Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (2): 153-163.doi: 10.17521/cjpe.2017.0184

• Research Articles • Previous Articles     Next Articles

Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment

WU Qi-Qian,WANG Chuan-Kuan()   

  1. Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
  • Online:2018-04-16 Published:2018-02-20
  • Contact: WU Qi-Qian ORCID:0000-0002-4371-6303 Chuan-Kuan WANG ORCID:0000-0003-3513-5426 E-mail:wangck-cf@nefu.edu.cn
  • Supported by:
    Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAD37B01);the Program for Changjiang Scholars and Innovative Research Team (IRT_15R09) and the Fundamental Research Funds for the Central Universities(2572014AA11)

Abstract:

Aims Changes in snowpack induced by climate change may alter water and heat regimes at the ground surface, thus influencing activities of decomposers and litter decomposition in snow-covered regions. However, effects of snow-depth changes on litter decomposition are unclear. Our objective was to characterize the decomposition dynamics of two contrasting tree species—Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) in a snow-depth manipulation experiment.

Methods The snow-depth manipulation experiment that included three treatments (i.e., snow-addition, snow-removal, and control) was conducted in a temperate Korean pine plantation in the Maoershan Forest Ecosystem Research Station, Northeast China. Air-dried foliar litter of the pine or oak (10 g litter per bag) was sealed in a nylon litterbag (15 cm × 20 cm). A total of 648 litterbags (3 plots × 3 treatments × 2 tree species × 3 replicates × 12 sampling dates) were placed evenly on the forest floor in October 2014. Three replicate litterbags per species were buried in each treatment plot and sampled 12 times (i.e., freezing onset stage, deep freezing stage, thawing stage, early, middle and late snow-free seasons) during the two-year period (2014-2016) to determine the temporal variation of the decomposition rate. Associated factors (i.e., mean temperature at litter layer, freeze-thaw cycle, available nitrogen and phosphorus at the organic layer) were measured simultaneously.

Important findings Tree species, snow-depth treatment, decomposition stage, and the measured associated factors all influenced the decomposition rates of the foliar litter. The litter mass loss was 52.1%-54.5% for the pine, and 53.9%-59.1% for the oak during the two-year period. The decomposition coefficients for the litter of the two species were the highest in the snow-addition plot, and the lowest in the snow-removal plot. Moreover, the snow-depth manipulation dramatically changed the relative contribution of the mass loss (R ratio) during the snow-covered or snow-free seasons to the yearly total loss. Compared with the control, the snow-addition treatment increased the R ratio during the snow-covered season by 9.1% for the pine and 10.4% for the oak, while the snow-removal treatment increased the R ratio during the snow-free season by 10.4% and 12.7%, respectively. In conclusion, changes in snowpack induced by climate change may significantly affect the foliar decomposition in temperate forests, and also alter the relative contribution of the litter decomposition in the snow-covered and snow-free seasons to the yearly decomposition.

Key words: snow-depth manipulation, temperate forest, foliar litter decomposition, climate change, snow-covered season, snow-free season

Fig. 1

Dynamics in snow-depth in different treatment plots (mean ± SD, n = 15). *, p < 0.05."

Fig. 2

Dynamics in air temperature and the temperatures at the litter layer in different treatment plots (mean, n = 3). A, average air temperature and temperature at the litter layer under the control (CK). B, difference in the temperature between the snow-addition (SA) or snow-removal treatment (SR) and the control. Positive value indicates increased temperature after the treatment, while negative value indicates decreased temperature after the treatment."

Table 1

The initial quality of the foliar litter of Pinus koraiensis and Quercus mongolica (mean ± SD, n = 5)"

树种
Tree species
有机碳
Organic carbon
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
全磷
Total phosphorus
(g·kg-1)
碳/氮
C/N
碳/磷
C/P
氮/磷
N/P
木质素
Lignin
(%)
纤维素
Cellulose
(%)
木质素/氮
Lignin/N
红松
Pinus koraiensis
489.6 ± 1.4a 4.5 ± 0.1b 0.55 ± 0.01b 107.0 ± 1.2a 893.5 ± 6.1a 8.1 ± 0.5a 29.8 ± 0.3a 14.6 ± 0.4a 66.8 ± 0.2a
蒙古栎
Quercus mongolica
458.8 ± 5.1b 6.5 ± 0.1a 1.30 ± 0.05a 71.1 ± 0.6b 351.7 ± 13.5b 4.9 ± 0.2b 16.1 ± 0.1b 12.9 ± 0.1b 25.0 ± 0.6b

Table 2

Sampling stages, dates and decomposition days across the decomposition process of the foliar litter"

取样顺序 Sampling order 取样阶段 Sampling stage 取样日期 Sampling date 分解天数 Decomposing days
1 第一年冻结初期 1st year freezing onset stage 2014-12-02 49
2 第一年深冻期 1st year deep freezing stage 2015-03-18 145
3 第一年融化期 1st year thawing stage 2015-04-18 176
4 第一年无雪初期 1st year early snow-free season 2015-06-20 239
5 第一年无雪中期 1st year mid snow-free season 2015-08-20 300
6 第一年无雪末期 1st year late snow-free season 2015-10-20 366
7 第二年冻结初期 2nd year freezing onset stage 2015-12-25 407
8 第二年深冻期 2nd year deep freezing stage 2016-03-25 516
9 第二年融化期 2nd year thawing stage 2016-04-22 544
10 第二年无雪初期 2nd year early snow-free season 2016-06-20 603
11 第二年无雪中期 2nd year mid snow-free season 2016-08-22 666
12 第二年无雪末期 2nd year late snow-free season 2016-10-24 732

Table 3

Characteristics of environmental conditions in different treatment plots during the decomposition process of the foliar litter (mean ± SD, n = 3)"

处理
Treatment
凋落物层
平均温度
Average
temperature
in litter layer (°C)
凋落物层
冻融循环
Freeze-thaw cycle
in litter layer
有机层有机碳
Organic carbon
in organic layer
(g·kg-1)
有机层全氮
Total nitrogen
in organic
layer
(g·kg-1)
有机层全磷
Total phosphorus
in organic
layer
(g·kg-1)
有机层碳/氮
C/N in
organic layer
有机层碳/磷
C/P in
organic layer
有机层氮/磷
N/P in
organic layer
增雪
Snow-addition
4.4 ± 0.3a 58 ± 1c 81.4 ± 2.2a 7.4 ± 0.2a 1.3 ± 0.1a 10.9 ± 0.2b 62.4 ± 0.3c 5.5 ± 0.2c
对照
Control
3.8 ± 0.2b 70 ± 1b 75.4 ± 1.1b 6.6 ± 0.3b 0.9 ± 0.2b 11.2 ± 0.2b 83.9 ± 0.4b 7.2 ± 0.1b
除雪
Snow-removal
2.7 ± 0.5c 84 ± 2a 72.6 ± 0.6c 6.1 ± 0.1c 0.7 ± 0.1c 12.0 ± 0.3a 104.3 ± 0.6a 8.7 ± 0.3a

Fig. 3

Comparisons and dynamics in the foliar litter decomposition rates of the two tree species under different treatments (mean ± SD, n = 3). * and different letters indicate significant differences among the treatments (p < 0.05)."

Table 4

The decomposition model, decomposition coefficient (k), determination coefficient (R2), time of 50% and 95% decomposition of the foliar litter of Pinus koraiensis and Quercus mongolica under different treatments"

树种 Tree species 处理 Treatment 回归方程 Regression model k R2 半分解时间 t0.5 (month) 95%分解时间 t0.95 (month)
红松
Pinus koraiensis
增雪 Snow-addition y = 99.691e-0.030t 0.030 0.982 23.00 99.75
对照 Control y = 101.398e-0.029t 0.029 0.979 24.38 103.78
除雪 Snow-removal y = 102.545e-0.027t 0.027 0.965 26.60 111.88
蒙古栎
Quercus mongolica
增雪 Snow-addition y = 100.026e-0.037t 0.037 0.984 18.74 80.97
对照 Control y = 100.342e-0.034t 0.034 0.973 20.49 88.21
除雪 Snow-removal y = 103.359e-0.031t 0.031 0.955 23.42 97.70

Table 5

Repeated-measures ANOVA analysis on effects of tree species, snow-depth and decomposition stage on the decomposition rate of the foliar litter"

因子 Factor df F p
树种 Tree species 1/2 85.9 <0.001
雪深 Snow-depth 2/12 52.8 <0.001
分解阶段 Decomposition stage 11/48 3371.1 <0.001
树种×雪深 Tree species × Snow-depth 2/12 4.33 0.014
树种×分解阶段
Tree species × Decomposition stage
11/48 21.5 <0.001
雪深×分解阶段
Snow-depth × Decomposition stage
22/48 3.58 0.028
树种×雪深×分解阶段
Tree species × Snow-depth × Decomposition stage
22/48 3.16 0.045

Fig. 4

Relative contribution of litter loss during the snow-covered and snow-free seasons to the total annual litter loss for the two tree species under different treatments (mean, n = 3)."

[1] Aanderud ZT, Jones SE, Schoolmaster DR, Fierer N, Lennon JT ( 2013). Sensitivity of soil respiration and microbial communities to altered snowfall. Soil Biology and Biochemistry, 57, 217-227.
doi: 10.1016/j.soilbio.2012.07.022
[2] Aerts R ( 2006). The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713-724.
doi: 10.1111/j.1365-2745.2006.01142.x
[3] Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC ( 2012). Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia, 170, 809-819.
doi: 10.1007/s00442-012-2330-z pmid: 3470819
[4] Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Simmons BL, Virginia RA, Fountain AG ( 2010). Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biology, 33, 897-907.
doi: 10.1007/s00300-010-0766-3
[5] Baptist F, Yoccoz NG, Choler P ( 2010). Direct and indirect control by snow cover over decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328, 397-410.
doi: 10.1007/s11104-009-0119-6
[6] Beniston M, Keller F, Goyette S ( 2003). Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for climate impacts studies. Theoretical and Applied Climatology, 74, 19-31.
doi: 10.1007/s00704-002-0709-1
[7] Berg B, McClaugherty C ( 2014). Plant Litter-Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer, Berlin.
[8] Berger TW, Duboc O, Djukic I, Tatzber M, Gerzabek MH, Zehetner F ( 2015). Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: Decay and nutrient release. Geoderma, 251, 92-104.
[9] Blok D, Elberling B, Michelsen A ( 2016). Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems, 19, 155-169.
doi: 10.1007/s10021-015-9924-3
[10] Bokhorst S, Metcalfe DB, Wardle DA ( 2013). Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology & Biochemistry, 62, 157-164.
doi: 10.1016/j.soilbio.2013.03.016
[11] Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA ( 2016). Understanding the dominant controls on litter decomposition. Journal of Ecology, 104, 229-238.
doi: 10.1111/1365-2745.12507
[12] Brooks PD, Williams MW ( 1999). Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrological Processes, 13, 2177-2190.
doi: 10.1002/(ISSN)1099-1085
[13] Carbognani M, Petraglia A, Tomaselli M ( 2014). Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant and Soil, 376, 277-290.
doi: 10.1007/s11104-013-1982-8
[14] Christenson LM, Mitchell MJ, Groffman PM ( 2010). Winter climate change implications for decomposition in northeastern forests, comparisons of sugar maple litter with herbivore fecal inputs. Global Change Biology, 16, 2589-2601.
doi: 10.1111/j.1365-2486.2009.02115.x
[15] Comerford DP, Schaberg PG, Templer PH, Socci AM, Campbell JL, Wallin KF ( 2013). Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia, 171, 261-269.
doi: 10.1007/s00442-012-2393-x
[16] Criquet S, Ferre E, Farnet AM, Le Petita J ( 2004). Annual dynamics of phosphatase activities in an evergreen oak litter: Influence of biotic and abiotic factors. Soil Biology and Biochemistry, 36, 1111-1118.
doi: 10.1016/j.soilbio.2004.02.021
[17] Edwards AC, Scalenghe R, Freppaz M ( 2007). Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quaternary International, 162- 163, 172-181.
doi: 10.1016/j.quaint.2006.10.027
[18] Fioretto A, Papa S, Curcio E, Sorrentino G, Fuggi A (2000). Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communis in a Mediterranean ecosystem. Soil Biology and Biochemistry, 32, 1847-1855.
[19] Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL ( 2001). Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry, 56, 191-213.
doi: 10.1023/A:1013024603959
[20] Guo JF, Yang YS, Chen GS, Lin P, Xie JS ( 2006). A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 42(4), 93-99.
doi: 10.3321/j.issn:1001-7488.2006.04.017
[ 郭剑芬, 杨玉盛, 陈光水, 林鹏, 谢锦升 ( 2006). 森林凋落物分解研究进展. 林业科学, 42(4), 93-100.]
doi: 10.3321/j.issn:1001-7488.2006.04.017
[21] He RL, Chen YM, Deng CC, Yang WQ, Zhang J, Liu Y ( 2015). Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season. Chinese Journal of Applied Ecology, 26, 723-731.
doi: 10.5846/stxb201311292844
[ 和润莲, 陈亚梅, 邓长春, 杨万勤, 张健, 刘洋 ( 2016). 雪被期川西高山林线交错带两种地被物凋落物分解与土壤动物多样性. 应用生态学报, 26, 723-731.]
doi: 10.5846/stxb201311292844
[22] He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY ( 2013). Effect of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316.
doi: 10.3724/SP.J.1258.2013.00030
[ 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 ( 2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
doi: 10.3724/SP.J.1258.2013.00030
[23] Hobbie SE ( 1992). Effects of plant species on nutrient cycling. Trends in Ecology and Evolution, 7, 336-339.
doi: 10.1016/0169-5347(92)90126-V pmid: 21236058
[24] Hobbie SE ( 1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522.
doi: 10.2307/2963492
[25] Hornsby DC, Lockaby BG, Chappelka AH ( 1995). Influence of microclimate on decomposition in loblolly pine stands: A field microcosm approach. Canadian Journal of Forest Research, 25, 1570-1577.
doi: 10.1139/x95-171
[26] Hu X, Wu N, Wu Y, Zuo WQ, Guo HX, Wang JN ( 2012). Effects of snow cover on the decomposition and nutrient dynamics of Sibiraea angustata leaf litter in western Sichuan plateau, Southwest China. Chinese Journal of Applied Ecology, 23, 1226-1232.
[ 胡霞, 吴宁, 吴彦, 左万庆, 郭海霞, 王金牛 ( 2012). 川西高原季节性雪被覆盖对窄叶鲜卑花凋落物分解和养分动态的影响. 应用生态学报, 23, 1226-1232.]
[27] IPCC (Intergovernmental Panel on Climate Change) (2007). Impacts,Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[28] Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB ( 2008). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11, 35-43.
doi: 10.1111/j.1461-0248.2007.01124.x pmid: 18021246
[29] Kreyling J, Haei M, Laudon H ( 2013). Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Canadian Journal of Soil Science, 93, 427-433.
doi: 10.4141/CJSS2012-025
[30] Lemma B, Nilsson I, Kleja DB, Olsson M, Knicker H ( 2007). Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology and Biochemistry, 39, 2317-2328.
doi: 10.1016/j.soilbio.2007.03.032
[31] Li H, Wu F, Yang W, Xu L, Ni X, He J, Tan B, Hu Y ( 2016). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7, 27.
doi: 10.3390/f7020027
[32] Liu RP, Mao ZJ, Li XH, Sun T, Li N, Lü HL, Liu CZ ( 2013). Effects of simulated temperature increase and vary little quality on litter decomposition. Acta Ecologica Sinica, 33, 5661-5667.
doi: 10.5846/stxb201304140704
[ 刘瑞鹏, 毛子军, 李兴欢, 孙涛, 李娜, 吕海亮, 刘传照 ( 2013). 模拟增温和不同凋落物基质质量对凋落物分解速率的影响. 生态学报, 33, 5661-5667.]
doi: 10.5846/stxb201304140704
[33] Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK ( 2011). Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 480, 368-371.
doi: 10.1038/nature10576 pmid: 22056985
[34] Madritch MD, Hunter MD ( 2003). Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia, 136, 124-128.
doi: 10.1007/s00442-003-1253-0 pmid: 12684853
[35] Olson JS ( 1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
doi: 10.2307/1932179
[36] Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE ( 2003). Five stages of the Alaskan Arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81.
doi: 10.1657/1523-0430(2003)035[0074:FSOTAA]2.0.CO;2
[37] Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément JC ( 2013). The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363, 215-229.
doi: 10.1007/s11104-012-1307-3
[38] Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K ( 2013). Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry, 116, 69-82.
doi: 10.1007/s10533-013-9882-9
[39] Templer PH, Schiller AF, Fuller NW, Socci AM, Campbell JL, Drake JE, Kunz TH ( 2012). Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils, 48, 413-424.
doi: 10.1007/s00374-011-0636-3
[40] Tomaselli M ( 1991). The snow-bed vegetation in the Northern Apennines. Vegetatio, 94, 177-189.
doi: 10.1007/BF00032630
[41] Uchida M, Mo W, Nakatsubo T, Tsuchiya Y, Horikoshi T, Koizumi H ( 2005). Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agricultural and Forest Meteorology, 134, 102-109.
doi: 10.1016/j.agrformet.2005.11.003
[42] Vanderbilt KL, White CS, Hopkins O, Craig JA ( 2008). Aboveground decomposition in arid environments: Results of a long-term study in central New Mexico. Journal of Arid Environments, 72, 696-709.
doi: 10.1016/j.jaridenv.2007.10.010
[43] Ven?l?inen A, Tuomenvirta H, Heikinheimo M, Kellom?ki S, Peltola H, Strandman H, V?is?nen H ( 2001). Impact of climate change on soil frost under snow cover in a forested landscape. Climate Research, 17, 63-72.
doi: 10.3354/cr017063
[44] Vossbrinck CR, Coleman DC, WooHey TA ( 1979). Abiotic and biotic factors in litter decomposition in semiarid grassland. Ecology, 60, 265-271.
doi: 10.2307/1937654
[45] Wang C, Han Y, Chen J, Wang X, Zhang Q, Bond-Lamberty B ( 2013). Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles. Agricultural and Forest Meteorology, 177, 83-92.
doi: 10.1016/j.agrformet.2013.04.008
[46] Wu FZ, Yang WQ, Zhang J, Deng R ( 2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140.
doi: 10.1016/j.actao.2009.11.002
[47] Wu P, Wang XP, Zhang XP, Zhu B, Zhou HC, Fang JY ( 2016). Effects of climate, forest type and light availability on litter decomposition rate in forests of Northeast China. Acta Ecologica Sinica, 36, 2223-2232.
doi: 10.5846/stxb201410101991
[ 吴鹏, 王襄平, 张新平, 朱彪, 周海城, 方精云 ( 2016). 东北地区森林凋落叶分解速率与气候, 林型, 林分光照的关系. 生态学报, 36, 2223-2232.]
doi: 10.5846/stxb201410101991
[48] Wu QQ, Wu FZ, Yang WQ, Zhao YY, He W, He M, Zhu JX ( 2015). Effect of snow cover on phosphorus release from leaf litter in the alpine forest in eastern Qinghai-Tibet Plateau. Acta Ecologica Sinica, 35, 4115-4127.
[ 武启骞, 吴福忠, 杨万勤, 赵野逸, 何伟, 何敏, 朱剑霄 ( 2015). 冬季雪被对青藏高原东缘高海拔森林凋落叶P元素释放的影响. 生态学报, 35, 4115-4127.]
[49] Yang JY, Wang CK ( 2005). Soil carbon storage and flux of temperate forest ecosystems in northeastern China. Acta Ecologica Sinica, 25, 2875-2882.
doi: 10.3321/j.issn:1000-0933.2005.11.012
[ 杨金艳, 王传宽 ( 2005). 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 25, 2875-2882.]
doi: 10.3321/j.issn:1000-0933.2005.11.012
[50] Zhang QZ, Wang CK ( 2010). Carbon density and distribution of six Chinese temperate forests. Science China Life Sciences, 53, 831-840.
doi: 10.1007/s11427-010-4026-0 pmid: 20697872
[51] Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY ( 2008). Litter fall production in relation to environmental factors in Northeast China's forests. Journal of Plant Ecology (Chinese Version), 32, 1031-1040.
doi: 10.3773/j.issn.1005-264x.2008.05.008
[ 张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 ( 2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.]
doi: 10.3773/j.issn.1005-264x.2008.05.008
[52] Zheng JQ, Han SJ ( 2016). Nitrogen transfer in the litter-soil interface continuum of the temperate forest. Journal of Beijing Forestry University, 38, 116-122.
doi: 10.13332/j.1000-1522.20150438
[ 郑俊强, 韩士杰 ( 2016). 氮在凋落物-土壤界面连续体转移研究进展. 北京林业大学学报, 38, 116-122.]
doi: 10.13332/j.1000-1522.20150438
[53] Zhu JX, He XH, Wu FZ, Yang W, Tan B ( 2012). Decomposition of Abies faxoniana litter varies with freeze-thaw stages and altitudes in subalpine/alpine forests of southwest China. Scandinavian Journal of Forest Research, 27, 586-596.
doi: 10.1080/02827581.2012.670726
[1] E BAI Bing Xue. A review of influences of land use and land cover change on ecosystems [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] HU Wan,ZHANG Zhi-Yong,CHEN Lu-Dan,PENG Yan-Song,WANG Xu. Changes in potential geographical distribution of Tsoongiodendron odorum since the Last Glacial Maximum [J]. Chin J Plant Ecol, 2020, 44(1): 44-55.
[3] ZOU An-Long,LI Xiu-Ping,NI Xiao-Feng,JI Cheng-Jun. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China [J]. Chin J Plant Ecol, 2019, 43(9): 783-792.
[4] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[5] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[6] LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283.
[7] JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China [J]. Chin J Plant Ecol, 2019, 43(4): 320-330.
[8] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319.
[9] WANG Huan-Jiong, TAO Ze-Xing, GE Quan-Sheng. Effects of climate variation on the first leaf dates of 39 woody species and their thermal requirements in Xi’an, China [J]. Chin J Plant Ecol, 2019, 43(10): 877-888.
[10] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[11] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[12] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[13] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[14] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
[15] Xiaoyu Wu,Shikui Dong,Shiliang Liu,Quanru Liu,Yuhui Han,Xiaolei Zhang,Xukun Su,Haidi Zhao,Jing Feng. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model [J]. Biodiv Sci, 2018, 26(2): 138-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[7] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[8] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[9] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[10] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .