Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (7): 703-712.doi: 10.17521/cjpe.2018.0064

• Research Articles •     Next Articles

Ecosystem carbon stock and within-system distribution in successional Fagus lucida forests in Mt. Yueliang, Guizhou, China

ZHOU Xu-Li,CAI Qiong,XIONG Xin-Yu,FANG Wen-Jing,ZHU Jian-Xiao,ZHU Jiang-Ling,FANG Jing-Yun,JI Cheng-Jun()   

  1. College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
  • Online:2018-06-01 Published:2018-07-20
  • Contact: Cheng-Jun JI E-mail:jicj@pku.edu.cn
  • Supported by:
    Supported by the National Key Research and Development Program of China(2017YFA0605101);the National Science and Technology Basic Project of China(2015FY210200);the National Natural Science Foundation of China(31700374)

Abstract:

Aims Stand age plays a vital role in carbon (C) stock and its distribution (vegetation, woody debris, litter and soil) within forest ecosystems. Subtropical forests are pivotal in the C cycling of terrestrial ecosystems. In subtropical China, Fagus trees are widely distributed and of great importance. However, the analyses of C storage in chronosequent Fagus forests have not been well performed.

Methods Nine Fagus lucida forests at three succession stages (33, 82 and 208 year-old) were studied in Mt. Yueliang, Guizhou Province, and their C stocks and distributions within the forests were investigated and estimated.

Important findings Ecosystem C stock increased significantly with increasing stand age, which was (186.9 ± 46.0), (265.8 ± 82.3) and (515.1 ± 176.4) Mg·hm-2 in the 33, 82 and 208 year-old forests, respectively. The increase in the C stock appeared mainly attributed from increase in vegetation C stocks that accounted for 32%-79% of the total C stock. The woody debris and litter carbon stocks also increased significantly with increasing stand age, but accounted for <1% of the total C stock. While soil C stock showed no significant change with increasing stand age, it decreased its contribution to the total C stock (from 67% to 20%). These results confirmed the importance of stand age on C storage and the dynamic reallocations in the subtropical forests. Results from this study also added additional evidences in understanding the significance of disturbance and land use in C accumulation.

Key words: carbon stock, Fagus lucida forests, stand age, vegetation, soil, litter, woody debris

Table 1

Characteristics of the nine stands of Fagus lucida forest in Mt. Yueliang"

样地编号 Stand No. 33年林 33 a forest 82年林 82 a forest 208年林 208 a forest
YLS 1 YLS 2 YLS 3 YLS 4 YLS 5 YLS 6 YLS 7 YLS 8 YLS 9
海拔 Altitude (m) 1 422 1 400 1 405 1 457 1 451 1 439 1 474 1 471 1 469
森林起源 Forest origin 次生林
Secondary forest
次生林
Secondary forest
次生林
Secondary forest
原始林
Primeval
forest
原始林
Primeval
forest
原始林
Primeval
forest
原始林
Primeval
forest
原始林
Primeval
forest
原始林
Primeval
forest
林龄 Stand age (a) 30 36 34 71 84 92 203 215 207
坡向 Aspect 南偏东80度
80° SE
南偏东25度
25° SE
南偏东25度
25° SE
北偏西80度
80° NW
正西
W
北偏西60度
60° NW
南偏东55度
55° SE
正北
N
南偏西70度
70° SW
坡度 Slope (°) 35 45 47 35 16 37 32 36 32
平均胸径 Mean DBH (cm) 8.9 9.2 8.9 17.0 17.4 14.6 16.1 19.2 18.9
最大胸径 DBHmax (cm) 25.9 24.5 26.1 42.7 75.8 44.6 90.7 74.5 71.6
平均树高 Mean Height (m) 7.7 7.7 7.5 10.6 13.7 9.9 8.1 11.7 9.9
最大树高 Heightmax (m) 12 12 13 16 25 21 17 23 24
总胸高断面积 TBA (m2·hm-2) 24.7 25.1 27.5 41.4 65.0 52.5 79.0 49.3 63.2
密度 Stand density (No.· hm-2) 3 200 3 167 3 483 1 500 1 850 2 300 1 800 1 000 1 400
乔木种数 Number of trees 21 19 23 17 19 24 18 21 19
灌木种数 Number of shrubs 48 52 44 49 70 70 47 52 55
草本种数 Number of herbs 27 20 24 22 23 25 15 22 24

Table 2

Allometric equations for calculating aboveground biomass (AGB) and belowground biomass (BGB) of dominant tree species in this study"

物种 Species 地上生物量 AGB (kg) 地下生物量 BGB (kg) 本文主要对应树种
Species in this study
参考文献
References
锥属 Castanopsis AGB = 0.0177(D2H)1.0168 + 0.0364(D2H)0.6530 +
0.1533(D2H)0.2948
BGB = 0.00911(D2H)0.933951 锥属 Castanopsis Qiu et al., 1984
水青冈属 Fagus AGB = 0.0125(D2H)1.05 + 0.000933(D 2H)1.23 +
0.000294(D 2H)1.20
BGB = 0.00322(D2H)1.13 亮叶水青冈 Fagus lucida Wang et al., 2007
樟科 Lauraceae AGB = 0.055603(D2H)0.850193 +
0.014757(D2H)0.808395 + 0.006652(D2H)1.051841 +
0.059871(D2H)0.574327
BGB = 0.184736(D2H)0.616421 木姜子属 Litsea Yao et al., 2003
枫香
Liquidambar
formosana
AGB = 0.174(D2H)0.7661 + 3 × 10-8(D2H)2 +
0.001(D2H) + 9.7883 + 0.0002(D2H)1.2696 +
0.0002D3.2304 + 3 × 10-7(D2H)1.5626
BGB = 0.0094(D2H)0.9538 枫香树
Liquidambar formosana
Ming et al., 2012
柯属 Lithocarpus AGB = 0.0347(D2H)0.9470 + 0.0084(D2H)0.9112 +
0.0072(D2H)0.6893
BGB = 0.01534(D2H)0.95121 柯属 Lithocarpus Qiu et al., 1984
木兰科
Magnoliaceae
AGB = 0.502921(D2H)0.56821 +
0.007183(D2H)0.92191 + 0.02252(D2H)0.62601
BGB = 0.0364(D2H)0.79111 木兰属 Magnolia Qiu et al., 1984
落叶阔叶树
Deciduous
broad-leaved trees
AGB = 0.0650(D2H)0.84 + 1.59(D2H)0.38 +
0.218(D2H)0.34
BGB = 0.291(D2H)0.55 鹅耳枥属 Carpinus,
槭属 Acer
Wang et al., 2007
常绿阔叶树
Evergreen
broad-leaved trees
AGB = 0.17686(D2H)0.75995 +
0.11499(D2H)0.69997 + 0.107513(D2H)0.53231
BGB = 0.095827(D2H)0.7165 青冈属 Cyclobalanopsis,
冬青属 Ilex
Deng et al., 2000
落叶小乔木
Small deciduous trees
AGB = 0.0434(D2H)0.91 +
0.000902(D2H)1.31 + 0.000790(D2H)1.05
BGB = 0.000781(D2H)1.05 尖叶四照花
Dendrobenthamia angustata,
贵州桤叶树
Clethra kaipoensis
Wang et al., 2007
常绿小乔木
Small evergreen trees
AGB = 0.190(D2H)0.663 +
0.123(D2H)1.023 + 0.00728(D2H)0.548
BGB = 0.0557(D2H)0.622 川桂 Cinnamomum wilsonii,
杜鹃属 Rhododendron
Wang et al., 2007

Fig. 1

Changes in vegetation carbon density of the nine successional Fagus lucida forests in Mt. Yueliang (mean + SE). A, Carbon density in different life forms (trees, shrubs and herbs). B, Above- and below-ground carbon density."

Fig. 2

Absolute (mean + SE) (A) and relative distribution of carbon density (B) of plant debris in the nine successional Fagus lucida forests in Mt. Yueliang. CWD, coarse woody debris; FWD, fine woody debris."

Fig. 3

Absolute (mean + SE) (A) and relative distribution of soil carbon density (B) by soil depth in the nine successional Fagus lucida forests of Mt. Yueliang."

Fig. 4

Absolute (mean + SE) (A) and relative distribution of ecosystem carbon density (B) in the nine successional Fagus lucida forests of Mt. Yueliang."

[1] Aplet GH, Vitousek PM ( 1994). An age-altitude matrix analysis of Hawaiian rain-forest succession. Journal of Ecology, 82, 137-147.
doi: 10.2307/2261393
[2] Bradford JB, Kastendick DN ( 2010). Age-related patterns of forest complexity and carbon storage in pine and aspen-?birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research, 40, 401-409.
doi: 10.1139/X10-002
[3] Chapin III FS, Matson PA, Mooney HA ( 2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York.
[4] Deng SJ, Liao LP, Wang SL, Gao H, Lin B ( 2000). Bioproductivity of Castanopsis hysrix-Cyclobalanopsis glauca-?Machilus pauhoi community in Huitong, Hunan. Chinese Journal of Applied Ecology, 11, 651-654.
doi: 10.1007/s11769-000-0054-1
[ 邓仕坚, 廖利平, 汪思龙, 高洪, 林柏 ( 2000). 湖南会同红栲-青冈-刨花楠群落生物生产力的研究. 应用生态学报, 11, 651-654.]
doi: 10.1007/s11769-000-0054-1
[5] Fang JY, Lechowicz MJ ( 2006). Climatic limits for the present distribution of beech ( Fagus L.) species in the world. Journal of Biogeography, 33, 1804-1819.
doi: 10.1111/j.1365-2699.2006.01533.x
[6] Fu WB, Peng WX, Song TQ, Zeng FP, Du H, Wen YG, Xu HF ( 2014). Biomass and its allocation characteristics of Eucalyptus urophylla × E. grandis plantations at different stand ages. Acta Ecologica Sinica, 34, 5234-5241.
doi: 10.5846/stxb201405090930
[ 付威波, 彭晚霞, 宋同清, 曾馥平, 杜虎, 温远光, 徐慧芳 ( 2014). 不同林龄尾巨桉人工林的生物量及其分配特征. 生态学报, 34, 5234-5241.]
doi: 10.5846/stxb201405090930
[7] Gong C, Wang SL, Zeng ZQ, Deng SJ, Chen JP, Long KS ( 2011). Carbon storage and its distribution of evergreen broad-leaved forests at different succession stages in mid-subtropical China. Chinese Journal of Ecology, 30, 1935-1941.
[ 宫超, 汪思龙, 曾掌权, 邓仕坚, 陈建平, 龙康寿 ( 2011). 中亚热带常绿阔叶林不同演替阶段碳储量与格局特征. 生态学杂志, 34, 1935-1941.]
[8] Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK ( 1997). Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research Atmospheres, 102, 29029-29042.
doi: 10.1029/97JD02317
[9] Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K, Cummins KW ( 1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133-302.
doi: 10.1016/S0065-2504(08)60121-X
[10] Hooker TD, Compton JE ( 2003). Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Applications, 13, 299-313.
doi: 10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2
[11] IPCC ( 2013). Intergovernmental Panel on Climate Change 2013. Cambridge University Press, Cambridge.
[12] Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA ( 2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137, 253-268.
doi: 10.1016/j.geoderma.2006.09.003
[13] Kakubari Y ( 1991). Primary productivity changes for a fifteen-year period in a natural beech ( Fagus crenata) forest in the Naeba mountains. Journal of the Japanese Forestry Society, 73, 370-374.
doi: 10.1562/2005-06-08-RA-568
[14] Li X, Yi MJ, Son Y, Park PS, Lee KH, Son Y M, Jeong MJ ( 2011). Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology, 54, 33-42.
doi: 10.1007/s12374-010-9140-9
[15] Ma SH, He F, Tian D, Zou DT, Yan ZB, Yang YL, Zhou TC, Huang KY, Shen HH, Fang JY ( 2018). Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences Discussions, 15, 1-22.
doi: 10.5194/bg-15-1-2018
[16] Ming AG, Jia HY, Tao Y, Lu LH, Su JM, Shi ZM ( 2012). Biomass and its allocation in a 28-year-old Mytilaria laosensis plantation in southwest Guangxi. Chinese Journal of Ecology, 31, 1050-1056.
[ 明安刚, 贾宏炎, 陶怡, 卢立华, 苏建苗, 史作民 ( 2012). 桂西南28年生米老排人工林生物量及其分配特征. 生态学杂志, 31, 1050-1056.]
[17] Ming AG, Jia HY, Tian ZW, Tao Y, Lu LH, Cai DX, Shi ZM, Wang WX ( 2014). Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages. Chinese Journal of Applied Ecology, 25, 940-946.
[ 明安刚, 贾宏炎, 田祖为, 陶怡, 卢立华, 蔡道雄, 史作民, 王卫霞 ( 2014). 不同林龄格木人工林碳储量及其分配特征. 应用生态学报, 25, 940-946.]
[18] Mund M ( 2004). Carbon Pools of European Beech Forests (Fagus sylvatica) under Different Silvicultural Management. PhD dissertation, University of G?ttingen, Goettingen.
[19] Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK ( 2001). A large carbon sink in the woody biomass of northern forests. Proceedings of the National Academy of Sciences of the United States of America, 98, 14784-14789.
doi: 10.1073/pnas.261555198 pmid: 11742094
[20] Nave LE, Vance ED, Swanston CW, Curtis PS ( 2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259, 857-866.
doi: 10.1016/j.foreco.2009.12.009
[21] Noh NJ, Son Y, Lee SK, Seo KW, Heo SJ, Yi MJ, Lee KH ( 2010). Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Science China Life Sciences, 53, 822-830.
[22] Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D ( 2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
doi: 10.1126/science.1201609 pmid: 174893267101550638
[23] Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK ( 2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168, 241-257.
doi: 10.1016/S0378-1127(01)00740-X
[24] Peichl M, Arain MA ( 2006). Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140, 51-63.
doi: 10.1016/j.agrformet.2006.08.004
[25] Peltoniemi M, Mäkipää R, Liski J, Tamminen P ( 2004). Changes in soil carbon with stand age—An evaluation of a modelling method with empirical data. Global Change Biology, 10, 2078-2091.
doi: 10.1111/j.1365-2486.2004.00881.x
[26] Pregitzer KS, Euskirchen ES ( 2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10, 2052-2077.
doi: 10.1111/gcb.2004.10.issue-12
[27] Qiu XZ, Xie SC, Jing GF ( 1984). A preliminary study on biomass of Dendrobium candidum in Yunnan Ailaoshan Xujiaba Area. Acta Botanica Yunnanica, 6, 85-92.
[ 邱学忠, 谢寿昌, 荆桂芬 ( 1984). 云南哀牢山徐家坝地区木果石栎林生物量的初步研究. 云南植物研究, 6, 85-92.]
[28] Sigurdsson BD, Magnusson B, Elmarsdottir A, Bjarnadottir B ( 2005). Biomass and composition of understory vegetation and the forest floor carbon stock across Siberian larch and mountain birch chronosequences in Iceland. Annals of Forest Science, 62, 881-888.
doi: 10.1051/forest:2005079
[29] Spies TA, Franklin JF, Thomas TB ( 1988). Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology, 69, 1689-1702.
doi: 10.2307/1941147
[30] Sturtevant BR, Bissonette JA, Long JN, Roberts DW ( 1997). Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecological Applications, 7, 702-712.
doi: 10.1890/1051-0761(1997)007[0702:CWDAAF]2.0.CO;2
[31] Tang XL, Zhou GY ( 2005). Coarse woody debris biomass and its potential contribution to the carbon cycle in successional subtropical forests of Southern China. Acta Phytoecologica Sinca, 29, 559-568.
doi: 10.17521/cjpe.2005.0075
[ 唐旭利, 周国逸 ( 2005). 南亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响. 植物生态学报, 29, 559-568.]
doi: 10.17521/cjpe.2005.0075
[32] Wang XY, Hu D, He JS ( 2007). Study of the biomass of Cyclobalanopsis glauca and Sharptooth Oak forests in Shennongjia area. Journal of Capital Normal University (Natural Science Edition), 28(2), 62-67.
doi: 10.3969/j.issn.1004-9398.2007.02.014
[ 王向雨, 胡东, 贺金生 ( 2007). 神农架地区米心水青冈林和锐齿槲栎林生物量的研究. 首都师范大学学报(自然科学版), 28(2), 62-67.]
doi: 10.3969/j.issn.1004-9398.2007.02.014
[33] Wang ZX, Fujiwara K ( 2003). A preliminary vegetation study of Fagus forests in central China: Species composition, structure and ecotypes. Journal of Phytogeography and Taxonomy, 51, 137-157.
[34] Wu KC, Wang DJ, Feng BX ( 2013). Characteristics and diversity of plant communities in the Moon Mountain in Rongjiang. Guizhou Agricultural Sciences, 41(8), 23-27.
[ 吴开岑, 王定江, 冯邦贤 ( 2013). 榕江月亮山植物群落的特征及多样性. 贵州农业科学, 41(8), 23-27.]
[35] Wu PF, Zhu B, Liu SR, Wang XG ( 2008). Carbon storage and its allocation in mixed alder-cypress plantations at different age stages. Chinese Journal of Applied Ecology, 19, 1419-1424.
[ 吴鹏飞, 朱波, 刘世荣, 王小国 ( 2008). 不同林龄桤-柏混交林生态系统的碳储量及其分配. 应用生态学报, 19, 1419-1424.]
[36] Yang YQ (1994). Scientific Survey of the Yueliangshan Forest Area, Guizhou, China. Guizhou Nationality Press, Guiyang.
[ 杨业勤 (1994). 月亮山林区科学考察集. 贵州民族出版社, 贵阳. ]
[37] Yao YJ, Kang WX, Tian DL ( 2003). Study of the biomass and productivity of Cinnamomum camphora plantation. Journal of Central South Forestry University, 23, 1-5.
doi: 10.3969/j.issn.1673-923X.2003.01.001
[ 姚迎九, 康文星, 田大伦 ( 2003). 18年生樟树人工林生物量的结构与分布. 中南林学院学报, 23, 1-5.]
doi: 10.3969/j.issn.1673-923X.2003.01.001
[38] Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, Li XR, Zhu XJ ( 2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Science of the United States of America, 111, 4910-4915.
doi: 10.1073/pnas.1317065111
[39] Zhang QZ, Wang CK ( 2010). Carbon density and distribution of six Chinese temperate forests. Scientia Sinica: Vitae, 621-631.
[ 张全智, 王传宽 ( 2010). 6种温带森林碳密度与碳分配. 中国科学: 生命科学, 621-631.]
[40] Zhang YB, Lv WQ, Yi WY, Zhou CY, Wu YG, Zhou SQ ( 2016). Soil stoichiometry characterization of five forest types in Moon Mountain, Guizhou Province. Journal of Tropical and Subtropical Botany, 24, 617-625.
doi: 10.11926/j.issn.1005-3395.2016.06.004
[ 张亚冰, 吕文强, 易武英, 周传艳, 吴永贵, 周少奇 ( 2016). 贵州月亮山5种森林类型土壤生态化学计量特征研究. 热带亚热带植物学报, 24, 617-625.]
doi: 10.11926/j.issn.1005-3395.2016.06.004
[41] Zhu JX, Hu XY, Yao H, Liu GH, Ji CJ, Fang JY ( 2015). A significant carbon sink in temperate forests in Beijing: Based on 20-year field measurements in three stands. Scientia Sinica: Vitae, 58, 1135-1141.
doi: 10.1007/s11427-015-4935-z pmid: 26501378
[42] Zhu JX, Hu HF, Tao SL, Chi XL, Li P, Jiang L, Ji CJ, Zhu JL, Tang ZY, Pan YD, Birdsey RA, He XH, Fang JY ( 2017a). Carbon stocks and changes of dead organic matter in China’s forests. Nature Communications, 8, 151. DOI: 10.1038/s41467-017-00207-1.
doi: 10.1038/s41467-017-00207-1 pmid: 5532249
[43] Zhu JX, Zhou XL, Fang WJ, Xiong XY, Zhu B, Ji CJ, Fang JY ( 2017b). Plant debris and its contribution to ecosystem carbon storage in successional Larix gmelinii forests in northeastern China. Forests, 8, 191. DOI: 10.3390/f8060191.
[1] Zhang Zhe, Wang Shaojun, Chen Minkun, Cao Run, Li Shaohui. Effect of ant colonization on spatiotemporal dynamics of readily oxidizable soil carbon across different restoration stages of tropical forests [J]. Biodiv Sci, 2019, 27(6): 658-666.
[2] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[3] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[4] YAN Peng-Fei, ZHAN Peng-Fei, XIAO De-Rong, WANG Yi, YU Rui, LIU Zhen-Ya, WANG Hang. Effects of simulated warming and decomposition interface on the litter decomposition rate of Zizania latifolia and its phyllospheric microbial community structure and function [J]. Chin J Plant Ecol, 2019, 43(2): 107-118.
[5] LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(2): 174-184.
[6] ZHU Wei, YU Li-Xuan, ZHAO De-Hai, JIA Li-Ming. Architectural analysis of root systems of mature trees in sandy loam soils using the root development classification [J]. Chin J Plant Ecol, 2019, 43(2): 119-130.
[7] LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164.
[8] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(1): 77-84.
[9] NING Zhi-Ying, LI Yu-Lin, YANG Hong-Ling, ZHANG Zi-Qian. Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2019, 43(1): 46-54.
[10] CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping, LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting. Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China [J]. Chin J Plant Ecol, 2019, 43(1): 65-76.
[11] XI Ben-Ye, DI Nan, CAO Zhi-Guo, LIU Jin-Qiang, LI Dou-Dou, WANG Ye, LI Guang-De, DUAN Jie, JIA Li-Ming, ZHANG Rui-Na. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees [J]. Chin J Plan Ecolo, 2018, 42(9): 885-905.
[12] Xueming Lei,Fangfang Shen,Xuechen Lei,Wenfei Liu,Honglang Duan,Houbao Fan,Jianping Wu. Assessing influence of simulated canopy nitrogen deposition and understory removal on soil microbial community structure in a Cunninghamia lanceolata plantation [J]. Biodiv Sci, 2018, 26(9): 962-971.
[13] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[14] Linlu Shi, Yifei Jia, Aojie Zuo, Tonghui Ma, Jialin Lei, Guangchun Lei, Li Wen. Dynamic change of vegetation cover and productivity of Poyang Lake wetland based on MODIS EVI time series [J]. Biodiv Sci, 2018, 26(8): 828-837.
[15] ZOU Zan, CHEN Jin-Song, LI Yang, SONG Hui-Xing. Effects of transportation direction of photosynthate on soil microbial processes in the rhizosphere of Phyllostachys bissetii [J]. Chin J Plan Ecolo, 2018, 42(8): 863-872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAN Yu-Ping, SHA Li-Qing, CAO Min. STEM RESPIRATION RATES OF DOMINANT TREE SPECIES IN A TROPICAL SEASONAL RAIN FOREST IN XISHUANGBANNA, YUNNAN, SOUTHWEST CHINA[J]. Chin J Plan Ecolo, 2008, 32(1): 23 -30 .
[2] Xiao-Hong YU;,Yi-Bo LUO,;,Ming DONG. Pollination biology of Cymbidium goeringii (Orchidaceae) in China[J]. J Syst Evol, 2008, 46(2): 163 -174 .
[3] Ching Ren-Chang. Three New Fern Genera[J]. J Syst Evol, 1966, 11(1): 17 -30 .
[4] Hyunsook Kim, Mikiko Kojima, Daeseok Choi, Soyoung Park, Minami Matsui, Hitoshi Sakakibara, and Ildoo Hwang. Overexpression of INCREASED CAMBIAL ACTIVITY, a putative methyltransferase, increases cambial activity and plant growth[J]. J Integr Plant Biol, 2016, 58(11): 874 -889 .
[5] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[6] F. H. Wong. The gametophytes of Glyplostrobus[J]. J Integr Plant Biol, 1952, 1(1): .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[8] XU Yue, SHEN Ze-Hao, Lü Nan, TANG Yuan-Yuan, LI Dao-Xin, WANG Gong-Fang, TAN Jia-Lin, and LIU Yi-Ping. Ten years’ observation of seed rain in a Fagus lucida community in Dalaoling Nature Reserve in the Three Gorges: seed rain density, species composition and their correlation with the community[J]. Chin J Plan Ecolo, 2012, 36(8): 708 -716 .
[9] . [J]. Plant Diversity, 2005, 27(02): 211 -216 .
[10] Wang Zhong-min. An Introduction to 《The Science of Allelopathy》[J]. Chin J Plan Ecolo, 1989, 13(2): 194 -196 .