Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1200-1210.doi: 10.17521/cjpe.2018.0120

• Research Articles • Previous Articles     Next Articles

Effects of fine root decomposition on bacterial community structure of four dominated tree species in Mount Taishan, China

LU Ying,LI Kun,NI Rui-Qiang,LIANG Qiang,LI Chuan-Rong,ZHANG Cai-Hong()   

  1. Taishan Forest Ecosystem Research Station of the State Forestry Administration, Tai’an, Shandong 271018, China; and Key Labora-tory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai’an, Shandong 271018, China
  • Received:2018-02-21 Revised:2018-10-31 Online:2019-04-04 Published:2018-12-20
  • Contact: Cai-Hong ZHANG E-mail:zhangcaihong78@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(31500362);Supported by the National Natural Science Foundation of China(31570705);the Joint Special Project of Shandong Province(ZR2014CL005);the Funds of Shandong “Double Tops” Program(SYL2017XTTD03)

Abstract:

Aims Microorganisms play a crucial role in the litter decomposition process in terrestrial ecosystems. Understanding the independent and interactive relationship between fine root decomposition and bacteria community related to substrate characteristics can help to predict the consequences of changes on ecosystem function. Therefore, the aim of this study was to identify fine roots’ influences on rhizosphere microbial structure and diversity.

Methods The decomposition of root litters of four dominant tree species of Mount Taishan (Robinia pseudoacacia(RP), Quercus acutissima(QA), Pinus tabulaeformis(PT) and Pinus densiflora(PD)) was tested in a Yaoxiang Forest Farm. Using Illumina high-throughput sequencing of 16S rRNA genes, bacterial community composition was determined. Composition, diversity and relative abundance of bacteria were calculated for per fine root litter.

Important findings (1) Fine root litter decomposition differed significantly among different root types. There was no difference in decomposition rate between broad-leaved species and conifer species. In all species, fine roots of RP and QA were more strongly decomposed than that of PT and PD, and these differences were significant (RP > QA > PT > PD). (2) The number of observed species, operational taxonomic units, Ace index and phylogenetic diversity in broad-leaved species were significantly lower than that in coniferous species. Bacterial community structure differed significantly among four species for root decomposition. Initial carbon (C), lignin:nitrogen (N) and C:N in fine root had a great influence on the bacterial community structure. (3) At the phylum level, a total of 4 phyla were dominant (>5% across all species). Based on the average relative abundance, the most abundant phyla were Proteobacteria, Actinomyces, Bacteroidetes and Acidobacteria. Proteobacteria’s and Acidbacteria’s abundance were significantly different among the four species. Particularly, the Proteobacteria of broad-leaved species was significantly higher than that of coniferous species. At the class level, a wide range of classes dominated. Based on the average relative abundance, the most abundance classes were Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, unidentified-Actinobacteria and Sphingobacteriia. Alphaproteobacteria and unidentified-Actinobacteria had significant differences among the four species. (4) Pearson correlation analysis showed that the relative abundance of dominant phylum and class was affected by the initial properties of root litter, especially the Proteobacteria and Alphaproteobacteria. In addition, there was a significant positive correlation between fine root decomposition rate and relative abundance of Proteobacteria and Alphaproteobacteria. Redundancy analysis (RDA) also demonstrated that the initial properties of fine root litter (initial N, P, C:N) had significant effects on the structures of bacterial community. These results can improve understanding the links between fine root litter decomposition and functional microbial communities.

Key words: decomposition, fine root, bacterial community, diversity

Table 1

Differences in initial element contents of fine root litter (mean ± SE, n = 3)"

树种 Species C (%) N (%) P (%) C:N N:P 木质素 Lignin (%)
RP 48.77 ± 0.33c 3.36 ± 0.002a 0.53 ± 0.05a 14.51 ± 0.09d 6.36 ± 0.34a 29.59 ± 0.47c
QA 46.39 ± 0.17d 1.08 ± 0.008b 0.46 ± 0.01a 43.02 ± 0.17c 2.34 ± 0.05b 33.78 ± 0.60b
PD 54.65 ± 0.17a 0.38 ± 0.009d 0.39 ± 0.03b 142.48 ± 3.72a 1.00 ± 0.07c 38.34 ± 0.30a
PT 49.96 ± 0.13b 0.85 ± 0.004c 0.41 ± 0.03b 59.04 ± 0.19b 2.10 ± 0.14b 37.78 ± 0.15a

Fig. 1

Difference in decomposition rate among four litter species (mean ± SE) in Mount Taishan. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia. Different lowercase letters represent significant differences among different species (p < 0.05)."

Table 2

Statistical analysis of bacterial diversity in Mount Taishan after one year of fine root decomposition (mean ± SE, n = 3)"

树种
Species
物种数 NO. of
observed species
覆盖率Coverage (%) Chao1指数
Chao1 index
Ace指数
Ace index
系统发育多样性Phylogenetic diversity Shannon-Wiener指数Shannon-Wiener index
RP 2 149 ± 71a 98.6 ± 0.1b 3 088.0 ± 140.4ab 3 062.2 ± 143.5ab 159.2 ± 4.2a 8.38 ± 0.59a
QA 1 970 ± 120a 97.7 ± 0.2a 2 824.2 ± 88.5a 2 843.8 ± 62.0a 147.8 ± 7.6a 8.14 ± 0.16a
PD 2 759 ± 25b 98.3 ± 0.2ab 3 544.7 ± 50.3c 3 530.6 ± 34.3c 198.6 ± 5.1b 8.81 ± 0.35b
PT 2 568 ± 39b 97.6 ± 0.2a 3 395.0 ± 2.2bc 3 341.9 ± 68.4bc 193.1 ± 3.2b 8.88 ± 0.18b

Table 3

Correlation analysis between bacterial α diversity and the initial properties of litter after one year of decomposition"

C (%) N (%) P (%) C:N N:P 木质素 Lignin (%)
物种数 NO. Of observed species 0.884** -0.541 0.679* 0.790* -0.496 0.726*
覆盖率 Coverage (%) 0.331 0.437 -0.482 0.126 0.517 -0.344
Chao1指数 Chao1 index 0.858** -0.413 0.608 0.706* -0.377 0.642
Ace指数 Ace index 0.874** -0.446 0.593 0.748* -0.405 0.661*
系统发育多样性 Phylogenetic diversity 0.829* -0.547 0.744* 0.730* -0.515 0.749*
Shannon-Wiener指数 Shannon-Wiener index 0.552 -0.292 0.491 0.378 -0.246 0.418

Fig. 2

Nonmetric Multidimensional Scaling (NMDS) ordination diagram of bacterial community structure in root litter after one year of decomposition in Mount Taishan. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia."

Fig. 3

Redundancy analysis (RDA) based on bacterial community structure and the initial properties of fine root litter. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia."

Fig. 4

Differences in relative abundances of major bacterial dominant groups among the four species in Mount Taishan(mean ± SE). A, Dominant classes. B, Dominant phyla. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia. Different lowercase letters indicate the significant differences in different species of the same bacterial group, while the same letter indicates no significant difference."

Table 4

Correlation analysis among the bacterial dominant phylum , the decomposition rate of fine roots , and the initial properties of litter"

优势门 Dominant phylum C (%) N (%) P (%) 木质素
Lignin (%)
C:N N:P 分解速率
Decomposition rate
变形菌门 Proteobacteria -0.64 0.57 0.77* -0.63 -0.69* 0.52 0.71*
放线菌门 Actinobacteria 0.61 -0.32 -0.69* 0.48 0.50 -0.25 -0.62
拟杆菌门 Bacteroidetes 0.60 0.09 0.09 0.09 0.43 0.03 -0.36
酸杆菌门 Acidobacteria -0.46 -0.48 -0.57 0.35 -0.16 -0.42 0.03
分解速率 Decomposition rate -0.76** 0.74** 0.67* -0.90** -0.82** 0.74** 1.00

Table 5

Correlation analysis among the decomposition rate of fine roots and bacterial dominant class and the initial properties of litter"

优势纲 Dominant class C (%) N (%) P (%) 木质素
Lignin (%)
C:N N:P 分解速率
Decomposition rate
α-变形菌纲 Alphaproteobacteria -0.33 0.79** 0.56 -0.71* -0.73* 0.84** 0.63*
β-变形菌纲 Betaproteobacteria -0.42 -0.18 0.09 -0.00 -0.11 -0.21 0.19
γ-变形菌纲 Gammaproteobacteria -0.08 0.49 0.47 -0.37 -0.25 0.43 0.24
不明放线菌纲unidentified-Actinobacteria 0.84** -0.25 -0.53 0.37 0.73* -0.25 -0.61
鞘脂杆菌纲 Sphingobacteriia 0.20 0.40 0.49 -0.23 -0.00 0.30 0.05

Fig. 5

Redundancy analysis (RDA) based on dominant bacterial phylum and the initial properties of fine root litter. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia."

[1] Adam SW, Zacchaeus GC, Cindy ML ( 2013). Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshwater Science, 32, 663-672.
doi: 10.1899/12-122.1
[2] Barret M, Morrissey JP, O’Gara F ( 2011). Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils, 47, 729-743.
doi: 10.1007/s00374-011-0605-x
[3] Chapman SK, Koch GW ( 2007). What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem?Plant and Soil, 299, 153-162.
doi: 10.1007/s11104-007-9372-8
[4] Chigineva NI, Aleksandrova AV, Tiunov AV ( 2009). The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Applied Soil Ecology, 42, 264-270.
doi: 10.1016/j.apsoil.2009.05.001
[5] Co?teaux M, Bottner P, Berg B ( 1995). Litter decomposition, climate and litter quality. Tree, 10, 63-66.
[6] Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2017). Bacterial structure and diversity in rhizosphere and non-?rhizosphere of Robinia pseudoacacia in the Yellow River Delta. Acta Pedologica Sinica, 54, 1293-1302.
doi: 10.11766/trxb201703230510
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2017). 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 54, 1293-1302.]
doi: 10.11766/trxb201703230510
[7] Eichorst SA, Kuske CR, Schmidt TM ( 2011). Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Applied and Environmental Microbiology, 77, 586-596.
doi: 10.1128/AEM.01080-10 pmid: 3020536
[8] Elser JJ, Acharya K, Kyle M ( 2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
doi: 10.1046/j.1461-0248.2003.00518.x
[9] Fierer N, Bradford MA, Jackson RB ( 2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
doi: 10.1890/05-1839
[10] Gessner MO, Chauvet E, Dobson M ( 1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377-384.
doi: 10.2307/3546505
[11] Grier CC ( 1981). Biomass distribution and above- and below-?ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research, 11, 155-167.
[12] Gui H, Purahong W, Hyde KD, Xu JC, Mortimer PE ( 2017). The arbuscular mycorrhizal fungus Funneliformis mosseae alters bacterial communities in subtropical forest soils during litter decomposition. Frontiers in Microbiology, 8, 1-11.
doi: 10.3389/fmicb.2017.01120 pmid: 5476864
[13] Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK . ( 2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521, 208-212.
doi: 10.1038/nature14238 pmid: 25739499
[14] Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N ( 2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3, 442-453.
doi: 10.1038/ismej.2008.127 pmid: 19129864
[15] Kennedy AC ( 1999). Bacterial diversity in agroecosystems. Agriculture Ecosystems and Environment, 74(1-3), 65-76.
doi: 10.1016/S0167-8809(99)00030-4
[16] Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E ( 2006). Introduction to the Proteobacteria. The Prokaryotes, 5(3), 4-37.
[17] Luo YQ, Zhao XY, Wang T, Li YQ, Zuo XA, Ding JP ( 2017). Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 26(2), 197-207.
[ 罗永清, 赵学勇, 王涛, 李玉强, 左小安, 丁杰萍 ( 2017). 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 26(2), 197-207.]
[18] Lydell C, Dowell L, Sikaroodi M, Gillevet P , Emerson ( 2004). A population survey of members of the phylum Bacteroidetes isolated from salt marsh sediments along the east coast of the United States. Microbial Ecology, 48, 263-273.
doi: 10.1007/s00248-003-1068-x pmid: 15107955
[19] McLaren JR, Turkington R ( 2010). Plant functional group identity differentially affects leaf and root decomposition. Global Change Biology, 16, 3075-3084.
doi: 10.1111/j.1365-2486.2009.02151.x
[20] Meentemeyer V ( 1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
doi: 10.2307/1936576
[21] Rong L, Li XW, Zhu TH, Zhang J, Yuan WY, Wang Q ( 2009). Varieties of soil microorganisms decomposing Betula luminifera fine roots and Hemarthria compressa roots. Acta Prataculturae Sinica, 18(4), 117-124.
doi: 10.11686/cyxb20090417
[ 荣丽, 李贤伟, 朱天辉, 张健, 袁渭阳, 王巧 ( 2009). 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群. 草业学报, 18(4), 117-124.]
doi: 10.11686/cyxb20090417
[22] Sauvadet M, Chauvat M, Cluzeau D, Maron PA, Villenave C, Bertrand I ( 2016). The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biology & Biochemistry, 95, 262-274.
doi: 10.1016/j.soilbio.2016.01.003
[23] Shen YF, Wang N, Cheng RM, Xiao WF, Yang S, Guo Y, Lei L, Zeng LX, Wang XR ( 2017). Characteristics of fine roots of Pinus massoniana in the Three Gorges Reservoir Area, China. Forests, 8(6), 1-13.
[24] Soares RA, Roesch LFW, Zanatta G, De Oliveira Camargo FA, Passaglia LMP ( 2006). Occurrence and distribution of nitrogen fixing bacterial community associated with oat ( Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology, 33, 221-234.
doi: 10.1016/j.apsoil.2006.01.001
[25] Sun CL, Zhang G, Cheng RJ, Zhu LQ, Ding JB, Chang WS ( 2017). Microbial community structure and diversity of sheepfold atmosphere by 16S rRNA high-throughput sequencing. Acta Veterinaria et Zootechnica Sinica, 48, 1314-1322.
doi: 10.11843/j.issn.0366-6964.2017.07.016
[ 孙翠丽, 张阁, 程汝佳, 朱良全, 丁家波, 常维山 ( 2017). 16S rRNA高通量测序方法检测羊圈空气微生物群落结构及多样性. 畜牧兽医学报, 48, 1314-1322.]
doi: 10.11843/j.issn.0366-6964.2017.07.016
[26] Sun H, Wang QX, Liu N, Li L, Zhang CG, Liu ZB, Zhang YY ( 2017). Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil. Applied Soil Ecology, 111, 17-24.
[27] Taylor BR, Parkinson D, Parsons WFJ ( 1989). Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology, 70, 97-104.
doi: 10.2307/1938416
[28] Tuomi M, Thum T, Jarvinen H, Fronzek S, Berg B, Harmon M, Trofymow JA, Sevanto S, Liski J ( 2009). Leaf litter decomposition—Estimates of global variability based on Yasso07 model. Ecological Modeling, 220, 3362-3371.
doi: 10.1016/j.ecolmodel.2009.05.016
[29] Urbanová M, ?najdr J, Baldrian P ( 2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology & Biochemistry, 84, 53-64.
doi: 10.1016/j.soilbio.2015.02.011
[30] Větrovsky T, Baldrian P ( 2015). An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biology and Fertility of Soils, 51, 827-837.
doi: 10.1007/s00374-015-1029-9
[31] Wardle DA, Bardgett RD, Klironomos JN, Set?l? H, van der Putten WH, Wall DH ( 2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
doi: 10.1126/science.1094875 pmid: 15192218
[32] Wymore AS, Salpas E, Casaburi G, Liu CM, Price LB, Hungate BA, McDowell WH, Marks JC ( 2018). Effects of plant species on stream bacterial communities via leachate from leaf litter. Hydrobiologia, 807, 131-144.
doi: 10.1007/s10750-017-3386-x
[33] Zhang CH, Zhang LM, Liu XR, Xin XP, Li SG ( 2011). Root tissue and shoot litter decomposition of dominant species Stipa baicalensis in Hulun Buir meadow steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 35, 1156-1166.
doi: 10.3724/SP.J.1258.2011.01156
[ 张彩虹, 张雷明, 刘杏认, 辛晓平, 李胜功 ( 2011). 呼伦贝尔草甸草原优势种贝加尔针茅根系组织和地上部分凋落物的分解. 植物生态学报, 35, 1156-1166.]
doi: 10.3724/SP.J.1258.2011.01156
[34] Zhang MJ ( 2016). Effects of Forest Gap Disturbance on Microbial Biomass and Bacterial Community Structure in the Process of Foliar Litter Decomposition. Master degree dissertation, Sichuan Agricultural University, Chengdu.
[ 张明锦 ( 2016). 林窗干扰对凋落叶分解过程中微生物生物量和细菌群落结构的影响. 硕士论文, 四川农业大学, 成都.]
[35] Zhang MJ, Zhang J, Ji TW, Liu H, Li X, Zhang Y, Yang WQ, Chen LH ( 2015). Influence of forest gap on bacterial community structure and diversity during litter decomposition. Ecology and Environment Sciences, 24, 1287-1294.
doi: 10.16258/j.cnki.1674-5906.2015.08.005
[ 张明锦, 张健, 纪托未, 刘华, 李勋, 张艳, 杨万勤, 陈良华 ( 2015). 林窗对凋落物分解过程中细菌群落结构和多样性的影响. 生态环境学报, 24, 1287-1294.]
doi: 10.16258/j.cnki.1674-5906.2015.08.005
[36] Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ ( 2014). An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. PLOS ONE, 9, e93773. DOI: 10.1371/journal.pone.0093773.
doi: 10.1371/journal.pone.0093773 pmid: 24743581
[37] Zhao BY, Xing P, Wu QL ( 2017). Microbes participated in macrophyte leaf litters decomposition in freshwater habitat. FEMS Microbiology Ecology, 93, fix108. DOI: 10.1093/ femsec/fix108.
doi: 10.1093/femsec/fix108 pmid: 28961908
[38] Zhao YY, Wu FZ, Yang WQ, Tan B, He W ( 2016). Variations in bacterial communities during Foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Canadian Journal of Microbiology, 62, 1-14.
doi: 10.1139/cjm-2015-0350 pmid: 26553381
[1] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[2] Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun. Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing [J]. Biodiv Sci, 2019, 27(6): 607-618.
[3] Liu Yan, Yang Yushuang. Importance of conservation priority areas for bryophyte biodiversity in Chongqing [J]. Biodiv Sci, 2019, 27(6): 677-682.
[4] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[5] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(6): 683-688.
[6] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[7] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding [J]. Biodiv Sci, 2019, 27(5): 543-556.
[8] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[9] Jie-Li HE. Development of EST-SSR and Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[10] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. Effects of transgenic maize on arthropod diversity [J]. Biodiv Sci, 2019, 27(4): 419-432.
[11] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[12] Zhang Yahong, Jia Huixia, Wang Zhibin, Sun Pei, Cao Demei, Hu Jianjun. Genetic diversity and population structure of Populus yunnanensis [J]. Biodiv Sci, 2019, 27(4): 355-365.
[13] Lou Minghua, Bai Chao, Hui Gangying, Tang Mengping. Comparison of distinguish ability on seven tree size diversity indices [J]. Biodiv Sci, 2019, 27(4): 449-456.
[14] Zhu Baijing, Xue Jingrong, Xia Rong, Jin Miaomiao, Wu You, Tian Shanyi, Chen Xiaoyun, Liu Manqiang, Hu Feng. Effect of soil nematode functional guilds on plant growth and aboveground herbivores [J]. Biodiv Sci, 2019, 27(4): 409-418.
[15] Li Qiang, Wang Bin, Deng Yun, Lin Luxiang, Dawa Zhaxi, Zhang Zhiming. Correlation between spatial distribution of forest canopy gaps and plant diversity indices in Xishuangbanna tropical forests [J]. Biodiv Sci, 2019, 27(3): 273-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hong Ma, Kang Chong and Xing-Wang Deng. Rice Research: Past, Present and Future[J]. J Integr Plant Biol, 2007, 49(6): 729 -730 .
[2] Wang-Zhen GUO, Dong FANG, Wen-Duo YU and Tian-Zhen ZHANG. Sequence Divergence of Microsatellites and Phylogeny Analysis in Tetraploid Cotton Species and Their Putative Diploid Ancestors[J]. J Integr Plant Biol, 2005, 47(12): 1418 -1430 .
[3] Jun-Mei LIU, Hong ZHANG,Yan LI. Cytoskeleton in Pollen and Pollen Tubes of Ginkgo biloba L.[J]. J Integr Plant Biol, 2005, 47(8): .
[4] ZHANG CHUNLI, LIN MULAN, YANG JIHONG, SHI XIAOYAN. Detection of the Paulownia Witches' Broom Mycoplasmalike Organism by Polymerase Chain Reaction[J]. Biodiv Sci, 1994, 02(Suppl.): 55 -60 .
[5] Qian-Jin Cao, Hui Xia , Xiao Yang and Bao-Rong Lu. Performance of Hybrids between Weedy Rice and Insect-resistant Transgenic Rice under Field Experiments: Implication for Environmental Biosafety Assessment[J]. J Integr Plant Biol, 2009, 51(12): 1138 -1148 .
[6] ZHANG Xiu-Jun, XU Hui, CHEN Guan-Xiong. N2O Emission Rate from Trees[J]. Chin J Plan Ecolo, 2002, 26(5): 538 -542 .
[7] Zhang Chaofang. A Method for Evaluating the Utilization Prospect of Terrestrial Plant Resources[J]. Chin J Plan Ecolo, 1984, 8(3): 217 -221 .
[8] Lang Kai-Yung. Plantae Novae Aspidistrae Sinicae[J]. J Syst Evol, 1978, 16(1): 76 -77 .
[9] F. H. Wong. The gametophytes of Glyplostrobus[J]. J Integr Plant Biol, 1952, 1(1): .
[10] DING Sheng-Yan. A Comparative Study on the Stress-resistance of Main Species in Evergreen Broad-leaved Forest[J]. Chin J Plan Ecolo, 1999, 23(199901): 158 -163 .