Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (10): 1135-1153.DOI: 10.3724/SP.J.1258.2014.00108
• Review • Previous Articles Next Articles
CHEN Ying-Ting1,2, XU Zhen-Zhu1,*()
Received:
2014-04-01
Accepted:
2014-09-07
Online:
2014-04-01
Published:
2021-04-20
Contact:
XU Zhen-Zhu
CHEN Ying-Ting, XU Zhen-Zhu. Review on research of leaf economics spectrum[J]. Chin J Plant Ecol, 2014, 38(10): 1135-1153.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00108
Fig. 1 Conceptual illustration of leaf economics spectrum (developed based on Wright et al. 2004; Royer, 2008; Laughlin, 2011; Onoda et al. 2011; Perez-Ramos et al. 2012).
Fig. 2 Relational network among the core leaf economic traits (developed based on Onoda et al. 2011; Kattge et al. 2011a, 2011b; Fortunel et al. 2012; Pérez-Ramos et al. 2012; Osnas et al.2013).
涉及地点或数据来源 Site or data source | 植被或生境类型 Vegetation type or biotope | 植物类群 Taxonomy | 性状 Trait | 物种数 Number of species | 参考文献 References |
---|---|---|---|---|---|
全球(除非洲中部和北部、 俄罗斯、中国和加拿大) The global scale (except the North and Central Africa, Russia, China and Canada) | 所有 All | 维管植物 Tracheophyte | LL, A, Rd, LMA, N (leaf), P (leaf)...... | 2 548 | Wright et al., |
中国西藏 Xizang, China | 高寒草甸 Alpine meadow | 被子植物 Angiospermae | LMA, A, N (leaf), PNUE | 74 | He et al., |
温室 Greenhouse | 盆栽植物 Pot plants | 紫瓶子草 Sarracenia purpurea | A, 根和茎氮素营养Nitrogen nutrition in root and stem | 1 | Butler & Ellison, |
加拿大不列颠哥伦比亚省 British Columbia, Canada | 植物园栽培植物 Garden plants | 美国黑杨 Populus trichocarpa | A, N (leaf), Gs, SLA, H, SD, WUEi | 1 | Gornall & Guy, |
新西兰南阿尔卑斯山 The Southern Alps, New Zealand | 高山南青冈森林 Nothofagus solandri community | 高山南青冈 Nothofagus solandri | D, LAI | 1 | Coomes & Allen, |
全球 The global scale | 模型模拟 Model simulation | 种子植物 Spermatophyte | LWR, RGR, A, SLA...... | Enquist et al., | |
加拿大Gault自然保护区 Gault Nature Reserve, Canada | 温带落叶林林下层 Understorey of temperate deciduous forest | 蕨类植物 Pteridophyta | LMA, A, LL, N (leaf), Chl | 20 | Karst & Lechowicz, |
澳大利亚悉尼 Sydney, Australia | 干旱硬叶原始森林 Arid sclerophyll primeval forest | 本地植物和入侵植物 Native plants and invasive plants | A,SLA, Rd, LAR, N (leaf), P (leaf) | 165 | Leishman et al., |
始新世叶片化石 Eocene, leaf fossil | 原始木本被子植物和原始阔叶裸子植物 Archaeo-woody angiosperms and broad-leaved gymnosperms | LMA, LL, A, N (leaf) | 25 | Royer et al., | |
巴拿马圣洛伦佐国家森林 公园 San-Lorenzo National Forest Park, Panama | 低地热带森林 Lowland tropical forest | 维管植物 Tracheophyte | DR, A, SLA, N (leaf), P (leaf), K (leaf) | 35 | Santiago, |
意大利北部阿尔卑斯山 The Alps, the north of Italy | 前阿尔卑斯山钙质草原 The calcareous grassland in pre-Alps | 被子植物 Angiospermae | RGR, NAR, LAR, LWR, SLA | 19 | Ceriani et al., |
全球 The global scale | 所有 All | 维管植物 Tracheophyte | LDR, N (litter), P (litter), LMA | 818 | Cornwell et al., |
实验室生长箱 Growth chamber in laboratory | 栽培植物 Agrad | 泥炭藓属 Sphagnum | A, 根和叶氮素营养Nitrogen nutrition in root and leaf | 10 | Rice et al., |
新西兰北岛南端 The south of North Island, New Zealand | 温带针阔叶混交林 Temperate mixed coniferous broad leaved forest | 乔木 Tree | LA, LC, SLA, H | 16 | Burns & Beaumont, |
全球 The global scale | 所有 All | 木本植物 Xylophyta | WD, MCD, CEL, HC, MOE, MOR, N (wood)...... | 8 412 | Chave et al., |
北半球 Northern Hemisphere | 温带植物群落 Temperate community | 落叶和常绿阔叶植物 Deciduous, evergreen and broad-leaf plant | LL, LDM, N (leaf), A | 339 | Hallik et al., |
希腊雅典农业大学和Diomedes植物园 Athens Agricultural University, and Diomedes Garden, Greece | 野外试验样地 Outdoor plot | 木本植物 Xylophyta | LMA, A, N (leaf) | 30 | Liakoura et al., |
涉及地点或数据来源 Site or data source | 植被或生境类型 Vegetation type or Biotope | 植物类群 Taxonomy | 性状 Trait | 物种数 Number of species | 参考文献 References |
澳大利亚东部 The east of Australia | 野外试验样地 Outdoor plot | 硬叶阔叶植物 Sclerophyll and broad-leaf plants | A, gm, LMA, LL, P(leaf), N (leaf) | 35 | Niinemets et al., |
西班牙东北部地中海沿岸 Mediterranean coast, the northeast of Spanish | 野外试验样地 Outdoor plot | 常绿灌木 Evergreen bush | LDMC, RWC | 28 | Saura-Mas et al., |
东马来西亚Sepilok森林保护区 Sepilok Forest Reserve, East Malaysia | 低地热带森林 Lowland tropical forest | 乔木 Tree | A, Rd, N (leaf), P (leaf), LL | 16 | Baltzer & Thomas, |
法属圭亚那 French Guiana | 新热带森林 Neotropical forest | 木本植物 Xylophyta | N (leaf), P (leaf), K (leaf), Chl, C:N (leaf), LTD, SLA...... | 668 | Baraloto et al., |
英国境外亚高山和高山地带 Subalpine and alpine zones, outside England | 高山植被 Alpine | 本地植物 Native plants | SLA, LA, LS, C(leaf), LDW, LDMC, N(leaf) | 506 | Cerabolini et al., |
瑞典北部Abisko研究站 Abisko Research Station, the north of Sweden | 亚北极高山干旱桦树林,河岸桦树林, 淡水生物 群落 Arid subarctic alpine, river-bank and fresh-water community | 种子植物 Spermatophyte | C, N, P, L (%), LDMC, pHfe | 40 | Freschet et al., |
中国西藏、内蒙古和新疆 Xizang, Nei Mongol and Xinjiang, China | 温带草原 Temperate steppe | 草原典型植物 Grassland typical plants | LMA, N (leaf), P (leaf), A | 171 | He et al., |
澳大利亚新南威尔士州 New South Wales, Australia | 砂岩森林、平原森林、河谷森林、亚热带雨林、高山林地 Sandstone, plain, valley, subtropical and alpine forest | 本地植物和入侵植物 Native plants and invasive plants | SLA, N (leaf), A(leaf), Rd | 122 | Leishman et al., |
野外试验样地 Outdoor plot | 本地多年生C3草本植物 Native perennial C3 herb | LDMC, SLA, LL, N (leaf), SL, CC, ADF | 13 | da Silveira et al., | |
实验室温箱 Laboratory incubator | 实验控制条件 Control conditions of experiment | 苔藓植物 Bryophyta | A, QE, Rd, CCA, CL, LT, LW...... | 10 | Waite & Sack, |
中国云南 Yunnan, China | 热带季雨林 Tropical monsoon rainforest | 藤本和乔木 Lianas and trees | SLA, LL, A, N (leaf), P (leaf) | 37 | Zhu & Cao, |
文献数据 Literature database | 被子植物 Angiospermae | VD, VDi, VL, A, LL, LMA, N | 25 | Blonder et al., | |
玻利维亚东北部 The Northeast of Bolivia | 热带湿润低地成熟林、次生林和农田 Mature forest, secondary forest and farmland in tropical wet lowland | 木本植物 Xylophyta | LD, SLA, LDMC, Chl, N (leaf), P (leaf)...... | 23 | Bakker et al., |
南非东部KwaZulu-Natal 大学 KwaZulu-Natal University, the east of South Africa | 丛生植物湿地草原 Tufted mesic grassland | 禾本科 Poaceae | SLA, GR | 29 | Fynn et al., |
美国夏威夷州和婆罗洲 Hawaii and Borneo, USA | 两种不同演替阶段的热带森林 Two different-aged tropical forests | 被子植物 Angiospermae | SMC, CBSC,N:P, LMA | 86 | Peñuelaset al., |
涉及地点或数据来源 Site or data source | 植被或生境类型 Vegetation type or Biotope | 植物类群 Taxonomy | 性状 Trait | 物种数 Number of species | 参考文献 References |
法国南部 The south of France | 典型地中海石灰岩高原牧地 Typical Mediterranean limestone rangeland | 当地优势草本植物 Native dominant herb species | PRH, SLA, LT, LDMC, LDM...... | 14 | Pérez-Ramoset al., |
摩洛哥东部 The east of Morocco | 荒漠草原, 重度放牧和禁牧区域 desert steppe, heavy grazing and grazing prohibition zone | 种子植物 Spermatophyte | LA, SLA, H, LDMC, LDM, A,C:N (leaf) | Frenette-Dussault et al., | |
澳大利亚新南威尔士州 New South Wales, Australia | 高温干旱地带 High-temperature arid zone | 乔木、灌木和草本 Tree, bush and herb | LL, LW, LT, LMA, LWC...... | 95 | Curtis et al., |
欧洲南部 The south of Europe | 低地、高山、亚高山地带 Lowland, alpine and subalpine | 水生植物 Hydrophyte | LA, LMA, LDMC, SLA, N (leaf), C (leaf) | 61 | Pierce et al., |
温室 Greenhouse | 实验控制条件 Controlled conditions of experiment | 向日葵属 Helianthus | A, N (leaf), LMA, LWC, VD,pHfe | 3 | Mason et al., |
奥地利 Austria | 温带高山草地 Temperate alpine meadow | 草本植物 Herb | SLA, N (leaf), C (leaf) | Grigulis et al., | |
美国, Palo Verde Ecol Res America | 实验控制条件 Controlled conditions of experiment | 弗里芒氏杨 Populus fremontii | SLA, Ci, Gs, A, E, N (leaf)...... | 1 | Grady et al., |
瑞士北部 North of Switzerland | 沼泽草地 Marsh grass | 多年生草本植物 Perennial herb | LDMC, N (leaf), SLA, SMC, RGR | 12 | Suter & Edwards, |
Table 1 The research overview on leaf economics spectrum
涉及地点或数据来源 Site or data source | 植被或生境类型 Vegetation type or biotope | 植物类群 Taxonomy | 性状 Trait | 物种数 Number of species | 参考文献 References |
---|---|---|---|---|---|
全球(除非洲中部和北部、 俄罗斯、中国和加拿大) The global scale (except the North and Central Africa, Russia, China and Canada) | 所有 All | 维管植物 Tracheophyte | LL, A, Rd, LMA, N (leaf), P (leaf)...... | 2 548 | Wright et al., |
中国西藏 Xizang, China | 高寒草甸 Alpine meadow | 被子植物 Angiospermae | LMA, A, N (leaf), PNUE | 74 | He et al., |
温室 Greenhouse | 盆栽植物 Pot plants | 紫瓶子草 Sarracenia purpurea | A, 根和茎氮素营养Nitrogen nutrition in root and stem | 1 | Butler & Ellison, |
加拿大不列颠哥伦比亚省 British Columbia, Canada | 植物园栽培植物 Garden plants | 美国黑杨 Populus trichocarpa | A, N (leaf), Gs, SLA, H, SD, WUEi | 1 | Gornall & Guy, |
新西兰南阿尔卑斯山 The Southern Alps, New Zealand | 高山南青冈森林 Nothofagus solandri community | 高山南青冈 Nothofagus solandri | D, LAI | 1 | Coomes & Allen, |
全球 The global scale | 模型模拟 Model simulation | 种子植物 Spermatophyte | LWR, RGR, A, SLA...... | Enquist et al., | |
加拿大Gault自然保护区 Gault Nature Reserve, Canada | 温带落叶林林下层 Understorey of temperate deciduous forest | 蕨类植物 Pteridophyta | LMA, A, LL, N (leaf), Chl | 20 | Karst & Lechowicz, |
澳大利亚悉尼 Sydney, Australia | 干旱硬叶原始森林 Arid sclerophyll primeval forest | 本地植物和入侵植物 Native plants and invasive plants | A,SLA, Rd, LAR, N (leaf), P (leaf) | 165 | Leishman et al., |
始新世叶片化石 Eocene, leaf fossil | 原始木本被子植物和原始阔叶裸子植物 Archaeo-woody angiosperms and broad-leaved gymnosperms | LMA, LL, A, N (leaf) | 25 | Royer et al., | |
巴拿马圣洛伦佐国家森林 公园 San-Lorenzo National Forest Park, Panama | 低地热带森林 Lowland tropical forest | 维管植物 Tracheophyte | DR, A, SLA, N (leaf), P (leaf), K (leaf) | 35 | Santiago, |
意大利北部阿尔卑斯山 The Alps, the north of Italy | 前阿尔卑斯山钙质草原 The calcareous grassland in pre-Alps | 被子植物 Angiospermae | RGR, NAR, LAR, LWR, SLA | 19 | Ceriani et al., |
全球 The global scale | 所有 All | 维管植物 Tracheophyte | LDR, N (litter), P (litter), LMA | 818 | Cornwell et al., |
实验室生长箱 Growth chamber in laboratory | 栽培植物 Agrad | 泥炭藓属 Sphagnum | A, 根和叶氮素营养Nitrogen nutrition in root and leaf | 10 | Rice et al., |
新西兰北岛南端 The south of North Island, New Zealand | 温带针阔叶混交林 Temperate mixed coniferous broad leaved forest | 乔木 Tree | LA, LC, SLA, H | 16 | Burns & Beaumont, |
全球 The global scale | 所有 All | 木本植物 Xylophyta | WD, MCD, CEL, HC, MOE, MOR, N (wood)...... | 8 412 | Chave et al., |
北半球 Northern Hemisphere | 温带植物群落 Temperate community | 落叶和常绿阔叶植物 Deciduous, evergreen and broad-leaf plant | LL, LDM, N (leaf), A | 339 | Hallik et al., |
希腊雅典农业大学和Diomedes植物园 Athens Agricultural University, and Diomedes Garden, Greece | 野外试验样地 Outdoor plot | 木本植物 Xylophyta | LMA, A, N (leaf) | 30 | Liakoura et al., |
涉及地点或数据来源 Site or data source | 植被或生境类型 Vegetation type or Biotope | 植物类群 Taxonomy | 性状 Trait | 物种数 Number of species | 参考文献 References |
澳大利亚东部 The east of Australia | 野外试验样地 Outdoor plot | 硬叶阔叶植物 Sclerophyll and broad-leaf plants | A, gm, LMA, LL, P(leaf), N (leaf) | 35 | Niinemets et al., |
西班牙东北部地中海沿岸 Mediterranean coast, the northeast of Spanish | 野外试验样地 Outdoor plot | 常绿灌木 Evergreen bush | LDMC, RWC | 28 | Saura-Mas et al., |
东马来西亚Sepilok森林保护区 Sepilok Forest Reserve, East Malaysia | 低地热带森林 Lowland tropical forest | 乔木 Tree | A, Rd, N (leaf), P (leaf), LL | 16 | Baltzer & Thomas, |
法属圭亚那 French Guiana | 新热带森林 Neotropical forest | 木本植物 Xylophyta | N (leaf), P (leaf), K (leaf), Chl, C:N (leaf), LTD, SLA...... | 668 | Baraloto et al., |
英国境外亚高山和高山地带 Subalpine and alpine zones, outside England | 高山植被 Alpine | 本地植物 Native plants | SLA, LA, LS, C(leaf), LDW, LDMC, N(leaf) | 506 | Cerabolini et al., |
瑞典北部Abisko研究站 Abisko Research Station, the north of Sweden | 亚北极高山干旱桦树林,河岸桦树林, 淡水生物 群落 Arid subarctic alpine, river-bank and fresh-water community | 种子植物 Spermatophyte | C, N, P, L (%), LDMC, pHfe | 40 | Freschet et al., |
中国西藏、内蒙古和新疆 Xizang, Nei Mongol and Xinjiang, China | 温带草原 Temperate steppe | 草原典型植物 Grassland typical plants | LMA, N (leaf), P (leaf), A | 171 | He et al., |
澳大利亚新南威尔士州 New South Wales, Australia | 砂岩森林、平原森林、河谷森林、亚热带雨林、高山林地 Sandstone, plain, valley, subtropical and alpine forest | 本地植物和入侵植物 Native plants and invasive plants | SLA, N (leaf), A(leaf), Rd | 122 | Leishman et al., |
野外试验样地 Outdoor plot | 本地多年生C3草本植物 Native perennial C3 herb | LDMC, SLA, LL, N (leaf), SL, CC, ADF | 13 | da Silveira et al., | |
实验室温箱 Laboratory incubator | 实验控制条件 Control conditions of experiment | 苔藓植物 Bryophyta | A, QE, Rd, CCA, CL, LT, LW...... | 10 | Waite & Sack, |
中国云南 Yunnan, China | 热带季雨林 Tropical monsoon rainforest | 藤本和乔木 Lianas and trees | SLA, LL, A, N (leaf), P (leaf) | 37 | Zhu & Cao, |
文献数据 Literature database | 被子植物 Angiospermae | VD, VDi, VL, A, LL, LMA, N | 25 | Blonder et al., | |
玻利维亚东北部 The Northeast of Bolivia | 热带湿润低地成熟林、次生林和农田 Mature forest, secondary forest and farmland in tropical wet lowland | 木本植物 Xylophyta | LD, SLA, LDMC, Chl, N (leaf), P (leaf)...... | 23 | Bakker et al., |
南非东部KwaZulu-Natal 大学 KwaZulu-Natal University, the east of South Africa | 丛生植物湿地草原 Tufted mesic grassland | 禾本科 Poaceae | SLA, GR | 29 | Fynn et al., |
美国夏威夷州和婆罗洲 Hawaii and Borneo, USA | 两种不同演替阶段的热带森林 Two different-aged tropical forests | 被子植物 Angiospermae | SMC, CBSC,N:P, LMA | 86 | Peñuelaset al., |
涉及地点或数据来源 Site or data source | 植被或生境类型 Vegetation type or Biotope | 植物类群 Taxonomy | 性状 Trait | 物种数 Number of species | 参考文献 References |
法国南部 The south of France | 典型地中海石灰岩高原牧地 Typical Mediterranean limestone rangeland | 当地优势草本植物 Native dominant herb species | PRH, SLA, LT, LDMC, LDM...... | 14 | Pérez-Ramoset al., |
摩洛哥东部 The east of Morocco | 荒漠草原, 重度放牧和禁牧区域 desert steppe, heavy grazing and grazing prohibition zone | 种子植物 Spermatophyte | LA, SLA, H, LDMC, LDM, A,C:N (leaf) | Frenette-Dussault et al., | |
澳大利亚新南威尔士州 New South Wales, Australia | 高温干旱地带 High-temperature arid zone | 乔木、灌木和草本 Tree, bush and herb | LL, LW, LT, LMA, LWC...... | 95 | Curtis et al., |
欧洲南部 The south of Europe | 低地、高山、亚高山地带 Lowland, alpine and subalpine | 水生植物 Hydrophyte | LA, LMA, LDMC, SLA, N (leaf), C (leaf) | 61 | Pierce et al., |
温室 Greenhouse | 实验控制条件 Controlled conditions of experiment | 向日葵属 Helianthus | A, N (leaf), LMA, LWC, VD,pHfe | 3 | Mason et al., |
奥地利 Austria | 温带高山草地 Temperate alpine meadow | 草本植物 Herb | SLA, N (leaf), C (leaf) | Grigulis et al., | |
美国, Palo Verde Ecol Res America | 实验控制条件 Controlled conditions of experiment | 弗里芒氏杨 Populus fremontii | SLA, Ci, Gs, A, E, N (leaf)...... | 1 | Grady et al., |
瑞士北部 North of Switzerland | 沼泽草地 Marsh grass | 多年生草本植物 Perennial herb | LDMC, N (leaf), SLA, SMC, RGR | 12 | Suter & Edwards, |
[1] |
Abrahamson WG (2007). Leaf traits and leaf life spans of two xeric-adapted palmettos. American Journal of Botany, 94,1297-1308.
DOI URL PMID |
[2] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431,181-184.
DOI URL PMID |
[3] | Bakker MA, Carreño-Rocabado G, Poorter L (2011). Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25,473-483. |
[4] |
Baltzer JL, Gregoire DM, Bunyavejchewin S, Noor NSM, Davies SJ (2009). Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the malay-thai peninsula. American Journal of Botany, 96,2214-2223.
DOI URL PMID |
[5] |
Baltzer JL, Thomas SC (2010). A second dimension to the leaf economics spectrum predicts edaphic habitat association in a tropical forest. PLoS ONE, 5(10),e13163.
DOI URL PMID |
[6] |
Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach A-M, Herault B, Patiño S, Roggy J-C, Chave J (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13,1338-1347.
DOI URL PMID |
[7] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14,91-100.
DOI URL PMID |
[8] | Blonder B, Violle C, Enquist BJ (2013). Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology, 101,981-989. |
[9] | Burns KC, Beaumont S (2009). Scale-dependent trait correlations in a temperate tree community. Austral Ecology, 34,670-677. |
[10] | Butler JL, Ellison AM (2007). Nitrogen cycling dynamics in the carnivorous northern pitcher plant, Sarracenia purpurea. Functional Ecology, 21,835-843. |
[11] | Cerabolini BEL, Brusa G, Ceriani RM, de Andreis R, Luzzaro A, Pierce S (2010). Can CSR classification be generally applied outside Britain? Plant Ecology, 210,253-261. |
[12] | Ceriani RM, Pierce S, Cerabolini B (2008). Are morpho- functional traits reliable indicators of inherent relative growth rate for prealpine calcareous grassland species? Plant Biosystems, 142,60-65. |
[13] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12,351-366.
DOI URL PMID |
[14] | Cianciaruso MV, Silva IA, Manica LT, Souza JP (2013). Leaf habit does not predict leaf functional traits in cerrado woody species. Basic and Applied Ecology, 14,404-412. |
[15] |
Clark JS, Bell DM, Hersh MH, Kwit MC, Moran E, Salk C, Stine A, Valle D, Zhu K (2011). Individual-scale variation, species-scale differences: inference needed to understand diversity. Ecology Letters, 14,1273-1287.
DOI URL PMID |
[16] | Conti G, Díaz S (2013). Plant functional diversity and carbon storage-an empirical test in semi-arid forest ecosystems. Journal of Ecology, 101,18-28. |
[17] | Coomes DA, Allen RB (2007). Mortality and tree-size distributions in natural mixed-age forests. Journal of Ecology, 95,27-40. |
[18] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der He-I jden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51,335-380.
DOI URL |
[19] |
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria Vaieretti M, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11,1065-1071.
DOI URL PMID |
[20] |
Curtis EM, Leigh A, Rayburg S (2012). Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Australian Journal of Botany, 60,471-483.
DOI URL |
[21] |
da Silveira PL, Louault F, Carrere P, Maire V, Andueza D, Soussana JF (2010). The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency. Annals of Botany, 105,957-965.
DOI URL PMID |
[22] |
Díaz S, Cabido M (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16,646-655.
DOI URL |
[23] |
Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H (2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology & Evolution, 26,88-95.
DOI URL PMID |
[24] | Douma JC, Shipley B, Witte JP, Aerts R, van Bodegom PM (2012). Disturbance and resource availability act differently on the same suite of plant traits: revisiting assembly hypotheses. Ecology, 93,825-835. |
[25] |
Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007). A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature, 449,218-222.
DOI URL PMID |
[26] |
Feng QH, Cheng RM, Shi ZM, Liu SR, Wang WX, Liu XL, He F (2013). Response of Rumex dentatus foliar nitrogen and its allocation to altitudinal gradients along Balang Mountain, Sichuan, China. Chinese Journal of Plant Ecology, 37,591-600. (in Chinese with English abstract)
DOI URL |
[ 冯秋红, 程瑞梅, 史作民, 刘世荣, 王卫霞, 刘兴良, 何飞 (2013). 四川巴郎山齿果酸模叶片氮素及其分配的海拔响应. 植物生态学报, 37,591-600.]
DOI URL |
|
[27] |
Fortunel C, Fine PVA, Baraloto C (2012). Leaf, stem and root tissue strategies across 758 neotropical tree species. Functional Ecology, 26,1153-1161.
DOI URL |
[28] |
Frenette-Dussault C, Shipley B, Léger J-F, Meziane D, Hingrat Y (2012). Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. Journal of Vegetation Science, 23,208-222.
DOI URL |
[29] |
Freschet GT, Aerts R, Cornelissen JHC (2012). A plant economics spectrum of litter decomposability. Functional Ecology, 26,56-65.
DOI URL |
[30] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010a). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98,362-373.
DOI URL |
[31] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010b). Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: What is the link with other resource economics traits? New Phytology, 186,879-889.
DOI URL |
[32] |
Friend AD, Stevens AK, Knox RG, Cannell MGR (1997). A process-based, terrestrial biosphere model of ecosystem dynamics (v. 3.0). Ecological Modelling, 95,249-287.
DOI URL |
[33] |
Funk JL, Cornwell WK (2013). Leaf traits within communities: context may affect the mapping of traits to function. Ecology, 94,1893-1897.
DOI URL |
[34] | Funk JL, Glenwinkel LA, Sack L (2013). Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. PLoS ONE, 8,1-10. |
[35] |
Fynn R, Morris C, Ward D, Kirkman K (2011). Trait-environment relations for dominant grasses in South African mesic grassland support a general leaf economic model. Journal of Vegetation Science, 22,528-540.
DOI URL |
[36] | Gornall JL, Guy RD (2007). Geographic variation in ecophysiological traits of black cottonwood (Populus trichocarpa). Canadian Journal of Botany-Revue Canadienne De Botanique, 85,1202-1213. |
[37] |
Gornish ES, Prather CM (2014). Foliar functional traits that predict plant biomass response to warming. Journal of Vegetation Science, 25,919-927.
DOI URL |
[38] |
Grady KC, Laughlin DC, Ferrier SM, Kolb TE, Hart SC, Allan GJ, Whitham TG (2013). Conservative leaf economic traits correlate with fast growth of genotypes of a foundation riparian species near the thermal maximum extent of its geographic range. Functional Ecology, 27,428-438.
DOI URL |
[39] |
Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-C (2013). Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 101,47-57.
DOI URL |
[40] | Gutierrez-Giron A, Gavilan R (2013). Plant functional strategies and environmental constraints in Mediterranean high mountain grasslands in central Spain. Plant Ecology & Diversity, 6,435-446. |
[41] |
Hallik L, Niinemets U, Wright IJ (2009). Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist, 184,257-274.
DOI URL |
[42] |
Haselhorst MSH, Edwards CE, Rubin MJ, Weinig C (2011). Genetic architecture of life history traits and environment-specific trade-offs. Molecular Ecology, 20,4042-4058.
DOI URL PMID |
[43] |
He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34,2-6. (in Chinese with English abstract)
DOI URL |
[ 贺金生, 韩兴国 (2010). 生态化学计量学——探索从个体到生态系统的统一化理论. 植物生态学报, 34,2-6.
DOI URL |
|
[44] |
He JS, Wang X, Schmid B, Flynn DFB, Li X, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes. Journal of Plant Research, 123,551-561.
DOI URL |
[45] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170,835-848.
DOI URL |
[46] |
Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 21,1137-1146.
DOI URL |
[47] |
Heberling JM, Fridley JD (2013). Resource-use strategies of native and invasive plants in eastern north American forests. New Phytologist, 200,523-533.
DOI URL |
[48] | Hodgson JG, Montserrat-Marti G, Charles M, Jones G, Wilson P, Shipley B, Sharafi M, Cerabolini BEL, Cornelissen JHC, Band SR, Bogard A, Castro-Diez P, Guerrero- Campo J, Palmer C, Perez-Rontome MC, Carter G, Hynd A, Romo-Diez A, de Torres Espuny L, Royo Pla F (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108,1337-1345. |
[49] |
Hu MY, Zhang L, Luo TX, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 36,136-143. (in Chinese with English abstract)
DOI URL |
[ 胡梦瑶, 张林, 罗天祥, 沈维 (2012). 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 36,136-143.]
DOI URL |
|
[50] | IPCC Intergovernmental Panel on Climate Change (2013). Summary for Policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[51] |
Jackson BG, Peltzer DA, Wardle DA (2013). The within- species leaf economic spectrum does not predict leaf litter decomposability at either the within-species or whole community levels. Journal of Ecology, 101,1409-1419.
DOI URL |
[52] | Jiang GM (2004). Plant Ecophysiology. Higher Education Press, Beijing. (in Chinese) |
[ 蒋高明 (2004). 植物生理生态学. 高等教育出版社, 北京. | |
[53] | Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003). Climate change and Arctic ecosystems 2: modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research: Atmospheres, 108, doi: 10.1029/2002JD002559. |
[54] |
Karst AL, Lechowicz MJ (2007). Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytologist, 173,306-312.
DOI URL |
[55] | Kattge J, DíAz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, REICH PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin III FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011a). Try—a global database of plant traits. Global Change Biology, 17,2905-2935. |
[56] |
Kattge J, Ogle K, Bönisch G, Díaz S, Lavorel S, Madin J, Nadrowski K, Nöllert S, Sartor K, Wirth C (2011b). A generic structure for plant trait databases. Methods in Ecology and Evolution, 2,202-213.
DOI URL |
[57] | Kazakou E, Garnier E, Navas ML, Roumet C, Collin C, Laurent G (2007). Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old-fields differing in successional status. Functional Ecology, 21,235-245. |
[58] | Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 186,708-721. |
[59] |
Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291,481-484.
DOI URL PMID |
[60] | Kröeber W, Boehnke M, Welk E, Wirth C, Bruelheide H (2012). Leaf trait-environment relationships in a subtropical broadleaved forest in Southeast China. PLoS ONE, 7(4),e35742. |
[61] | Lambers H, Chapin FS, Pons TL (2008). Plant Physiological Ecology. 2nd edn. Springer-Verlag, New York. |
[62] | Laughlin DC (2011). Nitrification is linked to dominant leaf traits rather than functional diversity. Journal of Ecology, 99,1091-1099. |
[63] | Laughlin DC (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102,186-193. |
[64] | Laughlin DC, Fulé PZ, Huffman DW, Crouse J, Laliberté E (2011a). Climatic constraints on trait-based forest assembly. Journal of Ecology, 99,1489-1499. |
[65] | Laughlin DC, Moore MM, Fulé PZ (2011b). A century of increasing pine density and associated shifts in understory plant strategies. Ecology, 92,556-561. |
[66] | Lavorel S (2013). Plant functional effects on ecosystem services. Journal of Ecology, 101,4-8. |
[67] | Lavorel S, Garnier E (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16,545-556. |
[68] | Lavorel S, Grigulis K (2012). How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. Journal of Ecology, 100,128-140. |
[69] | Leishman MR, Haslehurst T, Ares A, Baruch Z (2007). Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytologist, 176,635-643. |
[70] | Leishman MR, Thomson VP, Cooke J (2010). Native and exotic invasive plants have fundamentally similar carbon capture strategies. Journal of Ecology, 98,28-42. |
[71] | Letts MG, Rodríguez-Calcerrada J, Rolo V, Rambal S (2012). Long-term physiological and morphological acclimation by the evergreen shrub Buxus sempervirens L. to understory and canopy gap light intensities. Trees-Structure and Function, 26,479-491. |
[72] | Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH (2012). A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36,88-98. (in Chinese with English abstract) |
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 (2012). 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36,88-98.] | |
[73] |
Liakoura V, Fotelli MN, Rennenberg H, Karabourniotis G (2009). Should structure-function relations be considered separately for homobaric vs. heterobaric leaves?. American Journal of Botany, 96,612-619.
DOI URL PMID |
[74] | Lienin P, Kleyer M (2011). Plant leaf economics and reproductive investment are responsive to gradients of land use intensity. Agriculture Ecosystems & Environment, 145,67-76. |
[75] | Lienin P, Kleyer M (2012). Plant trait responses to the environment and effects on ecosystem properties. Basic and Applied Ecology, 13,301-311. |
[76] | Liu FD, Wang ZS, Zhang M, Wang WJ, An SQ, Zheng JW, Yang WJ, Zhang ST (2007). Photosynthesis in relation to leaf nitrogen, phosphorus and specific leaf area of seedlings and saplings in tropical montane rain forest of Hainan Island, South China. Acta Ecologica Sinica, 27,4651-4661. (in Chinese with English abstract) |
[ 刘福德, 王中生, 张明, 王文进, 安树青, 郑建伟, 杨文杰, 张世挺 (2007). 海南岛热带山地雨林幼苗幼树光合与叶氮、叶磷及比叶面积的关系. 生态学报, 27,4651-4661.] | |
[77] | Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188,543-553. |
[78] | Lloyd J, Bloomfield K, Domingues TF, Farquhar GD (2013). Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytologist, 199,311-321. |
[79] |
Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez IE, Tauro A, Bongers F (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94,1211-1216.
DOI URL PMID |
[80] | Lusk CH, Warton DI (2007). Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny. New Phytologist, 176,764-774. |
[81] | Maeshiro R, Kusumoto B, Fujii S, Shiono T, Kubota Y (2013). Using tree functional diversity to evaluate management impacts in a subtropical forest. Ecosphere, 4,70. |
[82] | Maestre FT, Salguero-Gómez R, Quero JL (2012). It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philosophical Transactions of the Royal Society B, 367,3062-3075. |
[83] | Maire V, Gross N, da Silveira LP, Picon-Cochard C, Jean- François S (2009). Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Functional Ecology, 23,668-679. |
[84] | Maire V, Gross N, Hill D, Martin R, Wirth C, Wright IJ, Soussana JF (2013). Disentangling coordination among functional traits using an individual-centred model: impact on plant performance at intra-and inter-specific levels. PLoS ONE, 8,e77372. |
[85] |
Mason CM, McGaughey SE, Donovan LA (2013). Ontogeny strongly and differentially alters leaf economic and other key traits in three diverse helianthus species. Journal of Experimental Botany, 64,4089-4099.
DOI URL PMID |
[86] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31,150-165. (in Chinese with English abstract) |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31,150-165.] | |
[87] |
Messier J, McGill BJ, Lechowicz MJ (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13,838-848.
DOI URL PMID |
[88] | Moorcroft PR, Hurtt GC, Pacala SW (2001). A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs, 71,557-585. |
[89] |
Navas ML, Roumet C, Bellmann A, Laurent G, Garnier E (2010). Suites of plant traits in species from different stages of a Mediterranean secondary succession. Plant Biology, 12,183-196.
DOI URL PMID |
[90] |
Niinemets U, Wright IJ, Evans JR (2009). Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Journal of Experimental Botany, 60,2433-2449.
DOI URL PMID |
[91] |
Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PV, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Pérez-Harguin- deguy N, Poorter L, Richards L, Santiago LS, Sosinski EE Jr, van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14,301-312.
DOI URL PMID |
[92] | Ordonez A, Olff H (2013). Do alien plant species profit more from high resource supply than natives? A trait-based analysis. Global Ecology and Biogeography, 22,648-658. |
[93] | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18,137-149. |
[94] |
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340,741-744.
DOI URL PMID |
[95] |
Pellissier L, Ndiribe C, Dubuis A, Pradervand JN, Salamin N, Guisan A, Rasmann S (2013). Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecology Letters, 16,600-608.
DOI URL PMID |
[96] | Peñuelas J, Sardans J, Llusia J, Owen SM, Niinemets U (2011). Lower P contents and more widespread terpene presence in old Bornean than in young Hawaiian tropical plant species guilds. Ecosphere, 2(4),art45. |
[97] | Peñuelas J, Sardans J, Llusia J, Silva J, Owen SM, Bala-Ola B, Linatoc AC, Dalimin MN, Niinemets U (2013). Foliar chemistry and standing folivory of early and late-successional species in a Bornean rainforest. Plant Ecology & Diversity, 6,245-256. |
[98] | Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012). Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. Journal of Ecology, 100,1315-1327. |
[99] |
Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 109,1047-1053.
DOI URL PMID |
[100] | Poorter H, Lambers H, Evans JR (2014). Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201,378-382. |
[101] | Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014). Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28,37-45. |
[102] | Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102,275-301. |
[103] |
Reich PB, Oleksyn J, Wright IJ (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160,207-212.
DOI URL PMID |
[104] |
Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012). Impacts of biodiversity loss escalate through time as redundancy fades. Science, 336,589-592.
DOI URL PMID |
[105] |
Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL (2008). Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11,793-801.
DOI URL PMID |
[106] |
Rice SK, Aclander L, Hanson DT (2008). Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in sphagnum mosses (Sphag- naceae). American Journal of Botany, 95,1366-1374.
URL PMID |
[107] |
Richardson SJ, Allen RB, Buxton RP, Easdale TA, Hurst JM, Morse CW, Smissen RD, Peltzer DA (2013). Intraspecific relationships among wood density, leaf structural traits and environment in four co-occurring species of Nothofagus in New Zealand. PLoS ONE, 8,e58878.
DOI URL PMID |
[108] | Royer DL (2008). Nutrient turnover rates in ancient terrestrial ecosystems. Palaios, 23,421-423. |
[109] |
Royer DL, Miller IM, Peppe DJ, Hickey LJ (2010). Leaf economic traits from fossils support a weedy habit for early angiosperms. American Journal of Botany, 97,438-445.
URL PMID |
[110] | Royer DL, Sack L, Wilf P, Lusk CH, Jordan GJ, Niinemets U, Wright IJ, Westoby M, Cariglino B, Coley PD, Cutter AD, Johnson KR, Labandeira CC, Moles AT, Palmer MB, Valladares F (2007). Fossil leaf economics quantified: Calibration, Eocene case study, and implications. Paleobiology, 33,574-589. |
[111] | Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198,983-1000. |
[112] |
Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. Journal of Experimental Botany, 64,4053-4080.
DOI URL PMID |
[113] |
Santiago LS (2007). Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology, 88,1126-1131.
URL PMID |
[114] | Saura-Mas S, Shipley B, Lloret F (2009). Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species. Functional Ecology, 23,103-110. |
[115] | Scheiter S, Langan L, Higgins SI (2013). Next-generation dynamic global vegetation models: learning from community ecology. New Phytologist, 198,957-969. |
[116] |
Sendall KM, Reich PB (2013). Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. Tree Physiology, 33,713-729.
DOI URL PMID |
[117] |
Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87,535-541.
DOI URL PMID |
[118] | Siefert A, Ravenscroft C, Weiser MD, Swenson NG (2013). Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Global Ecology and Biogeography, 22,682-691. |
[119] | Sniderman JK, Jordan GJ, Cowling RM (2013). Fossil evidence for a hyperdiverse sclerophyll flora under a non-Mediterranean- type climate. Proceeding of the National Academy of Sciences of the United States of America, 110,3423-3428. |
[120] | Stearns SC (1992). The Evolution of Life Histories. Oxford University Press, New York. |
[121] | Suter M, Edwards PJ (2013). Convergent succession of plant communities is linked to species’ functional traits. Perspectives in Plant Ecology Evolution and Systematics, 15,217-225. |
[122] | Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biology, 17,1505-1515. |
[123] | van Bodegom PM, Douma JC, Witte JPM, Ordoñez JC, Bartholomeus RP, Aerts R (2012). Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography, 21,625-636. |
[124] |
van der Sande M, Poorter L, Schnitzer S, Markesteijn L (2013). Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits. Oecologia, 172,961-972.
DOI URL PMID |
[125] |
Vasseur F, Violle C, Enquist BJ, Granier C, Vile D (2012). A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry. Ecology Letters, 15,1149-1157.
DOI URL PMID |
[126] | Volder A, Briske DD, Tjoelker MG (2013). Climate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna. Global Change Biology, 19,843-857. |
[127] | Waite M, Sack L (2010). How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytologist, 185,156-172. |
[128] | Waite M, Sack L (2011). Does global stoichiometric theory apply to bryophytes? Tests across an elevation × soil age ecosystem matrix on Mauna Loa, Hawaii. Journal of Ecology, 99,122-134. |
[129] |
Walters MB, Gerlach JP (2013). Intraspecific growth and functional leaf trait responses to natural soil resource gradients for conifer species with contrasting leaf habit. Tree Physiology, 33,297-310.
URL PMID |
[130] | Westoby M, Reich PB, Wright IJ (2013). Understanding ecological variation across species: area-based vs. mass-based expression of leaf traits. New Phytologist, 199,322-323. |
[131] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21,261-268.
DOI URL PMID |
[132] | Whitfield J (2006). Plant ecology: the cost of leafing. Nature, 444,539-541. |
[133] | Whitman T, Aarssen LW (2010). The leaf size/number trade-off in herbaceous angiosperms. Journal of Plant Ecology, 3,49-58. |
[134] | Wright IJ, Reich PB, Atkin OK, Lusk CH, Tjoelker MG, Westoby M (2006). Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist, 169,309-319. |
[135] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005a). Assessing the generality of global leaf trait relationships. New Phytologist, 166,485-496. |
[136] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005b). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14,411-421. |
[137] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428,821-827.
DOI URL PMID |
[138] | Wright JP, Sutton-Grier A (2012). Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Functional Ecology, 26,1390-1398. |
[139] |
Xu ZZ, Shimizu H, Ito S, Yagasaki Y, Zou CJ, Zhou GS, Zheng YR (2014). Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 239,421-435.
DOI URL PMID |
[140] | Xu ZZ, Zhou GS (2011). Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biology, 11,21. |
[141] | Zhang DY (2004). Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese) |
[ 张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京.] | |
[142] |
Zhao MS, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329,940-943.
DOI URL PMID |
[143] | Zhou GS, Wang YH (2003). Biosphere Ecology. Meteorological Press, Beijing. (in Chinese) |
[ 周广胜, 王玉辉 (2003). 全球生态学. 气象出版社, 北京.] | |
[144] |
Zhu SD, Cao KF (2010). Contrasting cost-benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia, 163,591-599.
DOI URL PMID |
[1] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[2] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[3] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[4] | YANG Ming-Wei, JIN Xiao-Fang. Diversity and evolutionary ecology of nectar spurs in angiosperms [J]. Chin J Plant Ecol, 2023, 47(9): 1193-1210. |
[5] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[6] | HE Min, XU Qiu-Yue, XIA Yun, YANG Liu-Ming, FAN Yue-Xin, YANG Yu-Sheng. Plant phosphorus acquisition mechanisms and their response to global climate changes [J]. Chin J Plant Ecol, 2023, 47(3): 291-305. |
[7] | XI Nian-Xun, ZHANG Yuan-Ye, ZHOU Shu-Rong. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(2): 170-182. |
[8] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[9] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[10] | ZOU Jin-Lian, ZHANG Zhi-Qiang. Application and progress of sexual selection and sexual conflict theory in plant reproductive evolutionary ecology [J]. Chin J Plant Ecol, 2022, 46(9): 984-994. |
[11] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[12] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[13] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[14] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[15] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn