Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (8): 815-825.doi: 10.17521/cjpe.2017.0018

• Research Articles •     Next Articles

Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism

Li-Jiao XU1,2, Xue-Lian JIANG1,3, Zhi-Peng HAO1, Tao LI1, Zhao-Xiang WU1,4, Bao-Dong CHEN1,2,*()   

  1. 1State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3School of Life Sciences, University of Science and Technology of China, Hefei 230026, China

    4Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biology and Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
  • Online:2017-09-29 Published:2017-08-10
  • Contact: Bao-Dong CHEN
  • About author:

    KANG Jing-yao(1991-), E-mail:


Aims Arbuscular mycorrhizal (AM) symbiosis plays an important role in plant adaptation to phosphorus (P) deficiency. The mycorrhizal fungi can directly regulate P stress response of the host plants, and can also indirectly influence neighbor plants via AM exudates. This study aimed to reveal the regulation mechanisms of plant response to P deficiency by AM associations. Methods In a compartmentation cultivation experiment with Zea mays ‘B73’ and AM fungus Rhizophagus irregularis ‘DAOM197198’, we investigated mycorrhizal effects on plant P nutrition and the expression of plant and fungal genes related to P and carbon (C) metabolisms under both low P (10 mg?kg-1) and high P (100 mg?kg-1) conditions. The cultivation system consisted of three compartments, namely donor compartment, buffer compartment and receiver compartment divided by two pieces of microporous filters with pore size of 0.45 μm. Maize plant in donor compartment inoculated with AM fungus served as a source of AM exudates. The microporous filters could restrict the development of extraradical mycelium of AM fungi, but allow diffusion of AM exudates. Real-time PCR was performed to quantify the gene expression levels both in maize plants and AM fungi. Important findings The experimental results indicated that under low P conditions mycorrhizal colonization increased plant dry weight and P concentration in donor plants, and up-regulated plant genes encoding P transporters Pht1;2, Pht1;6, phosphoenolpiruvate carboxylase (PEPC), inorganic pyrophosphatase (TC289), glycerol-3-phosphate transporter (G3PT) and malate synthase (MAS1). The expression of AM fungal genes encoding P transporter (GiPT), GlcNAc transporter (NGT1), GlcNAc kinase (HXK1b), GlcNAc phosphomutase (AGM1), UDP GlcNAc pyrophosphorylase (UAP1), chitin synthase (CHS1), GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) was significantly higher under low P conditions compared with high P conditions. However, for the receiver plants, plant dry mass and P concentration were only significantly increased by higher P addition, while inoculation treatment significantly up-regulated the expression of P transporter genes Pht1;2 and Pht1;6, C metabolism related genes G3PT, PEPC, TC289 and MAS1. The study proved that AM exudates could potentially stimulate plant response to P deficiency by regulating functional genes relevant to P and C metabolisms in the mycorrhizal associations.

Key words: compartment cultivation system, arbuscular mycorrhiza, carbon and phosphorus metabolism, functional gene, phosphorus deficiency

Fig. 1

Diagram of the compartment cultivation system. Different compartments were separated by microporous filter with pore size of 0.45 μm. AM and NM represent inoculation of donor plants with AM fungus and the non-mycorrhizal control respectively. There are two phosphorus levels (10 mg?kg-1 and 100 mg?kg-1), and three replications for each treatment (n = 3)."

Fig. 2

Effects of mycorrhizal inoculation on maize dry mass under different P levels (mean ± SD). LP and HP refer to low P level (10 mg·kg-1) and high P level (100 mg·kg-1) respectively. AMD and NMD represent donor plants with and without AM fungus incubation, while AMR and NMR represent receiver plants with and without AM exudates respectively. Different letters above the columns indicate significant difference (p < 0.05) between corresponding treatments. # indicates significant difference (p < 0.05) between different P levels under the same inoculation treatment."

Fig. 3

Effects of inoculation with AM fungus on maize P concentrations under different P levels (mean ± SD). LP and HP refer to low P level (10 mg·kg-1) and high P level (100 mg·kg-1) respectively. AMD and NMD represent donor plants with and without AM fungus incubation, while AMR and NMR represent receiver plants with and without AM exudates respectively. The different letters indicates significant difference (p < 0.05) between corresponding treatments. # indicates significant difference (p < 0.05) between different P levels under the same inoculation treatment; * indicates significant difference (p < 0.05) between inoculation treatments under the same P level."

Fig. 4

Expression of AM fungal genes relevant to C and P metabolisms under different P levels (mean ± SD). LP refers to low P treatments, HP refers to high P treatments, * indicates significant difference (p < 0.05) between different P levels. GiPT, AM fungal P transporter gene; NGT1, GlcNAc transporter gene, HXK1b, GlcNAc kinase gene; AGM1, GlcNAc phosphomutase gene; UAP1, UDP GlcNAc pyrophosphorylase gene; CHS1, chitin synthase gene; DAC1, GlcNAc-6-phosphate deacetylase gene; NAG1, glucosamine- 6-phosphate isomerase gene."

Fig. 5

Expression of genes relevant to C and P metabolism in maize roots from donor compartment under different P levels (mean ± SD). LP and HP refer to low P level (10 mg?kg-1) and high P level (100 mg?kg-1) respectively. AMD and NMD represent donor plants with and without AM fungus. Different letters above the columns indicate significant difference (p < 0.05) between corresponding treatments. # indicates significant difference (p < 0.05) between different P levels. Pht1;2, Pht1;6, P transporter genes; PEPC, phosphoenolpiruvate carboxylase gene; TC289, inorganic pyrophosphatase gene; G3PT, glycerol- 3-phosphate transporter gene; MAS1, malate synthase gene."

Fig. 6

Expression of genes relevant to C and P metabolism in maize roots from receiver compartment under different P levels (mean ± SD). LP and HP refer to low P level (10 mg?kg-1) and high P level (100 mg?kg-1) respectively. AMR and NMR represent receiver plants with and without AM exudates respectively. # indicates significant difference (p < 0.05) between different P levels, while $ indicates significant difference (p < 0.05) between inoculation treatments under the same P level. Pht1;2, Pht1;6, P transporter genes; PEPC, phosphoenolpiruvate carboxylase gene; TC289, inorganic pyrophosphatase gene; G3PT, glycerol-3-phosphate transporter gene; MAS1, malate synthase gene."

Appendix I

The PCR primer sequences for functional genes in maize plants"

基因 Gene 正向引物 Forward primer 反向引物 Reverse primer 文献 Reference

Appendix II

The PCR primer sequences for AM fungal genes"

基因 Gene 正向引物 Forward primer 反向引物 Reverse primer 文献 Reference

Appendix III

Two-way ANOVA of shoot and root dry mass, P concentrations and expression of genes related to C and P metabolisms as influenced by mycorrhizal inoculation and soil P levels"

Shoot dry mass
Root dry mass
Shoot P concentration
Root P concentration
Pht1;2 Pht1;6 G3PT PEPC TC289 MAS1
供体植物 Donor
接种处理 Inoculation treatment (I) * ** * ** ** ** ** ** ns **
磷水平 P levels (P) ** ns ** ** ** ** ** ** ** ns
交互作用 I × P ** ** ns * ** ** ** ** ns **
受体植物 Receiver
接种处理 Inoculation treatment (I) ns ns ns ns ** ** ** ** ** **
磷水平 P levels (P) * * * * ** ** ** ** ** **
交互作用 I × P ns ns ns ns ns ** ** ** ** **
[1] Bago B, Pfeffer PE, Shachar-Hill Y (2000). Carbon metabolism and transport in arbuscular mycorrhizas.Plant Physiology, 124, 949-958.
doi: 10.1104/pp.124.3.949
[2] Bao SD (2000). Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing. 81.(in Chinese)[鲍士旦 (2000). 土壤农化分析. 中国农业出版社, 北京. 81.]
[3] Barto EK, Hilker M, Müller F, Mohney BK, Weidenhamer JD, Rillig MC (2011). The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils.PLOS ONE, 6, e27195. doi: 10.1371/ journal.pone.0027195.
doi: 10.1371/journal.pone.0027195 pmid: 22110615
[4] Biermann B, Linderman RG (1981). Quantifying vesicular- arbuscular mycorrhizae: A proposed method towards standardization.New Phytologist, 87, 63-67.
doi: 10.1111/j.1469-8137.1981.tb01690.x
[5] Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini C, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning.The Plant Journal, 64, 1002-1017.
doi: 10.1111/j.1365-313X.2010.04385.x pmid: 21143680
[6] Carlos CV, Enrique IL, Juan CP, Herrera-Estrella L (2008). Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant-and species- specific levels.Journal of Experimental Botany, 59, 2479-2497.
doi: 10.1093/jxb/ern115 pmid: 18503042
[7] Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty P, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013). Biotrophic transportome in mutualistic plant-fungal interactions.Mycorrhiza, 23, 597-625.
doi: 10.1007/s00572-013-0496-9 pmid: 23572325
[8] Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P (2011). Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis.New Phytologist, 189, 347-355.
doi: 10.1111/j.1469-8137.2010.03464.x pmid: 20202020202020202020202020202020
[9] Chen A, Hu J, Sun S, Xu G (2007). Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species.New Phytologist, 173, 817-831.
doi: 10.1111/nph.2007.173.issue-4
[10] Cunningham JE, Kuiack C (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii.Applied and Environmental Microbiology, 58, 1451-1458.
[11] Fixen P (2002). Soil test levels in North America.Better Crops, 86, 12-15.
[12] Fukayama H, Hatch MD, Tamai T, Tsuchida H, Sudoh S, Furbank RT, Miyao M (2003). Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants.Photosynthesis Research, 77, 227-239.
doi: 10.1023/A:1025861431886 pmid: 16228378
[13] Gardner WK, Barber DA, Parbery DG (1983). The acquisition of phosphorus by Lupinus albus L.: 3. The probable mechanism by which phosphorus movement in the soil/ root interface is enhanced.Plant Soil, 70, 107-124.
doi: 10.1007/BF02374754
[14] Gu M, Chen AQ, Dai XL, Liu W, Xu G (2011). How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?Plant Signalling and Behavior, 6, 1300-1304.
doi: 10.4161/psb.6.9.16365 pmid: 3258057
[15] Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization.Proceedings of the National Academy of Sciences of the United States of America, 102, 8066-8070.
doi: 10.1073/pnas.0502999102 pmid: 15905328
[16] Gutjahr C, Casieri L, Paszkowski U (2009). Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling.New Phytologist, 182, 829-837.
doi: 10.1111/j.1469-8137.2009.02839.x pmid: 19383099
[17] Harrison MJ, Dewbre GR, Liu J (2002). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.Plant Cell, 14, 2413-2429.
doi: 10.1105/tpc.004861 pmid: 12368495
[18] Harrison MJ, Pumplin N, Breuillin FJ, Noar RD, Park HJ (2010). Phosphate transporters in arbuscular mycorrhizal symbiosis. In: Koltai H, Kapulnik Y eds. Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht, The Netherlands. 117-135.
[19] Javot H, Pumplin N, Harrison M (2007). Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles.Plant, Cell & Environment, 30, 310-322.
doi: 10.1111/j.1365-3040.2006.01617.x pmid: 17263776
[20] Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003). A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula.Plant Physiology, 131, 952-962.
doi: 10.1104/pp.011882 pmid: 12644648
[21] Li T, Chen BD (2012). Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulation of aquaporin gene expressions in roots and the fungi themselves.Chinese Journal of Plant Ecology, 36, 973-981.(in Chinese with English abstract)[李涛, 陈保冬 (2012). 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性, 植物生态学报,36, 973-981.]
doi: 10.3724/SP.J.1258.2012.00973
[22] Maillet F, Poinsot V, Andre O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza.Nature, 469, 58-63.
doi: 10.1038/nature09622 pmid: 21209659
[23] Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001). A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment.Molecular Plant-Microbe Interactions, 14, 1140-1148.
doi: 10.1094/MPMI.2001.14.10.1140 pmid: 11605953
[24] Marschner H (1995).Mineral Nutrition of Higher Plants. 2nd edn. Academic Pres. London.
[25] Nagy F, Karandashov V, Chague W, Kalinkevich K, Tamasloukht MB, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005). The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species.The Plant Journal, 42, 236-250.
doi: 10.1111/tpj.2005.42.issue-2
[26] Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009). Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated.New Phytologist, 181, 950-959.
doi: 10.1111/j.1469-8137.2008.02721.x pmid: 19140941
[27] Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway.The Plant Journal, 44, 195-207.
doi: 10.1111/j.1365-313X.2005.02522.x pmid: 16212600
[28] Olsson PA, Hansson MC, Burleigh SH (2006). Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza.Applied and Environmental Microbiology, 72, 4115-4120.
doi: 10.1128/AEM.02154-05 pmid: 1489668
[29] Pfaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR.Nucleic Acids Research, 29, e45.
doi: 10.1093/nar/29.9.e45 pmid: 11328886
[30] Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.Transactions of the British Mycological Society, 55, 158-161.
doi: 10.1016/S0007-1536(70)80110-3
[31] Plénet D, Etchebest S, Mollier A, Pellerin S (2000). Growth analysis of maize field crops under phosphorus deficiency.Plant and Soil, 223, 119-132.
doi: 10.1023/A:1004835621371
[32] Radchuk R, Radchuk V, G?tz KP, Weichert H, Richter A, Emery RJ, Winfriede W, Weber H (2007). Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: Effects of improved nutrient status on seed maturation and transcriptional regulatory networks.The Plant Journal, 51, 819-839.
doi: 10.1111/j.1365-313X.2007.03196.x pmid: 17692079
[33] Ramaiah M, Jain A, Baldwin JC, Karthikeyan AS, Raghothama KG (2011). Characterization of the phosphate starvation- induced glycerol-3-phosphate permease gene family inArabidopsis. Plant physiology, 157, 279-291.
doi: 10.1104/pp.111.178541 pmid: 21788361
[34] Rich MK, Schorderet M, Reinhardt D (2014). The role of the cell wall compartment in mutualistic symbioses of plants.Frontiers in Plant Science, 5, 238.
doi: 10.3389/fpls.2014.00238 pmid: 24917869
[35] Rojas-Beltrán JA, Dubois F, Mortiaux F, Portetelle D, Gebhardt C, Sangwan RS, du Jardin P (1999). Identification of cytosolic Mg2+-dependent soluble inorganic pyrophosphatases in potato and phylogenetic analysis.Plant Molecular Biology, 39, 449-461.
doi: 10.1023/A:1006136624210
[36] Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H (2004). Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy.Plant Biotechnology Journal, 2, 211-219.
doi: 10.1111/j.1467-7652.2004.00064.x pmid: 17147612
[37] Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009). The B73 maize genome: Complexity, diversity, and dynamics.Science, 326, 1112-1115.
doi: 10.1126/science.1178534 pmid: 19965430
[38] Smith SE, Read DJ (2008). Arbuscular mycorrhizas.Mycorrhizal Symbiosis, 3, 11-145.
[39] Tyler G (1999). Plant distribution and soil-plant interactions on shallow soils.Acta Phytogeographica Suecica, 84, 21-32.
[40] van der Heijden MGA, Horton TR (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems.Journal of Ecology, 97, 1139-1150.
doi: 10.1111/j.1365-2745.2009.01570.x
[41] Wright DP, Read DJ, Scholes JD (1998). Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L.Plant, Cell & Environment, 21, 881-891.
doi: 10.1046/j.1365-3040.1998.00351.x
[42] Yoshihiro K, Miki K, Katsuharu S, Kikuchi Y, Ezawa T, Maeshima M, Hata S, Fujiwara T (2015). Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi.Mycorrhiza, 25, 411-417.
doi: 10.1007/s00572-014-0623-2 pmid: 25564438
[1] CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae [J]. Chin J Plant Ecol, 2019, 43(8): 718-728.
[2] GAO Wen-Tong, ZHANG Chun-Yan, DONG Ting-Fa, XU Xiao. Effects of arbuscular mycorrhizal fungi on the root growth of male and female Populus cathayana individuals grown under different sexual combination patterns [J]. Chin J Plant Ecol, 2019, 43(1): 37-45.
[3] XU Li-Jiao, HAO Zhi-Peng, XIE Wei, LI Fang, CHEN Bao-Dong. Transmembrane H + and Ca 2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress [J]. Chin J Plan Ecolo, 2018, 42(7): 764-773.
[4] LIU Hai-Yue, LI Xin-Mei, ZHANG Lin-Lin, WANG Jiao-Jiao, HE Xue-Li. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China [J]. Chin J Plan Ecolo, 2018, 42(2): 252-260.
[5] CHEN Bao-Ming, WEI Hui-Jie, CHEN Wei-Bin, ZHU Zheng-Cai, YUAN Ya-Ru, ZHANG Yong-Long, LAN Zhi-Gang. Effects of plant invasion on soil nitrogen transformation processes and it’s associated microbial [J]. Chin J Plant Ecol, 2018, 42(11): 1071-1081.
[6] Ping SONG, Rui ZHANG, Zhi-Chun ZHOU, Jian-She TONG, Hui WANG. Effects of localized nitrogen supply treatments on growth and root parameters in Pinus massoniana families under phosphorus deficiency [J]. Chin J Plan Ecolo, 2017, 41(6): 622-631.
[7] Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plan Ecolo, 2017, 41(4): 480-488.
[8] Jin Li, Panyao Yan, Feijian Qian, Baoyi Qiu, Wenwen Xia, Xiaowei Mou, Lijuan Qiu, Zhongping Lin, Ming Chen, Jianbo Zhu, Xianfeng Chen. The Sasussured involucrata Transcriptome Knowledge Base [J]. Chin Bull Bot, 2017, 52(4): 530-538.
[9] Ping SONG, Rui ZHANG, Yi ZHANG, Zhi-Chun ZHOU, Zhong-Ping FENG. Effects of simulated nitrogen deposition on fine root morphology, nitrogen and phosphorus efficiency of Pinus massoniana clone under phosphorus deficiency [J]. Chin J Plan Ecolo, 2016, 40(11): 1136-1144.
[10] YANG Hai-Shui,WANG Qi,GUO Yi,XIONG Yan-Qin,XU Ming-Min,DAI Ya-Jun. Correlation analysis between arbuscular mycorrhizal fungal community and host plant phylogeny [J]. Chin J Plan Ecolo, 2015, 39(4): 383-387.
[11] PAN Lu,MOU Pu,BAI Shang-Bin,GU Mu. Impact of Phyllostachys heterocycla ‘Pubescens’ expansion on mycorrhizal associations of the adjacent forests [J]. Chin J Plan Ecolo, 2015, 39(4): 371-382.
[12] LIU Ting and TANG Ming. Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata and xylem in poplars [J]. Chin J Plan Ecolo, 2014, 38(9): 1001-1007.
[13] LIU Na-Na, TIAN Qiu-Ying, and ZHANG Wen-Hao. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol [J]. Chin J Plan Ecolo, 2014, 38(9): 905-915.
[14] YAN Jiao, HE Xue-Li, ZHANG Ya-Juan, XU Wei, ZHANG Juan, and ZHAO Li-Li. Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in roots of desert Salix psammophila [J]. Chin J Plan Ecolo, 2014, 38(9): 949-958.
[15] WANG Qiang, WANG Qian, DONG Mei, WANG Xiao-Juan, ZHANG Liang, and JIN Liang. Application and progress of split-compartment facility in studies of arbuscular mycorrhizal fungi [J]. Chin J Plan Ecolo, 2014, 38(11): 1250-1260.
Full text



[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[5] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[6] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[7] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[8] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[9] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .
[10] QIU Dong-Liang, LIU Xing-Hui, GUO Su-Zhi. Effects of Simulated Acid Rain Stress on Gas Exchange and Chlorophyll a Fluorescence Parameters in Leaves of Longan[J]. Chin J Plan Ecolo, 2002, 26(4): 441 -446 .