Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (2): 164-172.doi: 10.17521/cjpe.2017.0203

• Research Articles • Previous Articles     Next Articles

Response of fine roots to precipitation change: A meta-analysis

ZHANG Xin1,XING Ya-Juan1,2,YAN Guo-Yong1,WANG Qing-Gui1,*()   

  1. 1 College of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, China
    2 Institute of Forestry Science of Heilongjiang Province, Harbin 150081, China
  • Online:2018-04-16 Published:2018-02-20
  • Contact: Qing-Gui WANG E-mail:qgwang1970@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(41773075);the National Basic Research Priorities Program of the Ministry of Science and Technology of China(2014FY11060);the Key Projects of Natural Science Foundation of Heilongjiang Province(ZD201406)

Abstract:

Aims The response of fine roots to soil moisture is very sensitive. Climate change scenarios predict changes in precipitation which influence soil moisture directly. Plants optimize resource acquisition by fine root morphological plasticity and biomass redistribution when soil moisture changes. Therefore, it is important to study the effect of precipitation increase and decrease on fine roots and reveal the response of ecosystem carbon cycling to global climate change.

Methods We collected 202 sets of data from 48 published domestic and foreign articles, and analized the responses of fine root biomass, production, turnover, root length density, specific root length and soil microbial biomass carbon which reflects fine root decomposition dynamic to precipitation change by the meta-analysis. RR++ (weighted response ratio) was used to quantify the effect size of the response of fine roots to precipitation change.

Important findings (1) The significance and magnitude of the precipitation effects on fine roots varied among plant types. Shrub fine roots had stronger response than tree fine roots. (2) The response of fine roots differed across soil depth. Fine root had most significant responses when the precipitation increased or decreased 50%. A 50% increase in precipitation had a significant positive impact on both fine root biomass in 20-40 cm soil and specific root length in 0-10 cm soil depth. A 50% decreased in precipitation had a significant negative impact on fine root production in 20-40 cm soil but positive impact on root length density in 0-10 cm soil. (3) The duration of experiment affected the response of fine roots, fine roots responded to precipitation changes (increase and decrease) by morphological plasticity in short-term experiments, and by biomass redistribution in long-term experiments. (4) Increasing precipitation contributed to the nutrient release of fine roots, because soil microbes accelerated the decomposability of fine roots due to sufficient substrate resources stimulated their own activity.

Key words: precipitation change, fine root biomass, production, root length density, specific root length, fine root decomposition, meta-analysis

Fig. 1

Weighted response ratio of increasing (A) or reducing (B) precipitation on fine root of different plant type and soil microbial biomass carbon. The variables are categorized into different groups depending on plant types. The number in parentheses represents the sample size for each variable. Error bars represent 95% confidence intervals. MBC, soil microbial biomass carbon; RLD, root length density; SRL, specific root length."

Fig. 2

Weighted response ratio (RR++) of different increasing (A) or reducing (B) precipitation amount on each soil layer fine root. The variables are categorized into different groups depending on duration. The number in parentheses represents the sample size for each variable. Error bars represent 95% confidence intervals. RLD, root length density; SRL, specific root length."

Fig. 3

Weighted response ratio (RR++) of increasing (A) or reducing (B) precipitation on fine root and soil microbial biomass carbon under different duration of experiment . The variables are categorized into different groups depending on duration. The number in parentheses represents the sample size for each variable. Error bars represent 95% confidence intervals. MBC, soil microbial biomass carbon; RLD, root length density; SRL, specific root length."

[1] Ansley RJ, Boutton TW, Jacoby PW ( 2014). Root biomass and distribution patterns in a semi-arid mesquite savanna: Responses to long-term rainfall manipulation. Rangeland Ecology & Management, 67, 206-218.
doi: 10.2111/REM-D-13-00119.1
[2] Bai W, Wan S, Niu S, Liu W, Chen Q, Wang Q, Zhang W, Han X, Li L ( 2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 16, 1306-1316.
doi: 10.1111/j.1365-2486.2009.02019.x
[3] Berg B, McClaugherty C ( 2003). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, Berlin.
[4] Bloomfield J, Vogt DJ ( 1993). Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil, 150, 233-245.
doi: 10.1007/BF00013020
[5] Chang WJ, Guo DL ( 2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forest in China. Journal of Plant Ecology (Chinese Version), 32, 1248-1257.
doi: 10.3773/j.issn.1005-264x.2008.06.005
[ 常文静, 郭大立 ( 2008). 中国温带、亚热带和热带森林45个常见树种细根直径变异. 植物生态学报, 32, 1248-1257.]
doi: 10.3773/j.issn.1005-264x.2008.06.005
[6] Chapin FSI, Matson PAI, Mooney HA ( 2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York.
[7] Chen G, Yang Y, Robinson D ( 2013). Allocation of gross primary production in forest ecosystems: Allometric constraints and environmental responses. New Phytologist, 200, 1176-1186.
doi: 10.1111/nph.12426 pmid: 23902539
[8] Chen MT, Zhao Z ( 2011). Effect of drought on root characteristics and mass allocation in each part of seedlings of four tree species. Journal of Beijing Forest University, 33(1), 16-22.
[ 陈明涛, 赵忠 ( 2011). 干旱对四种苗木根系特征及各部分物质分配的影响. 北京林业大学学报, 33(1), 16-22.]
[9] Chen X, Zhang D, Liang G, Qiu Q, Liu J, Zhou G, Liu J, Zhou G, Liu S, Chu G, Yan J ( 2015). Effects of precipitation on soil organic carbon fractions in three subtropical forests in southern China. Journal of Plant Ecology, 9, 10-19.
[10] Coleman M ( 2007). Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant and Soil, 299, 195-213.
doi: 10.1007/s11104-007-9375-5
[11] de Visser PHB, Beier C, Rasmussen L, Kreutzer K, Steinberg N, Bredemeier M, Blanck K, Farrell EP, Cummins T ( 1994). Biological response of ?ve forest ecosystems in the EXMAN project to input changes of water, nutrients and atmospheric loads. Forest Ecology, 68, 15-29.
doi: 10.1016/0378-1127(94)90134-1
[12] Dong BF ( 2015). Root distribution characteristics of three kinds of forest lands in loess hilly region of northern Shaanxi. Journal of Changjiang Engineering Vocational College, 4, 24-26.
doi: 10.14079/j.cnki.cn42-1745/tv.2015.04.011
[ 董宾芳 ( 2015). 陕北黄土丘陵区三种林地根系分布特征. 长江工程职业技术学院学报, 4, 24-26.]
doi: 10.14079/j.cnki.cn42-1745/tv.2015.04.011
[13] Fiala K, T?ma I, Holub P ( 2009). Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems. Ecosystems, 12, 906-914.
doi: 10.1007/s10021-009-9264-2
[14] Fiala K, T?ma I, Holub P ( 2012). Interannual variation in root production in grasslands affected by artificially modified amount of rainfall. The Scientific World Journal, 2, 805298. DOI: 10.1100/2012/805298.
doi: 10.1100/2012/805298 pmid: 3353563
[15] Ford CR, McGee J, Scandellari F, Hobbie EA, Mitchell RJ ( 2012). Long- and short-term precipitation effects on soil CO2 efflux and total belowground carbon allocation. Agricultural and Forest Meteorology, 156, 54-64.
doi: 10.1016/j.agrformet.2011.12.008
[16] García-Palacios P, Prieto I, Ourcival JM, H?ttenschwiler S ( 2016). Disentangling the litter quality and soil microbial contribution to leaf and fine root litter decomposition responses to reduced rainfall. Ecosystems, 19, 490-503.
doi: 10.1007/s10021-015-9946-x
[17] Gei MG, Powers JS ( 2015). The influence of seasonality and species effects on surface fine roots and nodulation in tropical legume tree plantations. Plant and Soil, 388, 187-196.
doi: 10.1007/s11104-014-2324-1
[18] Han YY, Ye YH, Wang ZH, Wei LP, Lin L ( 2014). Root biomass, specific root length and root length density of Sophora moorcroftian in Tibet. Journal of Northeast Forestry University, 42(2), 39-41.
doi: 10.3969/j.issn.1000-5382.2014.02.010
[ 韩艳英, 叶彦辉, 王贞红, 魏丽萍, 林玲 ( 2014). 西藏砂生槐根系生物量、比根长和根长密度. 东北林业大学学报, 42(2), 39-41.]
doi: 10.3969/j.issn.1000-5382.2014.02.010
[19] Hedges LV, Gurevitch J, Curtis PS ( 2008). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156.
doi: 10.2307/177062
[20] Herzog C, Steffen J, Pannatier EG, Hajdas I, Brunner I ( 2014). Nine years of irrigation cause vegetation and fine root shifts in a water-limited pine forest. PLOS ONE, 9, e96321. DOI: 10.1371/journal.pone.0096321.
doi: 10.1371/journal.pone.0096321 pmid: 4011741
[21] Hertel D, Strecker T, Müller-Haubold H, Leuschner C ( 2013). Fine root biomass and dynamics in beech forests across a precipitation gradient—Is optimal resource partitioning theory applicable to water-limited mature trees? Journal of Ecology, 101, 1183-1200.
doi: 10.1111/1365-2745.12124
[22] Hu JZ, Zheng JL, Shen JY ( 2005). Discussion of root ecological niche and root distribution characteristics of artificial phyto-communities in rehabilitated fields. Acta Ecologica Sinica, 25, 481-490.
doi: 10.3321/j.issn:1000-0933.2005.03.015
[ 胡建忠, 郑佳丽, 沈晶玉 ( 2005). 退耕地人工植物群落根系生态位及其分布特征. 生态学报, 25, 481-490.]
doi: 10.3321/j.issn:1000-0933.2005.03.015
[23] Imada S, Taniguchi T, Acharya K, Yamanaka N ( 2013). Vertical distribution of fine roots of Tamarix ramosissima in an arid region of southern Nevada. Journal of Arid Environments, 92(3), 46-52.
[24] IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DPlattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press Cambridge, UK.
[25] Jerbi A, Nissim WG, Fluet R, Labrecque M ( 2015). Willow root development and morphology changes under different irrigation and fertilization regimes in a vegetation filter. Bioenergy Research, 8, 775-787.
doi: 10.1007/s12155-014-9550-5
[26] Jiang H, Bai Y, Du H, Hu Y, Rao Y, Chen C, Cai Y ( 2016). The spatial and seasonal variation characteristics of fine roots in different plant configuration modes in new reclamation saline soil of humid climate in China. Ecological Engineering, 86, 231-238.
doi: 10.1016/j.ecoleng.2015.11.020
[27] Kong DL, Lü XT, Jiang LL, Wu HF, Miao Y, Kardol P ( 2013). Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment. Biogeosciences, 10, 8129-8138.
doi: 10.5194/bg-10-8129-2013
[28] Kon?pka B, Lukac M, Andrea V ( 2012). Moderate drought alters biomass and depth distribution of fine roots in Norway spruce. Forest Pathology, 43, 115-123.
doi: 10.1111/efp.12005
[29] Larsen KS, Jonasson S, Michelsen A ( 2002). Repeated freeze thaw cycles and their effects on biological processes in two arctic ecosystem types. Applied Soil Ecology, 21, 187-195.
doi: 10.1016/S0929-1393(02)00093-8
[30] Li YL, Yang FF, Ou YX, Zhang DQ, Liu JX, Chu GW, Zhang YR, Otieno D, Zhou GY ( 2013). Changes in forest soil properties in different successional stages in lower tropical China. PLOS ONE, 8, e81359. DOI: 10.1371/journal.pone.0081359.
doi: 10.1371/journal.pone.0081359 pmid: 24244738
[31] Lin Y, Hu HT, Qiu LJ, Lin SZ, He ZM, Zhang Y, Huang Z, Huang XY ( 2017). Microbial biomass and its influence factors in topsoil of three different plantations on a sandy coastal plain. Journal of Northeast Forestry University, 5, 85-90.
[ 林宇, 胡欢甜, 邱岭军, 林思祖, 何宗明, 张勇, 黄政, 黄秀勇 ( 2017). 滨海沙地3种人工林表层土壤微生物量及其影响因素. 东北林业大学学报, 5, 85-90.]
[32] Liu Y, Liu S, Wan S, Wang J, Wang H, Liu K ( 2017). Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest. The Science of the Total Environment, 574, 1448-1455.
doi: 10.1016/j.scitotenv.2016.08.116 pmid: 27693152
[33] Luo D, Liu S, Shi ZM, Feng QH, Liu QL, Zhang L, Huang Q, He JS ( 2017). Soil microbial community structure in Picea asperata plantations with different ages in subalpine of western Sichuan, Southwest China. Chinese Journal of Applied Ecology, 28, 519-527.
doi: 10.13287/j.1001-9332.201702.028
[ 罗达, 刘顺, 史作民, 冯秋红, 刘千里, 张利, 黄泉, 何建社 ( 2017). 川西亚高山不同林龄云杉人工林土壤微生物群落结构. 应用生态学报, 28, 519-527.]
doi: 10.13287/j.1001-9332.201702.028
[34] Martin PH, Sherman RE, Fahey TJ ( 2004). Forty years of tropical forest recovery from agriculture: Structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica, 36, 297-317.
doi: 10.1111/j.1744-7429.2004.tb00322.x
[35] McClaugherthy CA, Aber JD, Melillo JM ( 1982). The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology, 63, 1481-1490.
doi: 10.2307/1938874
[36] McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo D, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Lepp?lammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M ( 2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
doi: 10.1111/nph.13363 pmid: 25756288
[37] Moser G, Leuschner C, Hertel D, H?lscher D, K?hler M, Leitner D, Michalzik B, Prihastanti E, Tjitrosemito S, Schwendenmann L ( 2010). Response of cocoa trees ( Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agroforestry Systems, 79, 171-187.
doi: 10.1007/s10457-010-9303-1
[38] Moser G, Schuldt B, Hertel D, Horna V, Coners H, Barus H, Leuschner C ( 2014). Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: Wood production, litter fall and fine root growth under simulated drought. Global Change Biology, 20, 1481-1497.
doi: 10.1111/gcb.12424 pmid: 24115242
[39] Olesinski J, Lavigne MB, Krasowski MJ ( 2011). Effects of soil moisture manipulations on fine root dynamics in a mature balsam fir ( Abies balsamea L. Mill.) forest. Tree Physiology, 31, 339-348.
[40] Ostertag R, Marín-Spiotta E, Silver WL, Schulten J ( 2008). Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems, 11, 701-714.
doi: 10.1007/s10021-008-9152-1
[41] Starr G, Oberbauer SF ( 2008). Photosynthesis of Arctic evergreens under snow implications for tundra ecosystem carbon balance. Ecology, 84, 1415-1420.
doi: 10.1890/02-3154
[42] Taylor JP, Wilson B, Mills MS, Burns RG ( 2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology & Biochemistry, 34, 387-401.
doi: 10.1016/S0038-0717(01)00199-7
[43] Verburg PS, Young AC, Stevenson BA, Glanzmann I, Arnone JA, Marion GM, Holmes C, Nowak RS ( 2013). Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem? Global Change Biology, 19, 948-956.
doi: 10.1111/gcb.12082 pmid: 23504850
[44] Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H ( 1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type, and species. Plant and Soil, 187, 159-219.
[45] Wu ZC, Wu FZ, Yang WQ, Wei YY, Wang A, Liu JL ( 2012). Dynamics of soil microbial biomass during early fine roots decomposition of three species in alpine region. Acta Ecologica Sinica, 32, 4094-4102.
[ 武志超, 吴福忠, 杨万勤, 魏圆云, 王奥, 刘金玲 ( 2012). 高山森林三种细根分解初期微生物生物量动态. 生态学报, 32, 4094-4102.]
[46] Yuan ZY, Chen H ( 2010). Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and meta-analyses. Critical Reviews in Plant Sciences, 29, 204-21.
doi: 10.1080/07352689.2010.483579
[47] Zhang JR, Zhang LY, Liu F, Yao B ( 2014). Research progress in effect of rainfall on soil microbe in arid and semi-arid area. World Forest Research, 27(4), 6-12.
doi: 10.13348/j.cnki.sjlyyj.2014.04.002
[ 张静茹, 张雷一, 刘方, 姚斌 ( 2014). 降雨对干旱半干旱地区土壤微生物影响研究进展. 世界林业研究, 27(4), 6-12.]
doi: 10.13348/j.cnki.sjlyyj.2014.04.002
[48] Zhong BY, Xiong DC, Shi SZ, Feng JX, Xu CS, Deng F, Chen YY, Chen GS ( 2016). Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings. Chinese Journal of Applied Ecology, 27, 2807-2814.
doi: 10.13287/j.1001-9332.201609.023
[ 钟波元, 熊德成, 史顺增, 冯建新, 许辰森, 邓飞, 陈云玉, 陈光水 ( 2016). 隔离降水对杉木幼苗细根生物量和功能特征的影响. 应用生态学报, 27, 2807-2814.]
doi: 10.13287/j.1001-9332.201609.023
[49] Zi H, Xiang Z, Wang G, Luji A, Wang C ( 2017). Profile of soil microbial community under different stand types in Qinghai Province. Scientia Silvae Sinicae, 53(3), 21-32.
[1] Xue-Fei LIU Lin Wu Hang Wang Liu Hong Li-Jun Xiong. Study on the growth and decomposition characteristics of Sphagnum in a subalpine wetland, southwestern Hubei, China [J]. Chin J Plant Ecol, 2020, 44(预发表): 0-0.
[2] Youting Ye. Effects of Global Change on Key Processes of Primary Production in Marine Ecosystems [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[3] Feng Feng,Zhan Yong,Tian Zhixi. The Feasibility and Recommendation for Improving Soybean Production in Xinjiang [J]. Chin Bull Bot, 2020, 55(2): 199-204.
[4] ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21.
[5] LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470.
[6] LIU Lu, ZHAO Chang-Ming, XU Wen-Ting, SHEN Guo-Zhen, XIE Zong-Qiang. Litter dynamics of evergreen deciduous broad-leaved mixed forests and its influential factors in Shennongjia, China [J]. Chin J Plan Ecolo, 2018, 42(6): 619-628.
[7] Shi Ce, Luo Pan, Zou Jie, Sun Mengxiang. The Role of DELLA Proteins in Sexual Reproduction of Angiosperms [J]. Chin Bull Bot, 2018, 53(6): 745-755.
[8] Guo Shulei, Zhang Jun, Qi Jianshuang, Yue Runqing, Han Xiaohua, Yan Shufeng, Lu Caixia, Fu Xiaolei, Chen Nana, Ku Lixia, Tie Shuanggui. Analysis of Meta-quantitative Trait Loci and Their Candidate Genes Related to Leaf Shape in Maize [J]. Chin Bull Bot, 2018, 53(4): 487-501.
[9] Chao-Yang FENG, He-Song WANG, Jian-xin SUN. Temporal changes of vegetation water use efficiency and its influencing factors in Northern China [J]. Chin J Plan Ecolo, 2018, 42(4): 453-465.
[10] LI Xu-Hua, SUN Osbert Jianxin. Testing parameter sensitivities and uncertainty analysis of Biome-BGC model in simulating carbon and water fluxes in broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2018, 42(12): 1131-1144.
[11] Ya-Lin WANG, Rong GONG, Feng-Min WU, Wen-Wu FAN. Temporal and spatial variation characteristics of China shrubland net primary production and its response to climate change from 2001 to 2013 [J]. Chin J Plan Ecolo, 2017, 41(9): 925-937.
[12] Xiao LIU, Chao QI, Yi-Lan YAN, Guo-Fu YUAN. Revised algorithm of ecosystem water use efficiency for semi-arid steppe in the Loess Plateau of China [J]. Chin J Plan Ecolo, 2017, 41(5): 497-505.
[13] Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings [J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
[14] YANG Qing-Xiao, TIAN Da-Shuan, ZENG Hui, NIU Shu-Li. Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes [J]. Chin J Plan Ecolo, 2017, 41(12): 1239-1250.
[15] Guan-Tao CHEN, Yong PENG, Jun ZHENG, Shun LI, Tian-Chi PENG, Xi-Rong QIU, Li-Hua TU. Effects of short-term nitrogen addition on fine root biomass, lifespan and morphology of Castanopsis platyacantha in a subtropical secondary evergreen broad-leaved forest [J]. Chin J Plan Ecolo, 2017, 41(10): 1041-1050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Qin Wei-cheng Li Jian-zhong. The Application Effects of the Cold-resister CR-4 in Our Area's Rice Seedling Culture[J]. Chin Bull Bot, 1994, 11(特辑): 102 -104 .
[2] Ningguang Dong, Ying Gao, Wei Wang, Weilun Yin, Dong Pei. Immunogold Silver Localization of Indole-3-acetic Acid (IAA) During the Rhizogenesis of In Vitro Poplar[J]. Chin Bull Bot, 2011, 46(3): 324 -330 .
[3] HONG Wei CAO Jia-Shu. The Function of FLC in Vernalization Process[J]. Chin Bull Bot, 2002, 19(04): 406 -411 .
[4] . Development and Utilization of Plant Resources II[J]. Chin Bull Bot, 1994, 11(02): 53 -57 .
[5] FAN Qing-Shu ZHAO Jian-Cheng YU Shu-Hong LI Xiu-Qin. Progress in Study on Spore Germination and Protonema Development of the Bryophytes[J]. Chin Bull Bot, 2003, 20(03): 280 -286 .
[6] LIU Jian-Wu LIU Ning. The Progress in Study on Development of Fern Gametophytes and Differentiation of Sex Organ[J]. Chin Bull Bot, 2001, 18(02): 149 -157 .
[7] An Cheng-xi. Studies on the Chemical Constituents of Essential of Aiania-Tanuifolia[J]. Chin Bull Bot, 1997, 14(增刊): 74 -76 .
[8] Nie Wei. Observation on some Biological Characteristics of Juncellus serotinus in Transplanted Rice[J]. Chin Bull Bot, 1988, 5(01): 34 -36 .
[9] . Mechanism of Plant Photosynthetic Acclimation to Elevated Atmospheric CO2[J]. Chin Bull Bot, 2005, 22(04): 486 -493 .
[10] WEI Ze-Xiu, LIANG Yin-Li, YAMADA Satoshi, ZENG Xing-Quan, ZHOU Mao-Juan, HUANG Mao-Lin, WU Yan. RELATION OF SOIL MICROBIAL DIVERSITY TO TOMATO YIELD AND QUALITY UNDER DIFFERENT SOIL WATER CONDITIONS AND FERTILIZATIONS[J]. Chin J Plan Ecolo, 2009, 33(3): 580 -586 .