Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (5): 539-549.doi: 10.17521/cjpe.2018.0042

• Research Articles • Previous Articles     Next Articles

Flowering phenology and growth of typical shrub grass plants in response to simulated warmer and drier climate in early succession Taiga forests in the Da Hinggan Ling of northeast China

SONG Xiao-Yan1,2,WANG Gen-Xu1,*(),RAN Fei1,YANG Yan1,ZHANG Li1,2,XIAO Yao1,2   

  1. 1 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-02-13 Revised:2018-05-09 Online:2018-07-20 Published:2018-05-20
  • Contact: Gen-Xu WANG E-mail:wanggx@imde.ac.cn
  • Supported by:
    Supported by the Key Research Projects of Frontier Sciences of Chinese Academy of Sciences(QY2DJ-SSW-DQC006)

Abstract:

Aims We studied flowering phenology and growth of four typical shrub grass plants (Carex diandra, Ribes procumbens, Ledum palustre, Saussurea neoserrata) with different life histories in the Da Hinggan Ling of northeast China to explore changes of flowering phenology and growth of early succession Taiga forests and to learn about the post-fire succession of the Taiga forests in warmer and drier climate.

Methods Open-top chambers (OTCs) and artificial drainage ditches were used to simulate the warmer and drier climate in the field. After two years of experimental warming and drainage, we recorded the flowering phenology and growth indices of four typical shrub grass plants. Flowering phenology included the first flowering date, peak flowering date, last flowering date, flowering duration and maximum flowering number. The growth indices of plants included height, coverage, frequency and above-ground biomass.

Important findings Our results revealed that: 1) Under experimental warming and drainage treatment, the first flowering dates for Carex diandra and Ribes procumbens were advanced due to early elimination of the temperature limit, which for Saussurea neoserrata were delayed by the water stress. Moreover, the Ledum palustre had longer flowering duration and more followers under the experimental warming and drainage because of the adverse shift in flowering phenology of the earlier flowering plant and the later flowering plant. 2) The Carex diandra, Saussurea neoserrata and Ledum palustre had higher coverage and frequency under experimental warming and drainage, especially in Ledum palustre, while the coverage and frequency of Ribes procumbens were declined. 3) There was no significant interaction effect between the warming and drainage on plant flowering phenology, but the responses of plant growth characteristics to warming were affected by drainage. These results indicated that species respond differently to warmer and drier climate due to different flower functional groups they belong to. The first flowering date of the early flowering plants had been progressed, and that of the late flowering plants was delayed. On the one hand, these changes can change niches in the community and interspecific competition and further alter the composition and structure of the community. On the other hand, these changes could be a way for the community to regulate community phenology to adapt climate change.

Key words: reproductive phenology, restoration, simulated warming, soil moisture decreasing, fire scar

Table 1

Simulative warming and drainage effects on the most important environmental factors (mean or mean ± SE)"

对照 Control 增温 Warming 排水 Drainage 增温+排水 Warming + Drainage
空气温度 Air temperature (℃) 7.62 8.36 7.69 8.68
土壤温度 Soil temperature at 5 cm (℃) W, D 5.37 ± 0.14 5.38 ± 0.14 5.97 ± 0.04 5.91 ± 0.13
土壤水分 Soil moisture at 0-10 cm (%)W, D 45.52 ± 2.31 38.16 ± 6.82 25.36 ± 2.47 19.52 ± 1.05
最大融化深度 Maximun thaw depth (cm)D 62.4 ± 1.2 65.1 ± 1.2 57.5 ± 1.8 55.2 ± 1.6
生长季平均水位 Mean water table (cm) -20.0 ND -26.3 ND

Fig. 1

Simulated warming and drainage effects on the flowering phenology of the typical shrub-grass species (mean ± SE). CK, control; W, warming; D, drainage; WD, warming + drainage."

Fig. 2

Simulated warming and drainage effects on maximum flowering number of typical shrub grass species (mean ± SE). Different small letters in the same species indicated significant difference among different treatments (p < 0.05). CK, control; W, warming; D, drainage; WD, warming + drainage."

Supplement I

Results of GLME model"

物种
Species
n 增温 Warming 排水 Drainage 增温 × 排水
Warming × Drainage
系数
Coefficient
显著性
Significance
系数
Coefficient
显著性
Significance
系数
Coefficient
显著性
Significance
圆锥薹草
Carex diandra
高度 Height 13 4.073 0.085 13.212 0.082 -12.960 0.007
盖度 Coverage 13 -27.000 0.108 -11.583 0.725 0.833 0.974
频度 Frequency 13 -14.015 0.385 -18.246 0.671 -30.882 0.268
地上生物量
Above-ground biomass
13 -2.692 0.362 -1.731 0.774 -0.322 0.934
开花初始期 First flowering date 7 - - 8.000 0.210 - -
开花结束期 Last flowering date 7 - - 10.250 0.009 - -
开花峰值期 Flowering peak date 7 - - 11.167 0.076 - -
开花持续时间 Flowering duration 7 - - 2.250 0.727 - -
最大开花数量
Maximum flowering number
7 - - -13.167 0.496 - -
水葡萄茶藨子
Ribes procumbens
高度 Height 16 2.070 0.512 -2.947 0.550 3.880 0.352
盖度 Coverage 16 -5.000 0.741 -17.333 0.468 34.000 0.105
频度 Frequency 16 -5.200 0.785 -13.867 0.641 26.533 0.298
地上生物量
Above-ground biomass
16 -6.507 0.263 -8.738 0.299 10.792 0.138
开花初始期 First flowering date 15 1.727 0.449 1.382 0.799 -2.524 0.604
开花结束期 Last flowering date 15 3.788 0.097 3.164 0.542 3.595 0.434
开花峰值期 Flowering peak date 15 5.576 0.104 4.327 0.581 4.571 0.512
开花持续时间 Flowering duration 15 2.061 0.418 1.782 0.768 6.119 0.247
最大开花数量
Maximum flowering number
15 1.424 0.813 3.073 0.832 14.548 0.252
杜香
Ledum palustre
高度 Height 29 6.000 0.040 1.223 0.870 -10.108 0.024
盖度 Coverage 29 19.250 0.025 -11.590 0.541 -21.502 0.089
频度 Frequency 29 3.500 0.591 -3.088 0.832 -23.450 0.023
地上生物量
Above-ground biomass
29 12.999 0.249 -20.981 0.579 5.287 0.824
开花初始期 First flowering date 16 4.088 0.177 3.514 0.642 6.933 0.241
开花结束期 Last flowering date 16 -1.546 0.642 -0.139 0.987 -0.039 0.996
开花峰值期 Flowering peak date 16 6.097 0.043 3.042 0.671 -3.051 0.457
开花持续时间 Flowering duration 16 -5.634 0.243 -3.653 0.763 -7.315 0.470
最大开花数量
Maximum flowering number
16 0.838 0.982 -24.736 0.796 -52.318 0.493
齿叶风毛菊
Saussurea neoserrata
高度 Height 11 -9.412 0.614 -12.858 0.759 5.733 0.828
盖度 Coverage 11 -1.914 0.671 -1.052 0.918 -1.315 0.837
频度 Frequency 11 4.000 0.757 4.667 0.866 -18.667 0.336
地上生物量
Above-ground biomass
11 -3.670 0.186 -3.098 0.438 3.361 0.326
开花初始期 First flowering date 8 3.464 0.623 -17.036 0.289 -15.500 0.311
开花结束期 Last flowering date 8 3.143 0.447 -9.857 0.287 -1.000 0.916
开花峰值期 Flowering peak date 8 3.714 0.448 -12.284 0.265 -12.201 0.235
开花持续时间 Flowering duration 8 -0.321 0.943 7.179 0.477 14.500 0.105
最大开花数量
Maximum flowering number
8 -3.929 0.344 -2.929 0.734 3.000 0.746

Fig. 3

Simulated warming and drainage effects on coverage (A), height (B), frequency (C) and above-ground biomass (D) of the shrub-grass typical species (mean ± SE). Different small letters in the same species indicated significant difference among different treatments (p < 0.05). CK, control; W, warming; D, drainage; WD, warming + drainage."

[1] Abbott BW, Jones JB, Schuur EAG, Iii FSC, Bowden WB, Bretharte MS, Epstein HE, Flannigan MD, Harms TK, Hollingsworth TN ( 2016). Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environmental Research Letters, 11, 034014. DOI: 10.1088/17489326/11/3/034014.
doi: 10.1088/1748-9326/11/3/034014
[2] Ackerly DD ( 2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164(Suppl. 3), S165-S184.
doi: 10.1086/368401
[3] Amano T, Smithers RJ, Sparks TH, Sutherland WJ ( 2010). A 250-year index of first flowering dates and its response to temperature changes. Proceedings of the Royal society B, 277, 2451-2457.
doi: 10.1098/rspb.2010.0291 pmid: 2894925
[4] Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T ( 2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society of London B: Biological Sciences, 279, 3843-3852.
doi: 10.1098/rspb.2012.1051 pmid: 3415914
[5] Ausín I, Alonso-Blanco C, Martínez-Zapater JM ( 2005). Environmental regulation of flowering. International Journal of Developmental Biology, 49, 689-705.
doi: 10.1387/ijdb.052022ia
[6] Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S ( 2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309.
doi: 10.1111/j.1469-8137.2004.01059.x
[7] Brouwer R ( 1983). Functional equilibrium: Sense or nonsense. Netherlands Journal of Agricultural Science, 31, 335-348.
[8] Brown DRN, Torre JM, Douglas TA, Romanovsky VE, Knut K, Christopher H, Euskirchen ES, Ruess RW ( 2015). Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. Journal of Geophysical Research Biogeosciences, 120, 1619-1637.
doi: 10.1002/2015JG003033
[9] CaraDonna PJ, Iler AM, Inouye DW ( 2014). Shifts in flowering phenology reshape a subalpine plant community. Proceedings of the National Academy of Sciences of the United States of America, 111, 4916-4921.
doi: 10.1073/pnas.1323073111
[10] Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM ( 2012). Phenological tracking enables positive species responses to climate change. Ecology, 93, 1765-1771.
doi: 10.1890/11-1912.1 pmid: 22928404
[11] Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB ( 2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 13740-13744.
doi: 10.1073/pnas.0600815103 pmid: 16954189
[12] Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD ( 2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22, 357-365.
doi: 10.1016/j.tree.2007.04.003 pmid: 17478009
[13] Dorji T, Totland O, Moe SR, Hopping KA, Pan J, Klein JA ( 2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
doi: 10.1111/gcb.12059 pmid: 23504784
[14] Dudgeon SR, Steneck RS, Davison IR, Vadas RL ( 1999). Coexistence of similar species in a space-limited intertidal zone. Ecological Monographs, 69, 331-352.
doi: 10.1890/0012-9615(1999)069[0331:COSSIA]2.0.CO;2
[15] Forrest J, Miller-Rushing AJ ( 2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B, 365, 3101-3112.
doi: 10.1098/rstb.2010.0145 pmid: 2981948
[16] Galen C, Sheery RA, Carroll AB ( 1999). Are flowers physiolosical sinks or faucets? Costs ans correlates of water use by flowers of Polemonium viscosum. Oecologia, 118, 461-470.
[17] Gugger S, Kesselring H, Stöcklin J, Hamann E ( 2015). Lower plasticity exhibited by high-versus mid-elevation species in their phenological responses to manipulated temperature and drought. Annals of Botany, 116, 953-962.
doi: 10.1093/aob/mcv155 pmid: 4640129
[18] Hulme PE ( 2011). Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions. New Phytologist, 189, 272-281.
doi: 10.1111/j.1469-8137.2010.03446.x pmid: 20807339
[19] IPCC ( Intergovernmental Panel on Climate Change) ( 2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
doi: 10.1016/S0925-7721(01)00003-7
[20] Jorgenson MT, Racine CH, Walters JC, Osterkamp TE ( 2001). Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change, 48, 551-579.
doi: 10.1023/A:1005667424292
[21] Kim Y, Tanaka N ( 2003). Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska. Journal of Geophysical Research, 108, 8154. DOI: 10.1029/2001JD000663.
doi: 10.1029/2001JD000663
[22] Kochmer JP, Handel SN ( 1986). Constraints and competition in the evolution of flowering phenology. Ecological Monographs, 56, 303-325.
doi: 10.2307/1942549
[23] Li X, Jiang L, Meng F, Wang S, Niu H, Iler AM, Duan J, Zhang Z, Luo C, Cui S, Zhang L, Li Y, Wang Q, Zhou Y, Bao X, Doriji T, Li Y, Peñuelas J, Du M, Zhao X, Zhao L, Wang G ( 2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489. DOI: 10.1038/ncomms12489.
doi: 10.1038/ncomms12489 pmid: 27535205
[24] Meng F, Cui S, Wang S, Duan J, Jiang L, Zhang Z, Luo C, Wang Q, Zhou Y, Li X ( 2016). Changes in phenological sequences of alpine communities across a natural elevation gradient. Agricultural and Forest Meteorology, 224, 11-16.
doi: 10.1016/j.agrformet.2016.04.013
[25] Meng FD, Jiang LL, Zhang ZH, Cui SJ, Duan JC, Wang SP, Luo CY, Wang Q, Zhou Y, Li XE, Zhang LR, Li BW, Dorij T, Li YN, Du MY ( 2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734-740.
doi: 10.1002/ecy.1685 pmid: 27984640
[26] Menzel A, Seifert H, Eatrella N ( 2011). Effects of recent warm and cold spells on European plant phenology. International Journal of Biometeorology, 55, 921-932.
doi: 10.1007/s00484-011-0466-x pmid: 21755278
[27] Peñuelas J, Filella I ( 2001). Phenology: Reapones to a warming world. Science, 294, 793-795.
doi: 10.1126/science.1066860 pmid: 11679652
[28] Peñuelas J, Filella I, Comas P ( 2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531-544.
doi: 10.1046/j.1365-2486.2002.00489.x
[29] Peñuelas J, Prieto P, Beier C, Cesaraccio C, de Angelis P, de Dato G, Emmett BA, Estiarte M, Garadnai J, Gorissen A ( 2007). Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to seven years of experimental warming and drought: Reductions in primary productivity in the heat and drought year of 2003. Global Change Biology, 13, 2563-2581.
doi: 10.1111/gcb.2007.13.issue-12
[30] Peñuelas J, Rutishauser T, Filella I ( 2009). Phenology feedbacks on climate change. Science, 324, 887-888.
doi: 10.1126/science.1173004 pmid: 19443770
[31] Post ES, Pedersen C, Wilmers CC, Forchhammer MC ( 2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370.
doi: 10.1890/06-2138.1 pmid: 18409426
[32] Schemske DW, Willson MF, Melampy MN, Miller LJ, Verner L, Schemske KM, Best LB ( 1978). Flowering ecology of some spring woodland herbs. Ecology, 59, 351-366.
doi: 10.2307/1936379
[33] Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y ( 2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
doi: 10.1073/pnas.0605642104
[34] Steinaker DF, Wilson SD, Peltzer DA ( 2010). Asynchronicity in root and shoot phenology in grass and woody plants. Global Change Biology, 16, 2241-2251.
doi: 10.1111/j.1365-2486.2009.02065.x
[35] Sullivan PF, Welker JM ( 2005). Warming chambers stimulate early season growth of an arctic sedge: Results of a minirhizotron field study. Oecologia, 142, 616-626.
doi: 10.1007/s00442-004-1764-3 pmid: 15688218
[36] Sun MX ( 2011). The Impacts on Soil Properities and Revegetation from Forest in Tahe Forest Region. PhD dissertation, Bejing Forestry University,Beijing.
[ 孙明学 ( 2011). 塔河林区林火对土壤性质与植被恢复的影响. 博士学位论文, 北京林业大学, 北京.]
[37] Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F ( 2002). Ecological responses to recent climate change. Nature, 416, 389-395.
doi: 10.1038/416389a pmid: 11919621
[38] Wang S, Meng F, Duan J, Wang Y, Cui X, Piao S, Niu H, Xu G, Luo C, Zhang Z ( 2014 a). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 95, 3387-3398.
doi: 10.1890/13-2235.1
[39] Wang S, Wang C, Duan J, Zhu X, Xu G, Luo C, Zhang Z, Meng F, Li Y, Du M ( 2014 b). Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan Plateau. Agricultural and Forest Meteorology, 189, 220-228.
doi: 10.1016/j.agrformet.2014.01.021
[40] Wang XG, Li XZ, He HS, Leng WF, Wen QC ( 2004). Postfire succession of larch forest in the northern slope of Daxinganling. Chinese Journal of Ecology, 23, 35-41.
[ 王绪高, 李秀珍, 贺红士, 冷文芳, 问青春 ( 2004). 大兴安岭北坡落叶松林火后植被演替过程研究. 生态学杂志, 23, 35-41.]
[41] Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ ( 2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497.
doi: 10.1038/nature11014 pmid: 22622576
[42] Wu RF, Huo ZG, Cao YF, Yan WX ( 2009). Phenophase change of typical herbaceous plants in Inner Mongolia in spring and its response to climate warming. Chinese Journal of Ecology, 28, 1470-1475.
[ 吴瑞芬, 霍治国, 曹艳芳, 闫伟兄 ( 2009). 内蒙古典型草本植物春季物候变化及其对气候变暖的响应. 生态学杂志, 28, 1470-1475.]
[43] Ye X, Zhou HK, Liu GH, Yao BQ, Zhao XQ ( 2014). Responses of phenological characteristics of major plants to nutrient and water additions in Kobresia humilis alpine meadow. Chinese Journal of Plant Ecology, 38, 147-158.
doi: 10.3724/SP.J.1258.2014.00013
[ 叶鑫, 周华坤, 刘国华, 姚步青, 赵新全 ( 2014). 高寒矮生嵩草草甸主要植物物候特征对养分和水分添加的响应. 植物生态学报, 38, 147-158.]
doi: 10.3724/SP.J.1258.2014.00013
[44] Yu C, He HS, Hu Y, Bu R, Li X ( 2008). Historic and current fire regimes in the Great Xing’an Mountains, northeastern China: Implications for long-term forest management. Forest Ecology and Management, 254, 445-453.
doi: 10.1016/j.foreco.2007.04.050
[1] Mo Zhangqin. Re-legalizing China’s ecological conservation redline: The position, dilemma and path [J]. Biodiv Sci, 2019, 27(3): 347-352.
[2] YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118.
[3] YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plan Ecolo, 2018, 42(6): 663-671.
[4] GU Xiang,ZHANG Shi-Ji,LIU Zhao-Dan,LI Lei-Da,CHEN Jin-Lei,WANG Liu-Fang,FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plan Ecolo, 2018, 42(5): 595-608.
[5] GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224.
[6] Boya Zhang,Yuxue Pan,Jing Xu,Yu Tian. IPBES thematic assessment on land degradation and restoration and its potential impact [J]. Biodiv Sci, 2018, 26(11): 1243-1248.
[7] ZHANG Li, WANG Gen-Xu, RAN Fei, PENG A-Hui, XIAO Yao, YANG Yang, YANG Yan. Experimental warming changed plants’ phenological sequences of two dominant species in an alpine meadow, western of Sichuan [J]. Chin J Plan Ecolo, 2018, 42(1): 20-27.
[8] Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plan Ecolo, 2017, 41(8): 862-871.
[9] Xiao Zhou, Dongdong Chen, Stephen W. Kress, Shuihua Chen. A review of the use of active seabird restoration techniques [J]. Biodiv Sci, 2017, 25(4): 364-371.
[10] Jida Yang,Zhiming Zhang,Zehao Shen,Xiaokun Ou,Yupeng Geng,Mingyu Yang. Review of research on the vegetation and environment of dry-hot valleys in Yunnan [J]. Biodiv Sci, 2016, 24(4): 462-474.
[11] Jun-Tao ZHU. Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow [J]. Chin J Plan Ecolo, 2016, 40(10): 1028-1036.
[12] HUANG Zong-Sheng,YU Li-Fei,FU Yu-Hong,YANG Rui. Characteristics of carbon sequestration during natural restoration of Maolan karst forest ecosystems [J]. Chin J Plan Ecolo, 2015, 39(6): 554-564.
[13] CHEN Shi-Wei,LIU Min-Xia,JIA Yun,AN Qi,AN Yan-Fei. Community succession and photosynthetic physiological characteristics of pasture plants in a sub-alpine meadow in Gannan, China [J]. Chin J Plan Ecolo, 2015, 39(4): 343-351.
[14] Jia Hang,Yun Shi,Wenhui Liu,Dahan He. Diversity of ground-dwelling beetles (Coleoptera) in restored habitats in the hill and gully area of Loess Plateau, Ningxia Hui Autonomous Region [J]. Biodiv Sci, 2014, 22(4): 516-524.
[15] LIU Zhu, YANG Yu-Sheng, SI You-Tao, KANG Gen-Li, and ZHENG Huai-Zhou. Effects of vegetation restoration on content and spectroscopic characteristics of dissolved organic matter in eroded red soil [J]. Chin J Plan Ecolo, 2014, 38(11): 1174-1183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Alexandra R. Collins, Brian Beckage, Jane Molofsky. Small scale genotypic richness stabilizes plot biomass and increases phenotypic variance in the invasive grass Phalaris arundinacea[J]. J Plant Ecol, 2018, 11(1): 47 -55 .
[2] XU Ge-Xi, LUO Shui-Xing, GUO Quan-Shui, PEI Shun-Xiang, SHI Zuo-Min, ZHU Li, and ZHU Ni-Ni. Responses of leaf unfolding and flowering to climate change in 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island[J]. Chin J Plan Ecolo, 2014, 38(6): 585 -598 .
[3] Wenjing Liu, Jing Xu, Senlu Yin, Yu Tian, Junsheng Li. Mechanisms of benefit-sharing of medicinal plants found in China and neighboring countries[J]. Biodiv Sci, 2017, 25(8): 907 -913 .
[4] Wang Renzhong. Density-Dependence of Calamagrostis epigejos in Songnen Grassland[J]. Chin J Plan Ecolo, 1998, 22(1): 85 -89 .
[5] Xu Xiang-yu. A NEW PENTACYCLIC TRITERPENE FROM MAYTENUS ORBICULATA[J]. Plant Diversity, 1982, 4(01): 1 -3 .
[6] MA Yu-E, XIANG Wen-Hua, LEI Pi-Feng. STEM RESPIRATION AND ITS CONTROLLING FACTORS IN FOREST ECOSYSTEMS[J]. Chin J Plan Ecolo, 2007, 31(3): 403 -412 .
[7] Mathias Öster, Ove Eriksson. Recruitment in species-rich grasslands: the effects of functional traits and propagule pressure[J]. J Plant Ecol, 2012, 5(3): 260 -269 .
[8] Paichi Group of Worker-Peasant-Soldier Students, 1972 Class, Department of Chengtu Chinese Pharmacy, Chinese Medical College. Investigations of the Chinese Medicinal Herb“Paichi”in the Areas of West and North Szechuan[J]. J Syst Evol, 1977, 15(1): 59 -62 .
[9] WU Yun-Na, LI Zheng-Hai. Changing of Landscape Diversity with Time in Xilinguole Steppe[J]. Chin J Plan Ecolo, 2000, 24(1): 58 -63 .
[10] Yang Yusheng, He Zongming, Lin Guangyao, Yang Xuezhen. Effects of Different Harness Measures on Latertic Red Soil Fertility in Southeast Coast of Fujian[J]. Chin J Plan Ecolo, 1998, 22(3): 281 -288 .