could vary in resource use and growth form in their community ecosystem. Also the difference among the functional groups in these traits indicates the resource use of the community would be largely influenced by its species composition, especially the differences of functional groups. The research finding will help to better understanding of the ecosystem function in alpine swamp meadow with related management implication.

Key words: alpine swamp meadow, functional traits, leaf morphology, gas exchange, water use efficiency, functional group

Table 1

Relative leaf water content (LWC), specific leaf area (SLA), leaf area (LA), net photosynthesis rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) of the 51 species from the alpine meadow swamp in Maqu County, and their coefficient of variation (CV) among the species (mean ± SE)"

物种
Species

Family
LWC (%)
CV = 0.11
SLA (m2·g-1)
CV = 0.27
LA (cm2)
CV = 1.73
Pn
(μmol CO2·m-2·s-1)
CV = 0.33
Tr
(mmol H2
m-2·s-1)
CV = 0.33
WUE
(μmol CO2·
mmol-1 H2O)
CV = 0.36
甘肃薹草 莎草科 60.50 ± 6.21 0.016 4 ± 0.000 5 8.9 ± 1.3 10.09 ± 0.30 6.21 ± 0.13 1.62 ± 0.03
Carex kansuensis Cyperaceae
乌拉薹草 莎草科 61.09 ± 4.39 0.013 0 ± 0.000 6 14.7 ± 1.3 9.05 ± 0.30 4.39 ± 0.13 2.07 ± 0.08
Carex meyeriana Cyperaceae
华扁穗草 莎草科 64.12 ± 8.56 0.012 4 ± 0.000 4 4.8 ± 0.8 14.24 ± 0.20 8.56 ± 0.25 1.68 ± 0.05
Blysmus sinocompressus Cyperaceae
红棕薹草 莎草科 59.29 ± 7.96 0.019 6 ± 0.000 8 2.0 ± 0.3 6.82 ± 0.78 7.96 ± 1.03 0.91 ± 0.05
Carex przewalskii Cyperaceae
线叶嵩草 莎草科 58.12 ± 8.60 0.008 8 ± 0.000 7 2.3 ± 0.6 16.07 ± 0.08 8.60 ± 0.24 1.88 ± 0.05
Kobresia capilifolia Cyperaceae
疏花剪股颖 禾本科 59.33 ± 2.89 0.021 6 ± 0.001 2 1.9 ± 1.1 5.03 ± 0.25 2.89 ± 0.11 1.77 ± 0.12
Agrostis perlaxa Gramineae
甘青剪股颖 禾本科 60.80 ± 6.86 0.026 6 ± 0.001 0 2.3 ± 0.7 8.43 ± 0.36 6.86 ± 1.02 1.39 ± 0.19
Agrostis hugoniana Gramineae
羊茅 禾本科 58.27 ± 6.61 0.015 1 ± 0.000 5 0.7 ± 0.0 10.29 ± 0.51 6.61 ± 0.44 1.56 ± 0.03
Festuca ovina Gramineae
发草 禾本科 60.36 ± 3.00 0.013 9 ± 0.000 3 1.3 ± 0.3 11.05 ± 0.32 3.00 ± 0.18 3.76 ± 0.20
Deschampsia caespitosa Gramineae
恰草 禾本科 63.27 ± 4.68 0.019 5 ± 0.001 2 2.8 ± 0.4 9.46 ± 1.25 4.68 ± 0.74 2.23 ± 0.16
Koeleria macrantha Gramineae
垂穗披碱草 禾本科 62.63 ± 2.92 0.019 8 ± 0.001 1 3.0 ± 0.7 5.85 ± 1.11 2.92 ± 0.67 2.20 ± 0.10
Elymus nutans Gramineae
胡氏剪股颖 禾本科 60.71 ± 3.70 0.022 3 ± 0.000 3 1.0 ± 0.4 6.63 ± 0.37 3.70 ± 0.40 1.90 ± 0.15
Agrostis hookeriana Gramineae
草地早熟禾 禾本科 58.75 ± 3.52 0.024 9 ± 0.000 6 1.5 ± 0.6 5.53 ± 0.61 3.52 ± 0.56 1.71 ± 0.16
Poa pratensis Gramineae
中华羊茅 禾本科 59.58 ± 3.39 0.020 1 ± 0.000 3 1.8 ± 1.0 6.06 ± 0.35 3.39 ± 0.10 1.78 ± 0.05
Festuca sinensis Gramineae
密花早熟禾 禾本科 60.45 ± 6.26 0.018 6 ± 0.000 5 1.7 ± 0.5 7.19 ± 0.57 6.26 ± 0.62 1.16 ± 0.03
Poa pachyantha Gramineae
赖草 禾本科 63.99 ± 5.66 0.017 3 ± 0.000 6 14.5 ± 2.4 9.12 ± 0.61 5.66 ± 0.64 1.71 ± 0.10
Leymus secalinus Gramineae
唐古特岩黄芪 豆科 71.66 ± 6.39 0.015 5 ± 0.000 2 10.5 ± 3.0 8.75 ± 0.06 6.39 ± 0.30 1.40 ± 0.07
Hedysarum tanguticum Leguminosae
高山豆 豆科 75.94 ± 5.48 0.019 7 ± 0.000 5 4.4 ± 1.3 10.65 ± 0.48 10.48 ± 0.53 1.07 ± 0.09
Tibetia himalaica Leguminosae
甘肃棘豆 豆科 71.05 ± 8.77 0.016 8 ± 0.000 6 6.8 ± 1.4 12.28 ± 0.56 8.77 ± 0.44 1.41 ± 0.03
Oxytropis kansuensis Leguminosae
披针叶黄华 豆科 71.84 ± 5.94 0.014 3 ± 0.000 4 8.5 ± 1.4 13.95 ± 0.41 5.94 ± 0.54 2.50 ± 0.15
Thermopsis lanceolata Leguminosae
黄帚橐吾 菊科 78.80 ± 7.10 0.013 8 ± 0.000 9 58.7 ± 6.4 13.40 ± 0.07 7.10 ± 0.64 1.99 ± 0.17
Ligularia virgaurea Compositae
侧颈垂头菊 菊科 80.71 ± 5.81 0.010 7 ± 0.000 5 100.0 ± 5.9 13.17 ± 0.52 5.81 ± 0.19 2.27 ± 0.06
Cremanthodium pleurocaule Compositae
长毛风毛菊 菊科 80.11 ± 8.67 0.010 7 ± 0.000 2 20.5 ± 6.1 13.92 ± 0.22 10.67 ± 0.61 1.36 ± 0.05
Saussurea hieracioides Compositae
缘毛紫菀 菊科 80.16 ± 7.38 0.016 4 ± 0.000 3 3.7 ± 0.9 9.66 ± 0.38 11.38 ± 0.12 0.85 ± 0.04
Aster souliei Compositae
星状风毛菊 菊科 81.10 ± 8.44 0.011 2 ± 0.000 5 5.4 ± 0.8 8.08 ± 0.48 8.44 ± 0.58 0.96 ± 0.02
Saussurea stella Compositae
禾叶垂头菊 菊科 76.07 ± 6.37 0.008 9 ± 0.000 4 4.0 ± 0.7 13.88 ± 0.37 6.37 ± 0.23 2.21 ± 0.13
Cremanthodium lineare Compositae
玲玲香清 菊科 72.33 ± 4.56 0.021 4 ± 0.000 2 2.6 ± 0.6 5.96 ± 0.23 4.56 ± 0.26 1.34 ± 0.06
Anaphalis hancockii Compositae
香芸火绒草 菊科 71.69 ± 7.64 0.021 6 ± 0.000 7 1.3 ± 0.3 10.61 ± 0.12 7.64 ± 0.63 1.45 ± 0.11
Leontopodium haplophylloides Compositae
小花草玉梅 毛茛科 72.97 ± 6.54 0.014 9 ± 0.000 5 52.2 ± 2.5 9.99 ± 0.50 6.54 ± 0.25 1.53 ± 0.07
Anemone rivularis var. flore-minore Ranunculaceae
条叶银莲花 毛茛科 76.81 ± 8.14 0.015 4 ± 0.000 2 6.8 ± 1.4 10.73 ± 0.22 8.14 ± 0.24 1.32 ± 0.02
Anemone coelestina var. linearis Ranunculaceae
矮金莲花 毛茛科 71.79 ± 7.96 0.012 2 ± 0.000 8 6.5 ± 0.9 10.97 ± 0.80 7.96 ± 0.25 1.37 ± 0.06
Trollius farreri Ranunculaceae
驴蹄草 毛茛科 76.45 ± 7.43 0.019 0 ± 0.000 1 13.5 ± 2.0 8.44 ± 0.14 7.43 ± 0.20 1.15 ± 0.04
Caltha palustris Ranunculaceae
高山唐松草 毛茛科 64.68 ± 7.17 0.015 6 ± 0.000 5 2.3 ± 1.8 13.03 ± 0.45 7.17 ± 0.18 1.81 ± 0.02
Thalictrum alpinum Ranunculaceae
巴天酸模 蓼科 81.83 ± 6.73 0.018 6 ± 0.000 2 53.8 ± 3.3 10.46 ± 0.23 6.73 ± 0.33 1.60 ± 0.09
Rumex patientia Polygonaceae
水生酸模 蓼科 78.96 ± 4.24 0.020 1 ± 0.001 3 10.0 ± 3.0 7.14 ± 0.38 4.24 ± 0.30 1.77 ± 0.10
Rumex aquaticus Polygonaceae
西伯利亚蓼 蓼科 73.49 ± 5.88 0.013 7 ± 0.001 2 4.6 ± 1.1 19.23 ± 0.97 10.88 ± 0.11 1.77 ± 0.09
Polygonum sibiricum Polygonaceae
珠芽蓼 蓼科 71.77 ± 7.83 0.013 9 ± 0.000 3 15.2 ± 1.7 7.96 ± 0.32 7.83 ± 0.10 1.01 ± 0.03
Polygonum viviparum Polygonaceae
湿生扁蕾 龙胆科 81.79 ± 7.95 0.027 8 ± 0.000 9 2.3 ± 0.6 12.21 ± 0.86 7.95 ± 0.86 1.60 ± 0.07
Gentianopsis paludosa Gentianaceae
椭圆叶花锚 龙胆科 78.65 ± 7.87 0.026 7 ± 0.000 6 1.6 ± 0.6 9.18 ± 0.27 7.87 ± 0.11 1.17 ± 0.04
Halenia elliptica Gentianaceae
蓝白龙胆 龙胆科 75.22 ± 4.95 0.016 2 ± 0.000 7 0.5 ± 0.0 7.64 ± 0.72 4.95 ± 0.42 1.54 ± 0.03
Gentiana leucomelaena Gentianaceae
鹅绒委陵菜 蔷薇科 65.53 ± 8.48 0.024 1 ± 0.000 2 12.3 ± 2.1 11.51 ± 0.21 8.48 ± 0.21 1.36 ± 0.01
Potentilla anserina Rosaceae
莓叶委陵菜 蔷薇科 65.57 ± 7.50 0.015 9 ± 0.000 3 3.8 ± 0.8 7.72 ± 0.31 7.50 ± 0.31 1.03 ± 0.01
Potentilla saundersiana Rosaceae
矮地榆 蔷薇科 69.03 ± 6.57 0.019 5 ± 0.000 8 10.0 ± 1.7 13.31 ± 0.78 10.57 ± 0.77 1.27 ± 0.02
Sanguisorba filiformis Rosaceae
高山韭 百合科 79.36 ± 9.92 0.009 9 ± 0.000 3 10.2 ± 2.6 6.04 ± 0.28 9.92 ± 0.26 0.62 ± 0.04
Allium sikkimense Liliaceae
折被韭 百合科 76.11 ± 9.71 0.014 7 ± 0.000 8 3.8 ± 0.7 15.71 ± 0.83 9.71 ± 0.37 1.63 ± 0.09
Allium chrysocephalum Liliaceae
毛果婆婆纳 玄参科 72.31 ± 8.90 0.018 4 ± 0.000 6 1.3 ± 0.3 12.08 ± 0.65 8.90 ± 0.33 1.35 ± 0.04
Veronica eriogyne Scrophulariaceae
拟鼻花马先蒿 玄参科 77.71 ± 5.69 0.019 5 ± 0.000 3 2.2 ± 0.1 4.25 ± 0.32 5.69 ± 0.61 0.77 ± 0.05
Pedicularis rhinanthoides Scrophulariaceae
青藏大戟 大戟科 64.34 ± 8.32 0.020 1 ± 0.001 1 0.8 ± 0.0 7.64 ± 0.18 8.32 ± 0.51 0.94 ± 0.04
Euphorbia micractina Euphorbiaceae
平车前 车前科 81.14 ± 9.81 0.026 8 ± 0.000 4 5.7 ± 1.9 7.09 ± 0.42 12.81 ± 0.29 0.56 ± 0.04
Plantago depressa Plantaginaceae
甘松香 败酱科 78.60 ± 8.75 0.014 5 ± 0.000 9 9.7 ± 1.2 14.06 ± 0.93 11.75 ± 0.72 1.19 ± 0.01
Nardostachys jatamansi Valerianaceae
矮泽芹 伞形科 75.81 ± 8.17 0.019 3 ± 0.001 7 7.6 ± 0.9 7.02 ± 0.07 8.17 ± 0.05 0.86 ± 0.01
Chamaesium paradoxum Umbelliferae

Fig. 1

Comparison of mean valus for relative leaf water content (LWC), specific leaf area (SLA), leaf area (LA), net photosynthesis rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) in the functional groups (mean ± SE). Different small letters indicate significant difference between functional groups for given trait (p < 0.05)."

Fig. 2

Results of the regression analysis between the leaf physiological and morphological traits of photosynthesis for the studied species. LWC, Pn, SLA, Tr, WUE, see Fig. 1."

Fig. 3

Relationship between the leaf physiological and morphological traits of photosynthesis for functional groups. LA, Pn, SLA, Tr, WUE, see Fig. 1."

[1] Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lechowicz MJ (2000). The evolution of plant ecophysiological traits: Recent advances and future directions.Bioscience, 50, 979-995.
[2] Al Haj Khaled R, Duru M, Theau JP, Plantureux S, Cruz P (2005). Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species.Journal of Vegetation Science, 16, 391-398.
[3] Anderson JE, Inouye RS (2001). Landscape-scale changes in plant species abundance and biodiversity of a sagebrush steppe over 45 years.Ecological Monographs, 71, 531-556.
[4] Atwell BJ, Kriedemann PE, Turnbull CGN (1999). Plants in Action: Adaptation in Nature, Performance in Cultivation. Macmillan Education Australia, South Yarra.
[5] Bassow SL, Bazzaz FA (1997). Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest.Oecologia, 109, 507-515.
[6] Bowman WD, Turner L (1993). Photosynthetic sensitivity to temperature in populations of two C4 Bouteloua (Poacaeae) species native to different altitudes.American Journal of Botany, 80, 369-374.
[7] Chapin III FS (1993). Functional Role of Growth Forms in Ecosystem and Global Processes. Academic Press, San Diego, USA.
[8] Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005). Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China.Photosynthetica, 43, 559-565.
[9] Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations.Ecology Letters, 11, 1189-1197.
[10] Cunningham SA, Summerhayes B, Westoby M (1999). Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients.Ecological Monographs, 69, 569-588.
[11] Frei ER, Ghazoul J, Pluess AR, Bond-Lamberty B (2014). Plastic responses to elevated temperature in low and high elevation populations of three grassland species.PLoS ONE, 9, e98677.
[12] Ge QZ, Wei B, Zhang LF, Wei WR, Huang B, Jiang XL, Zhang WG (2012). Influence of restoration measures on plant community in alpine meadow.Pratacultural Science, 19, 1517-1520. (in Chinese with English abstract)
[葛庆征, 魏斌, 张灵菲, 卫万荣, 黄彬, 江小雷, 张卫国 (2012). 草地恢复措施对高寒草甸植物群落的影响. 草业科学, 29, 1517-1520.]
[13] Hamid A, Agata W, Kawamitsu Y (1990). Photosynthesis, transpiration and water use efficiency in four cultivars of mungbean, Vigna radiata (L.) Wilczek.Photosynthetica, 24, 96-101.
[14] Hirasawa T, Hsiao TC (1999). Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field.Field Crops Research, 62, 53-62.
[15] Hooper DU, Vitousek PM (1997). The effects of plant composition and diversity on ecosystem processes.Science, 277, 1302-1305.
[16] Hou Y, Guo ZG, Long RJ (2009). Changes of plant community structure and species diversity in degradation process of Shouqu wetland of Yellow River.Chinese Journal of Applied Ecology, 20, 27-32. (in Chinese with English abstract)
[后源, 郭正刚, 龙瑞军 (2009). 黄河首曲湿地退化过程中植物群落组分及物种多样性的变化. 应用生态学报, 20, 27-32.]
[17] Jiang GM, He WM (1999). Species- and habitat-variability of photosynthesis, transpiration and water use efficiency of different plant species in Maowusu Sand Area.Acta Botanica Sinica, 41, 1114-1124. (in Chinese with English abstract)
[蒋高明, 何维明 (1999). 毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异. 植物学报, 41, 1114-1124.]
[18] Jiang GM, Zhu GJ (2001). Effects of natural high temperature and irradiation on photosynthesis and related parameters in three arid sandy shrub species.Acta Phytoecologica Sinica, 25, 524-531. (in Chinese with English abstract)
[蒋高明, 朱桂杰 (2001). 高温强光环境条件下3种沙地灌木的光合生理特点. 植物生态学报, 25, 525-531.]
[19] Jiao L (2007). A Study on the Grassland Flora from Maqu in Gannan Tibet Autonomous. Master degree dissertation, Gansu Agricultural University, Lanzhou. (in Chinese)
[焦亮 (2007). 甘南藏族自治州玛曲县草地植物区系研究. 硕士学位论文, 甘肃农业大学, 兰州.]
[20] Kimenov GP, Markovska YK, Tsonev TD (1989). Photosynthesis and transpiration of Haberlea rhodopensis FRIV. In dependence on water deficit.Photosynthetica, 23, 368-371.
[21] Kramer PJ, Kozlowski TT (1979). Physiology of Woody Plants. Academic Press, London.
[22] Larcher W (1995). Physiological Plant Ecology. 3rd edn,. Springer-Verlag New York.
[23] Lauenroth WK, Dodd JL, Sims PL (1978). The effects of water- and nitrogen-induced stresses on plant community structure in a semiarid grassland.Oecologia, 36, 211-222.
[24] Lawlor DW (1995). Photosynthesis, productivity and environment.Journal of Experimental Botany, 46, 1449-1461.
[25] Li HL, Xu DH, Du GZ (2012). Effect of change of plant community composition along degradation gradients on water conditions in an alpine swamp wetland on the Qinghai- Tibetan Plateau of China.Chinese Journal of Plant Ecology, 36, 403-410. (in Chinese with English abstract)
[李宏林, 徐当会, 杜国祯 (2012). 青藏高原高寒沼泽湿地在退化梯度上植物群落组成的改变对湿地水分状况的影响. 植物生态学报, 36, 403-410.]
[26] Li W (2011). Research on the Mechanism of Species Diversity Loss due to Fertilization of Alpine Meadow on the Tibetan Plateau. PhD dissertation, Lanzhou Unversity, Lanzhou. (in Chinese)
[李伟 (2011). 施肥导致高寒草甸物种多样性丧失机制研究. 博士学位论文, 兰州大学, 兰州.]
[27] Ma MJ, Zhou XH, Du GZ (2011). Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau.Plant and Soil, 346, 19-28.
[28] Mack MC, D’Antonio CM (1998). Impacts of biological invasions on disturbance regimes.Trends in Ecology & Evolution, 13, 195-198.
[29] Naeem S, Thompson LJ, Lawler SP, Lawton JW, Woodfin RM (1994). Declining biodiversity can alter the performance of ecosystems.Nature, 368, 734-737.
[30] Nicotra AB, Hermes JP, Jones CS, Schlichting CD (2007). Geographic variation and plasticity to water and nutrients inPelargonium australe. New Phytologist, 176, 136-149.
[31] Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs.Ecology, 82, 453-469.
[32] Niu KC, Choler P, de Bello F, Mirotchnick N, Du GZ, Sun SC (2014). Fertilization decreases species diversity but increases functional diversity: A three-year experiment in a Tibetan alpine meadow.Agriculture, Ecosystems & Environment, 182, 106-112.
[33] Niu SL, Jiang GM, Gao LM, Li YG, Liu MZ (2003). Comparison of gas exchange traits of different plant species in Hunshandak Sand Area.Acta Phytoecologica Sinica, 27, 318-324. (in English with Chinese abstract)
[牛书丽, 蒋高明, 高雷明, 李永庚, 刘美珍 (2003). 内蒙古浑善达克沙地97种植物的光合生理特征. 植物生态学报, 27, 318-324.]
[34] Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wang SQ (2011). Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe.Global Change Biology, 17, 1073-1082.
[35] Pan XB, Zhang JY, Long ZK, Mao LM, Jin HM, Guo LP, Bi XL, Zhao YP (2011). Natural wetland in China.African Journal of Environmental Science and Technology, 5, 45-55.
[36] Pérez F, Hinojosa LF, Ossa CG, Campano F, Orrego F (2014). Decoupled evolution of foliar freezing resistance, temperature niche and morphological leaf traits in Chilean Myrceugenia.Journal of Ecology, 102, 972-980.
[37] Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005). Plant functional group diversity as a mechanism for invasion resistance.Restoration Ecology, 13, 448-459.
[38] Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996). Challenges in the quest for keystones.BioScience, 46, 609-620.
[39] Qiu J, Tan DY, Fan DY (2007). Characteristics of photosynthesis and biomass allocation of spring ephemerals in the Junggar Desert. Journal of Plant Ecology (Chinese Version), 31, 883-891. (in Chinese with English abstract)
[邱娟, 谭敦炎, 樊大勇 (2007). 准噶尔荒漠早春短命植物的光合特性及生物量分配特点. 植物生态学报, 31, 883-891.]
[40] Reich PB (1993). Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant forms and climates: ‘The blind men and the elephant retold’.Functional Ecology, 7, 721-725.
[41] Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: Global convergence in plant functioning.Proceedings of the National Academy of Sciences of the United States of American, 94, 13730-13734.
[42] Schwarz AG, Redmann RE (1989). Photosynthetic properties of C4 grass (Spartina gracilis Trin.) from northern environment.Photosynthetica, 23, 449-459.
[43] Smith EC, Griffiths H, Wood L, Gillon J (1998). Intra-specific variation in the photosynthetic responses of cyanobiont lichens from contrasting habitats.New Phytologist, 138, 213-223.
[44] Sultan SE (1987). Evolutionary implications of phenotypic plasticity in plants.Evolutionary Biology, 12, 127-178.
[45] Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes.Science, 277, 1300-1302.
[46] Valladares F, Allen MT, Pearcy RW (1997). Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occuring along a light gradient.Oecologia, 111, 505-514.
[47] Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!Oikos, 116, 882-892.
[48] Walker BH (1992). Biodiversity and ecological redundancy.Conservation Biology, 6, 18-23.
[49] Wang GX, Li YS, Wang YB, Chen L (2007). Typical alpine wetland system changes on the Qinghai-Tibet Plateau in recent 40 years.Acta Geographica Sinica, 62, 481-491. (in Chinese with English abstract)
[王根绪, 李元寿, 王一博, 陈玲 (2007). 近40年来青藏高原典型高寒湿地系统的动态变化. 地理学报, 62, 481-491.]
[50] Wang RZ, Gao Q (2001). Photosynthesis, transpiration, and water use efficiency in two divergent Leymus chinensis populations from Northeast China.Photosynthetica, 39, 123-126.
[51] Wang RZ, Yuan YQ (2001). Photosynthesis, transpiration, and water use efficiency of two Puccinellia species on the Songnen grassland, Northeastern China.Photosynthetica, 39, 283-287.
[52] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
[53] Xiang S, Guo RQ, Wu N, Sun SC (2009). Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau.Ecological Engineering, 35, 553-562.
[54] Zhang M, Wang WJ, Liu FD, An SQ, Zheng JW, Zhang ST, Wang HG, Xu HG (2007). Photosynthetic capacity and water use efficiency of tropical montane rainforest seedlings or saplings in Hainan Island.Chinese Journal of Applied Ecology, 18, 2160-2166. (in Chinese with English abstract)
[张明, 王文进, 刘福德, 安树青, 郑建伟, 张世挺, 王中生, 徐海根 (2007). 海南热带山地雨林幼苗幼树的光合能力与水分利用效率. 应用生态学报, 18, 2160-2166.]
[55] Zhang XY, Lü XG, Gu HJ (2005). To analysis threats, to describe present conservation situation and to provide management advices of the Ruoergai Marshes.Wetland Science, 3, 292-297. (in Chinese with English abstract)
[张晓云, 吕宪国, 顾海军 (2005). 若尔盖湿地面临的威胁、保护现状及对策分析. 湿地科学, 3, 292-297.]
[1] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[3] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43.
[4] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32.
[5] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
[6] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[7] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511.
[8] Gu Hanjiao, Zhang Cancan, Wang Jinsong, Shi Xuewen, Xia Ruixue, Liu Bin, Chen Fusheng, Bu Wensheng. Variation in basic morphological and functional traits of Chinese bamboo [J]. Biodiv Sci, 2019, 27(6): 585-594.
[9] Aizezitiyuemaier MAIMAITI, Yusufujiang RUSULI, HE Hui, Baihetinisha ABUDUKERIMU. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017 [J]. Chin J Plant Ecol, 2019, 43(6): 490-500.
[10] Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei. Leaf functional traits of Acer mono in Wudalianchi Volcano, China [J]. Biodiv Sci, 2019, 27(3): 286-296.
[11] Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338.
[12] HE Yun-Yu, GUO Shui-Liang, WANG Zhe. Research progress of trade-off relationships of plant functional traits [J]. Chin J Plant Ecol, 2019, 43(12): 1021-1035.
[13] Ruyun Zhang,Yanpeng Li,Yunlong Ni,Xujun Gui,Juyu Lian,Wanhui Ye. Intraspecific variation of leaf functional traits along the vertical layer in a subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2019, 27(12): 1279-1290.
[14] LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898.
[15] LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China [J]. Chin J Plant Ecol, 2019, 43(1): 16-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[5] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[6] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[7] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[8] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[9] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .
[10] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plan Ecolo, 2007, 31(6): 1079 -1091 .