Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (9): 995-1004.DOI: 10.17521/cjpe.2021.0450
• Research Articles • Previous Articles Next Articles
WEI Yao1,4, MA Zhi-Yuan2, ZHOU Jia-Ying3, ZHANG Zhen-Hua1,*()
Received:
2021-12-06
Accepted:
2022-04-20
Online:
2022-09-20
Published:
2022-10-19
Contact:
ZHANG Zhen-Hua
Supported by:
WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau[J]. Chin J Plant Ecol, 2022, 46(9): 995-1004.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0450
功能群 Functional group | 返青时间 Leaf out time (d) | 现蕾时间 Flower bud time (d) | 开花时间 Flower time (d) | 结实时间 Fruit time (d) | 开花持续时间 Flowering time (d) | 高度 Height (cm) |
---|---|---|---|---|---|---|
豆科类 Legumes | -8.21 ± 1.81* | -9.14 ± 2.41* | -10.14 ± 2.05* | -4.72 ± 1.96 | 6.14 ± 1.52* | 0.92 ± 0.66 |
禾草类 Grasses | -1.67 ± 1.59 | -6.07 ± 2.18 | -0.30 ± 3.17 | -0.40 ± 0.99 | -0.10 ± 3.71 | -1.95 ± 2.05 |
莎草类 Sedges | 1.58 ± 2.25 | -4.99 ± 5.02 | -7.95 ± 5.74 | 0.56 ± 3.50 | 9.72 ± 3.89 | 0.70 ± 1.86 |
杂类草 Forbs | -1.08 ± 0.92 | -5.25 ± 3.70 | -3.04 ± 4.22 | -4.64 ± 4.96 | -1.31 ± 1.42 | -3.58 ± 0.96* |
Table 1 Changes of phenological period and height among alpine plants of different functional groups under warming condition on the Qingzang Plateau (mean ± SE)
功能群 Functional group | 返青时间 Leaf out time (d) | 现蕾时间 Flower bud time (d) | 开花时间 Flower time (d) | 结实时间 Fruit time (d) | 开花持续时间 Flowering time (d) | 高度 Height (cm) |
---|---|---|---|---|---|---|
豆科类 Legumes | -8.21 ± 1.81* | -9.14 ± 2.41* | -10.14 ± 2.05* | -4.72 ± 1.96 | 6.14 ± 1.52* | 0.92 ± 0.66 |
禾草类 Grasses | -1.67 ± 1.59 | -6.07 ± 2.18 | -0.30 ± 3.17 | -0.40 ± 0.99 | -0.10 ± 3.71 | -1.95 ± 2.05 |
莎草类 Sedges | 1.58 ± 2.25 | -4.99 ± 5.02 | -7.95 ± 5.74 | 0.56 ± 3.50 | 9.72 ± 3.89 | 0.70 ± 1.86 |
杂类草 Forbs | -1.08 ± 0.92 | -5.25 ± 3.70 | -3.04 ± 4.22 | -4.64 ± 4.96 | -1.31 ± 1.42 | -3.58 ± 0.96* |
Fig. 1 Changes of leaf out time (A, B), flower bud time (C, D), flower time (E, F) and fruit time (G, H) among each species of alpine plants on the Qingzang Plateau in 2017 and 2018 under warming condition (mean ± SE). A positive value indicates later than the control; a negative value indicates earlier than the control. * indicates significant difference between treatment and the control (p < 0.05). Cp, Carex przewalskii; En, Elymus nutans; Gf, Gentiana lawrencei var. farreri; Gs, Gentiana straminea; Ht, Helictotrichon tibeticum; Kc, Kobresia capillifolia; Kh, Kobresia humilis; Mr, Medicago ruthenica; Ok, Oxytropis kansuensis; Pp, Poa pratensis; Pf, Potentilla fruticosa; Pv, Polygonum viviparum; Sa, Stipa aliena; Sp, Saussurea pulchra; Th, Tibetia himalaica.
Fig. 2 Changes of flowering time among each species of alpine plants on the Qingzang Plateau in 2017 (A) and 2018 (B) under warming condition (mean ± SE). A positive value indicates longer flowering time than the control; a negative value indicates shorter flowering time than the control. * indicates significant difference between treatment and the control (p < 0.05). Cp, Carex przewalskii; En, Elymus nutans; Gf, Gentiana lawrencei var. farreri; Gs, Gentiana straminea; Ht, Helictotrichon tibeticum; Kc, Kobresia capillifolia; Kh, Kobresia humilis; Mr, Medicago ruthenica; Ok, Oxytropis kansuensis; Pp, Poa pratensis; Pf, Potentilla fruticosa; Pv, Polygonum viviparum; Sa, Stipa aliena; Sp, Saussurea pulchra; Th, Tibetia himalaica.
Fig. 3 Changes of height among each species of alpine plants on the Qingzang Plateau in 2017 (A) and 2018 (B) under warming condition (mean ± SE). A positive value indicates higher height than the control; a negative value indicates lower height than the control. * indicates significant difference between treatment and the control (p < 0.05). Cp, Carex przewalskii; En, Elymus nutans; Gf, Gentiana lawrencei var. farreri; Gs, Gentiana straminea; Ht, Helictotrichon tibeticum; Kc, Kobresia capillifolia; Kh, Kobresia humilis; Mr, Medicago ruthenica; Ok, Oxytropis kansuensis; Pp, Poa pratensis; Pf, Potentilla fruticosa; Pv, Polygonum viviparum; Sa, Stipa aliena; Sp, Saussurea pulchra; Th, Tibetia himalaica.
[1] | Álvarez-Cansino L, Zunzunegui M, Díaz Barradas MC, Esquivias MP (2010). Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Annals of Botany, 106, 989-998. |
[2] |
Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC, Forbes BC, Georges D, Goetz SJ, Guay KC, Henry GHR, HilleRisLambers J, et al. (2018). Plant functional trait change across a warming tundra biome. Nature, 562, 57-62.
DOI URL |
[3] |
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357-365.
DOI URL |
[4] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[5] |
Dorji T, Hopping KA, Meng FD, Wang SP, Jiang LL, Klein JA (2020). Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agriculture, Ecosystems & Environment, 291, 106795. DOI: 10.1016/j.agee.2019.106795.
DOI |
[6] |
Dorji T, Totland Ø, Moe SR, Hopping KA, Pan JB, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
DOI PMID |
[7] | Fitchett JM, Grab SW, Thompson DI (2015). Plant phenology and climate change: progress in methodological approaches and application. Progress in Physical Geography, 39, 460-482. |
[8] | [IPCC (The Intergovernmental Panel on Climate Change)(2021). Climate Change 2021: The Physical Science Basis: Summary for Policymakers. [2021-11-28]. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf. |
[9] |
Jiang LL, Wang SP, Meng FD, Duan JC, Niu HS, Xu GP, Zhu XX, Zhang ZH, Luo CY, Cui SJ, Li YM, Li XE, Wang Q, Zhou Y, Bao XY, et al. (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology, 97, 1961-1969.
DOI PMID |
[10] |
Klein JA, Harte J, Zhao XQ (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau. Ecosystems, 11, 775-789.
DOI URL |
[11] |
Körner C (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI PMID |
[12] | Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Heidelberg, Germany. |
[13] |
Li P, Liu ZL, Zhou XL, Xie BG, Li ZW, Luo YP, Zhu QA, Peng CH (2021). Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agricultural and Forest Meteorology, 308-309, 108571. DOI: 10.1016/j.agrformet.2021.108571.
DOI |
[14] |
Li XE, Jiang LL, Meng FD, Wang SP, Niu HS, Iler AM, Duan JC, Zhang ZH, Luo CY, Cui SJ, Zhang LR, Li YM, Wang Q, Zhou Y, Bao XY, et al. (2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489. DOI: 10.1038/ncomms12489.
DOI |
[15] |
Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[16] | Ma ZY (2020). The Effects of Climate Change on Plant Community Diversity and Ecosystem Function in an Alpine Grassland on the Tibetan Plateau. PhD dissertation, Peking University, Beijing. 102-119. |
[ 马志远 (2020). 气候变化对高寒草地植物群落多样性和生态系统功能的影响.博士学位论文, 北京大学, 北京. 102-119.] | |
[17] |
Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. DOI: 10.1038/ncomms15378.
DOI |
[18] |
Meng FD, Jiang LL, Zhang ZH, Cui SJ, Duan JC, Wang SP, Luo CY, Wang Q, Zhou Y, Li XE, Zhang LR, Li BW, Dorji T, Li YN, Du MY (2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734-740.
DOI PMID |
[19] |
Molau U (1993). Relationships between flowering phenology and life history strategies in tundra plants. Arctic and Alpine Research, 25, 391. DOI: 10.2307/1551922.
DOI |
[20] | Park T, Chen C, Macias-Fauria M, Tømmervik H, Choi S, Winkler A, Bhatt US, Walker DA, Piao SL, Brovkin V, Nemani RR, Myneni RB (2019). Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, 25, 2382-2395. |
[21] |
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[22] |
Reich PB, Sendall KM, Rice KR, Rich RL, Stefanski A, Hobbie SE, Montgomery RA (2015). Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 5, 148-152.
DOI URL |
[23] |
Shen MG, Piao SL, Dorji T, Liu Q, Cong N, Chen XQ, An S, Wang SP, Wang T, Zhang GX (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2, 454-467.
DOI URL |
[24] | Shen ZX, Zhou XM, Chen ZZ, Zhou HK (2002). Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow. Acta Phytoecologica Sinica, 26, 288-294. |
[沈振西, 周兴民, 陈佐忠, 周华坤 (2002). 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应. 植物生态学报, 26, 288-294.] | |
[25] |
Suonan J, Classen AT, Sanders NJ, He JS (2019). Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere, 10, e02543. DOI: 10.1002/ecs2.2543.
DOI |
[26] |
Suonan J, Classen AT, Zhang ZH, He JS (2017). Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Functional Ecology, 31, 2147-2156.
DOI URL |
[27] |
Wang CY, Cheng HY, Wei M, Wang S, Wu BD, Du DL (2021). Plant height and leaf size: Which one is more important in affecting the successful invasion of Solidago canadensis and Conyza canadensis in urban ecosystems? Urban Forestry & Urban Greening, 59, 127033. DOI: 10.1016/j.ufug.2021.127033.
DOI |
[28] |
Wang H, Liu HY, Cao GM, Ma ZY, Li YK, Zhang FW, Zhao X, Zhao XQ, Jiang L, Sanders NJ, Classen AT, He JS (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 23, 701-710.
DOI PMID |
[29] |
Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B, Zhu XX, Chang XF, Cui XY, Niu HS, Zhao XQ, Wang WY (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376.
PMID |
[30] |
Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH, Zhu XX, Shen MG, Li YN, Du MY, Tang YH, et al. (2014a). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 95, 3387-3398.
DOI URL |
[31] | Wang SP, Wang CS, Duan JC, Zhu XX, Xu GP, Luo CY, Zhang ZH, Meng FD, Li YN, Du MY (2014b). Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan Plateau. Agricultural and Forest Meteorology, 189- 190, 220-228. |
[32] |
Wang XH, Piao SL, Ciais P, Li JS, Friedlingstein P, Koven C, Chen AP (2011). Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 108, 1240-1245.
DOI PMID |
[33] | Wang ZP, Zhang XZ, He YT, Shi PL, Zu JX, Niu B, Li M (2018). Effects of precipitation changes on the precipitation use efficiency and aboveground productivity of alpine steppe-meadow on northern Tibetan Plateau, China. Chinese Journal of Applied Ecology, 29, 1822-1828. |
[王志鹏, 张宪洲, 何永涛, 石培礼, 俎佳星, 牛犇, 李猛 (2018). 降水变化对藏北高寒草原化草甸降水利用效率及地上生产力的影响. 应用生态学报, 29, 1822-1828.]
DOI |
|
[34] |
Xia JY, Niu SL, Ciais P, Janssens IA, Chen JQ, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen SP, Dong JW, Flanagan LB, et al. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 112, 2788-2793.
DOI PMID |
[35] |
Xu W, Zhu MY, Zhang ZH, Ma ZY, Liu HY, Chen LT, Cao GM, Zhao XQ, Schmid B, He JS (2018). Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 55, 1486-1497.
DOI URL |
[36] | Yu HY, Xu JC (2009). Effects of climate change on vegetations on Qinghai-Tibet Plateau: a review. Chinese Journal of Ecology, 28, 747-754. |
[于海英, 许建初 (2009). 气候变化对青藏高原植被影响研究综述. 生态学杂志, 28, 747-754.] | |
[37] |
Zhang L, Wang GX, Ran F, Peng AH, Xiao Y, Yang Y, Yang Y (2018). Experimental warming changed plants’ phenological sequences of two dominant species in an alpine meadow, western of Sichuan. Chinese Journal of Plant Ecology, 42, 20-27.
DOI |
[张莉, 王根绪, 冉飞, 彭阿辉, 肖瑶, 杨阳, 杨燕 (2018). 模拟增温改变川西高山草甸优势植物繁殖物候序列特征. 植物生态学报, 42, 20-27.]
DOI |
|
[38] | Zhao XQ, Zhou XM (1999). Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647. |
[39] |
Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
DOI URL |
[朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
DOI |
[1] | Yong HUANG Yang LI Jian SUN. Geographical distribution characteristics and influencing factors of plant survival strategies in alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[2] | 玉英 朱 Zhang Huamin Ding Mingjun Yu Ziping. Response of vegetation greenness to drought-wet variation on the Qingzang Platea [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[3] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[4] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[5] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[6] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
[7] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[8] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[9] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[10] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[11] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[12] | Zhou-Tao ZHENG Yang-Jian ZHANG. Variation in ecosystem water use efficiency and its attribution analysis during 1982–2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
[13] | Ning LIU, Shou-Zhang PENG, Yun-Ming CHEN. Temporal effects of climate factors on vegetation growth on the Qingzang Plateau, China [J]. Chin J Plant Ecol, 2022, 46(1): 18-26. |
[14] | GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles [J]. Chin J Plant Ecol, 2021, 45(9): 1006-1023. |
[15] | NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region [J]. Chin J Plant Ecol, 2021, 45(9): 996-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn