Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (9): 984-994.DOI: 10.17521/cjpe.2021.0409
• Reviews • Previous Articles Next Articles
ZOU Jin-Lian, ZHANG Zhi-Qiang()
Received:
2021-11-12
Accepted:
2022-03-28
Online:
2022-09-20
Published:
2022-10-19
Contact:
ZHANG Zhi-Qiang
Supported by:
ZOU Jin-Lian, ZHANG Zhi-Qiang. Application and progress of sexual selection and sexual conflict theory in plant reproductive evolutionary ecology[J]. Chin J Plant Ecol, 2022, 46(9): 984-994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0409
[1] |
Adhikari PB, Liu XY, Wu XY, Zhu SW, Kasahara RD (2020). Fertilization in flowering plants: an odyssey of sperm cell delivery. Plant Molecular Biology, 103, 9-32.
DOI URL |
[2] |
Alonzo SH, Servedio MR (2019). Grey zones of sexual selection: Why is finding a modern definition so hard? Proceedings of the Royal Society B: Biological Sciences, 286, 20191325. DOI: 10.1098/rspb.2019.1325.
DOI |
[3] |
Althiab-Almasaud R, Chen Y, Maza E, Djari A, Frasse P, Mollet JC, Chervin C (2021). Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall remodeling and calcium gradient. The Plant Journal, 107, 893-908.
DOI PMID |
[4] | Arnold SJ (1994). Is there a unifying concept of sexual selection that applies to both plants and animals? The American Naturalist, 144, S1-S12. |
[5] | Bai WN, Zhang DY (2005). Sexual interference in cosexual plants and its evolutionary implications. Acta Phytoecologica Sinica, 29, 672-679. |
[白伟宁, 张大勇 (2005). 雌雄同体植物的性别干扰及其进化意义. 植物生态学报, 29, 672-679.]
DOI |
|
[6] |
Barrett SCH (2002). The evolution of plant sexual diversity. Nature Reviews Genetics, 3, 274-284.
PMID |
[7] |
Barrett SCH, Harder LD (2017). The ecology of mating and its evolutionary consequences in seed plants. Annual Review of Ecology, Evolution, and Systematics, 48, 135-157.
DOI URL |
[8] | Bateman AJ (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349-368. |
[9] |
Beekman M, Nieuwenhuis B, Ortiz-Barrientos D, Evans JP (2016). Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20150541. DOI: 10.1098/rstb.2015.0541.
DOI |
[10] | Bell JM, Karron JD, Mitchell RJ (2005). Interspecific competition for pollination lowers seed production and outcrossing in Mimulus ringens. Ecology, 86, 762-771. |
[11] |
Bernasconi G, Ashman TL, Birkhead TR, Bishop JDD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh DW, Hellriegel B (2004). Evolutionary ecology of the prezygotic stage. Science, 303, 971-975.
DOI URL |
[12] |
Camargo ID, Nattero J, Careaga SA, Núñez-Farfán J (2017). Flower-level developmental plasticity to nutrient availability in Datura stramonium: implications for the mating system. Annals of Botany, 120, 603-615.
DOI PMID |
[13] |
Christopher DA, Mitchell RJ, Karron JD (2020). Pollination intensity and paternity in flowering plants. Annals of Botany, 125, 1-9.
DOI PMID |
[14] | Cruzan MB (1990). Variation in pollen size, fertilization ability, and postfertilization siring ability in Erythronium grandiflorum. Evolution, 44, 843-856. |
[15] | Dai C, Galloway LF (2012). Male flowers are better fathers than hermaphroditic flowers in andromonoecious Passiflora incarnata. New Phytologist, 193, 787-796. |
[16] | Darwin C (1859). On the Origins of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. J Murray, London. |
[17] | Darwin C (1871). The Descent of Man and Selection in Relation to Sex. J Murray, London. |
[18] |
Delph LF, Ashman TL (2006). Trait selection in flowering plants: How does sexual selection contribute? Integrative and Comparative Biology, 46, 465-472.
DOI PMID |
[19] | Delph LF, Gehring JL, Arntz AM, Levri M, Frey FM (2005). Genetic correlations with floral display lead to sexual dimorphism in the cost of reproduction. The American Naturalist, 166, S31-S41. |
[20] |
Delph LF, Gehring JL, Frey FM, Arntz AM, Levri M (2004). Genetic constraints on floral evolution in a sexually dimorphic plant revealed by artificial selection. Evolution, 58, 1936-1946.
PMID |
[21] |
Duffy KJ, Mdlalose ZM, Johnson SD (2021). Sexual conflict in hermaphroditic flowers of an African Aloe. International Journal of Plant Sciences, 182, 238-243.
DOI URL |
[22] |
Fisher RA (1915). The evolution of sexual preference. The Eugenics Review, 7, 184-192.
PMID |
[23] | Goran A, Locke R (2005). Sexual Conflict. Princeton University Press, Princeton. |
[24] |
He YP, Duan YW, Liu JQ, Smith WK (2005). Floral closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau. Plant Systematics and Evolution, 256, 17-33.
DOI URL |
[25] |
Huang SQ, Wang XP, Sun SG (2016). Are long corolla tubes in Pedicularis driven by pollinator selection? Journal of Integrative Plant Biology, 58, 698-700.
DOI URL |
[26] |
Kokko H, Jennions MD (2014). The relationship between sexual selection and sexual conflict. Cold Spring Harbor Perspectives in Biology, 6, a017517. DOI: 10.1101/cshperspect.a017517.
DOI |
[27] | Kraus E (2010). A Review of Sexual Conflict Theory: the Battle of the Sexes. Master degree dissertation, Kansas State University, Kansas. 1-19. |
[28] |
Kyogoku D, Kataoka Y, Kondoh M (2019). Who determines the timing of inflorescence closure of a sexual dandelion? Pollen donors versus recipients. Evolutionary Ecology, 33, 701-712.
DOI URL |
[29] |
Lankinen Å, Armbruster WS, Antonsen L (2007). Delayed stigma receptivity in Collinsia heterophylla (Plantaginaceae): genetic variation and adaptive significance in relation to pollen competition, delayed self-pollination, and mating-system evolution. American Journal of Botany, 94, 1183-1192.
DOI PMID |
[30] |
Lankinen Å, Hellriegel B, Bernasconi G (2006). Sexual conflict over floral receptivity. Evolution, 60, 2454-2465.
PMID |
[31] |
Lankinen Å, Hydbom S, Strandh M (2017). Sexually antagonistic evolution caused by male-male competition in the pistil. Evolution, 71, 2359-2369.
DOI PMID |
[32] |
Lankinen Å,Karlsson Green K (2015). Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution. AoB PLANTS, 7, plv008. DOI: 10.1093/aobpla/plv008.
DOI |
[33] |
Lankinen A, Kiboi S (2007). Pollen donor identity affects timing of stigma receptivity in Collinsia heterophylla (Plantaginaceae): a sexual conflict during pollen competition? The American Naturalist, 170, 854-863.
DOI PMID |
[34] |
Lankinen Å, Maad J, Armbruster WS (2009). Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): one-donor crosses reveal heritability but no effect on sporophytic-offspring fitness. Annals of Botany, 103, 941-950.
DOI PMID |
[35] |
Lankinen Å, Madjidian JA (2011). Enhancing pollen competition by delaying stigma receptivity: pollen deposition schedules affect siring ability, paternal diversity, and seed production in Collinsia heterophylla (Plantaginaceae). American Journal of Botany, 98, 1191-1200.
DOI PMID |
[36] |
Lankinen Å, Smith HG, Andersson S, Madjidian JA (2016). Selection on pollen and pistil traits during pollen competition is affected by both sexual conflict and mixed mating in a self-compatible herb. American Journal of Botany, 103, 541-552.
DOI PMID |
[37] |
Lankinen Å, Strandh M (2016). Differential selection on pollen and pistil traits in relation to pollen competition in the context of a sexual conflict over timing of stigma receptivity. AoB PLANTS, 8, plw061. DOI: 10.1093/aobpla/plw061.
DOI |
[38] |
Lankinen Å, Strandh M (2019). Can sexual selection cause divergence in mating system-related floral traits? International Journal of Plant Sciences, 180, 996-1003.
DOI URL |
[39] | Liao WJ, Zhang QG, Zhang DY (2003). A preliminary study on the reproductive features of Veratrum nigrum along an altitudinal gradient. Acta Phytoecologica Sinicae, 27, 240-248. |
[廖万金, 张全国, 张大勇 (2003). 不同海拔藜芦种群繁殖特征的初步研究. 植物生态学报, 27, 240-248.]
DOI |
|
[40] |
Lloyd DG, Yates JMA (1982). Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified by Wahlenbergia albomarginata (Campanulaceae). Evolution, 36, 903-913.
DOI URL |
[41] |
Lobaton J, Andrew R, Duitama J, Kirkland L, Macfadyen S, Rader R (2021). Using RNA-seq to characterize pollen-stigma interactions for pollination studies. Scientific Reports, 11, 6635. DOI: 10.1038/s41598-021-85887-y.
DOI |
[42] | Lynn A, Piotter E, Harrison E, Galen C (2020). Sexual and natural selection on pollen morphology in Taraxacum. American Journal of Botany, 107, 364-374. |
[43] |
Madjidian JA, Hydbom S, Lankinen Å (2012). Influence of number of pollinations and pollen load size on maternal fitness costs in Collinsia heterophylla: implications for existence of a sexual conflict over timing of stigma receptivity. Journal of Evolutionary Biology, 25, 1623-1635.
DOI PMID |
[44] |
Madjidian JA, Lankinen A (2009). Sexual conflict and sexually antagonistic coevolution in an annual plant. PLOS ONE, 4, e5477. DOI: 10.1371/journal.pone.0005477.
DOI |
[45] |
Marshall DL, Evans AS (2016). Can selection on a male mating character result in evolutionary change? A selection experiment on California wild radish, Raphanus sativus, American Journal of Botany, 103, 553-567.
DOI PMID |
[46] |
Mayfield JA, Fiebig A, Johnstone SE, Preuss D (2001). Gene families from the Arabidopsis thaliana pollen coat proteome. Science, 292, 2482-2485.
DOI URL |
[47] |
Mays HL Jr, Hill GE (2004). Choosing mates: good genes versus genes that are a good fit. Trends in Ecology & Evolution, 19, 554-559.
DOI URL |
[48] |
Mazer SJ, Hendrickson BT, Chellew JP, Kim LJ, Liu JW, Shu J, Sharma MV (2018). Divergence in pollen performance between Clarkia sister species with contrasting mating systems supports predictions of sexual selection. Evolution, 72, 453-472.
DOI URL |
[49] | McCallum B, Chang SM (2016). Pollen competition in style: effects of pollen size on siring success in the hermaphroditic common morning glory, Ipomoea purpurea. American Journal of Botany, 103, 460-470. |
[50] | Moore JC, Pannell JR (2011). Sexual selection in plants. Current Biology, 21, R176-R182. |
[51] |
Murphy CG (1998). Interaction-independent sexual selection and the mechanisms of sexual selection. Evolution, 52, 8-18.
DOI PMID |
[52] |
Niu Y, Yang Y, Zhang ZQ, Li ZM, Sun H (2011). Floral closure induced by pollination in gynodioecious Cyananthus delavayi (Campanulaceae): effects of pollen load and type, floral morph and fitness consequences. Annals of Botany, 108, 1257-1268.
DOI PMID |
[53] |
Olito C, Connallon T (2019). Sexually antagonistic variation and the evolution of dimorphic sexual systems. The American Naturalist, 193, 688-701.
DOI PMID |
[54] |
Pannell JR, Labouche AM (2013). The incidence and selection of multiple mating in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120051. DOI: 10.1098/rstb.2012.0051.
DOI |
[55] | Parker GA (1979). Sexual selection and sexual conflict//Blum MS, Blum NA. Sexual Selection Reproductive Competition in Insects. Academic Press, London. 123-166. |
[56] | Paterno GB, Silveira CL, Kollmann J, Westoby M, Fonseca CR (2020). The maleness of larger angiosperm flowers. Proceedings of the National Academy of Sciences of the United States of America, 117, 10921-10926. |
[57] |
Prasad NG, Bedhomme S (2006). Sexual conflict in plants. Journal of Genetics, 85, 161-164.
DOI PMID |
[58] | Prum RO (2017). The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World and Us. Doubleday Press, New York. |
[59] |
Rowe M, Veerus L, Trosvik P, Buckling A, Pizzari T (2020). The reproductive microbiome: an emerging driver of sexual selection, sexual conflict, mating systems, and reproductive isolation. Trends in Ecology & Evolution, 35, 220-234.
DOI URL |
[60] |
Schärer L, Janicke T, Ramm SA (2015). Sexual conflict in hermaphrodites. Cold Spring Harbor Perspectives in Biology, 7, a017673. DOI: 10.1101/cshperspect.a017673.
DOI |
[61] | Somoza SC, Sede AR, Boccardo NA, Muschietti JP (2021). Keeping up with the RALFs: How these small peptides control pollen-pistil interactions in Arabidopsis. New Phytologist, 229, 14-18. |
[62] | Spigler RB, Kalisz S (2013). Phenotypic plasticity in mating-system traits in the annual Collinsia verna. Botany, 91, 597-604. |
[63] |
Teixido AL, Barrio M, Valladares F (2016). Size matters: understanding the conflict faced by large flowers in Mediterranean environments. The Botanical Review, 82, 204-228.
DOI URL |
[64] |
Thomson JD, Barrett SCH (1981). Selection for outcrossing, sexual selection, and the evolution of dioecy in plants. The American Naturalist, 118, 443-449.
DOI URL |
[65] |
Tonnabel J (2021). Digest: sexual conflict as a novel hypothesis for the evolution of gynodioecy. Evolution, 75, 557-558.
DOI PMID |
[66] |
Tonnabel J, David P, Janicke T, Lehner A, Mollet JC, Pannell JR, Dufay M (2021). The scope for postmating sexual selection in plants. Trends in Ecology & Evolution, 36, 556-567.
DOI URL |
[67] | Tonnabel J, David P, Klein EK, Pannell JR (2019). Sex-specific selection on plant architecture through “budget” and “direct” effects in experimental populations of the wind-pollinated herb, Mercurialis annua. Evolution, 73, 897-912. |
[68] | Vassiliadis C, Saumitou-Laprade P, Lepart J, Viard F (2002). High male reproductive success of hermaphrodites in the androdioecious Phillyrea angustifolia. Evolution, 56, 1362-1373. |
[69] |
Waelti MO, Page PA, Widmer A, Schiestl FP (2009). How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant. BMC Evolutionary Biology, 9, 190. DOI: 10.1186/1471-2148-9-190.
DOI |
[70] |
Wang H, Barrett SCH, Li XY, Niu Y, Duan YW, Zhang ZQ, Li QJ (2021). Sexual conflict in protandrous flowers and the evolution of gynodioecy. Evolution, 75, 278-293.
DOI PMID |
[71] |
Wang XY, Tang J, Wu T, Wu D, Huang SQ (2019). Bumblebee rejection of toxic pollen facilitates pollen transfer. Current Biology, 29, 1401-1406.
DOI URL |
[72] | Zhang DY (2004). Plant Life History Evolution and Reproductive Ecology. Science Press, Beijing. 107-291. |
[张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京. 107-291.] | |
[73] |
Zhang ZQ, Li QJ (2008). Autonomous selfing provides reproductive assurance in an alpine ginger Roscoea schneideriana (Zingiberaceae). Annals of Botany, 102, 531-538.
DOI URL |
[1] | YANG Ming-Wei, JIN Xiao-Fang. Diversity and evolutionary ecology of nectar spurs in angiosperms [J]. Chin J Plant Ecol, 2023, 47(9): 1193-1210. |
[2] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[3] | ZHANG Qi, Yeerjiang BAIKETUERHAN, WANG Juan. Gender dimorphism in nutritional resource requirements of dioecious tree species Rhamnus schneideri var. manshurica [J]. Chin J Plant Ecol, 2023, 47(12): 1708-1717. |
[4] | CHEN Yu-Han, LUO Yi-Fu, SUN Xin-Sheng, WEI Guan-Wen, HUANG Wen-Jun, LUO Fang-Li, YU Fei-Hai. Effects of waterlogging and increased soil nutrients on growth and reproduction of Polygonum hydropiper in the hydro-fluctuation belt of the Three Gorges Reservoir Region [J]. Chin J Plant Ecol, 2020, 44(11): 1184-1194. |
[5] | ZHANG Chan, AN Yu-Meng, Yun JÄSCHKE, WANG Lin-Lin, ZHOU Zhi-Li, WANG Li-Ping, YANG Yong-Ping, DUAN Yuan-Wen. Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands [J]. Chin J Plant Ecol, 2020, 44(1): 1-21. |
[6] | TAN Ke, DONG Shu-Peng, LU Tao, ZHANG Ya-Jing, XU Shi-Tao, REN Ming-Xun. Diversity and evolution of samara in angiosperm [J]. Chin J Plan Ecolo, 2018, 42(8): 806-817. |
[7] | ZHAOLe-Wen, CHEN Zi-Yi, ZOU Ying, FU Zi-Zhao, WU Gui-Lin, LIU Xiao-Rong, LUO Qi, LIN Yi-Xue, LI Xiong-Ju, LIU Zhi-Tong, LIU Hui. Changes in hydraulic traits of nine vascular plants from different evolutionary lineages [J]. Chin J Plan Ecolo, 2018, 42(2): 220-228. |
[8] | Jun-Wei YE, Yang ZHANG, Xiao-Juan WANG. Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region [J]. Chin J Plan Ecolo, 2017, 41(9): 1003-1019. |
[9] | HUANG Yan-Bo,WEI Yu-Kun,WANG Qi,XIAO Yue-E,YE Xi-Yang. Floral morphology and pollination mechanism of Salvia liguliloba, a narrow endemic species with degraded lever-like stamens [J]. Chin J Plan Ecolo, 2015, 39(7): 753-761. |
[10] | YANG Hai-Shui,WANG Qi,GUO Yi,XIONG Yan-Qin,XU Ming-Min,DAI Ya-Jun. Correlation analysis between arbuscular mycorrhizal fungal community and host plant phylogeny [J]. Chin J Plan Ecolo, 2015, 39(4): 383-387. |
[11] | LIN Wei-Peng,PENG Li,XIAO Tao-Yan,CAI Kun-Zheng. Recent advance of kin recognition in plant [J]. Chin J Plan Ecolo, 2015, 39(11): 1110-1121. |
[12] | WANG Yi-Feng, YUE Yong-Cheng. Effects of resource allocation and floral traits on the number and mass of Saussurea undulata seeds from different elevations in eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2014, 38(4): 366-374. |
[13] | CHEN Ying-Ting, XU Zhen-Zhu. Review on research of leaf economics spectrum [J]. Chin J Plant Ecol, 2014, 38(10): 1135-1153. |
[14] | Jannathan MAMUT, TAN Dun-Yan. Gynomonoecy in angiosperms: phylogeny, sex expression and evolutionary significance [J]. Chin J Plant Ecol, 2014, 38(1): 76-90. |
[15] | ZHANG Bo, SUN Shan, FANG Qiang-En, BAI Xiao-Ming. Evolutionary response of staminal lever mechanism of different species in Salvia to spatial variation in pollinators [J]. Chin J Plant Ecol, 2012, 36(7): 681-689. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn