Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (12): 1200-1210.doi: 10.17521/cjpe.2018.0120

• Research Articles • Previous Articles     Next Articles

Effects of fine root decomposition on bacterial community structure of four dominated tree species in Mount Taishan, China

LU Ying,LI Kun,NI Rui-Qiang,LIANG Qiang,LI Chuan-Rong,ZHANG Cai-Hong()   

  1. Taishan Forest Ecosystem Research Station of the State Forestry Administration, Tai’an, Shandong 271018, China; and Key Labora-tory of State Forestry Administration for Silviculture of the Lower Yellow River, Tai’an, Shandong 271018, China
  • Received:2018-02-21 Revised:2018-10-31 Online:2019-04-04 Published:2018-12-20
  • Contact: Cai-Hong ZHANG E-mail:zhangcaihong78@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(31500362);Supported by the National Natural Science Foundation of China(31570705);the Joint Special Project of Shandong Province(ZR2014CL005);the Funds of Shandong “Double Tops” Program(SYL2017XTTD03)

Abstract:

Aims Microorganisms play a crucial role in the litter decomposition process in terrestrial ecosystems. Understanding the independent and interactive relationship between fine root decomposition and bacteria community related to substrate characteristics can help to predict the consequences of changes on ecosystem function. Therefore, the aim of this study was to identify fine roots’ influences on rhizosphere microbial structure and diversity.

Methods The decomposition of root litters of four dominant tree species of Mount Taishan (Robinia pseudoacacia(RP), Quercus acutissima(QA), Pinus tabulaeformis(PT) and Pinus densiflora(PD)) was tested in a Yaoxiang Forest Farm. Using Illumina high-throughput sequencing of 16S rRNA genes, bacterial community composition was determined. Composition, diversity and relative abundance of bacteria were calculated for per fine root litter.

Important findings (1) Fine root litter decomposition differed significantly among different root types. There was no difference in decomposition rate between broad-leaved species and conifer species. In all species, fine roots of RP and QA were more strongly decomposed than that of PT and PD, and these differences were significant (RP > QA > PT > PD). (2) The number of observed species, operational taxonomic units, Ace index and phylogenetic diversity in broad-leaved species were significantly lower than that in coniferous species. Bacterial community structure differed significantly among four species for root decomposition. Initial carbon (C), lignin:nitrogen (N) and C:N in fine root had a great influence on the bacterial community structure. (3) At the phylum level, a total of 4 phyla were dominant (>5% across all species). Based on the average relative abundance, the most abundant phyla were Proteobacteria, Actinomyces, Bacteroidetes and Acidobacteria. Proteobacteria’s and Acidbacteria’s abundance were significantly different among the four species. Particularly, the Proteobacteria of broad-leaved species was significantly higher than that of coniferous species. At the class level, a wide range of classes dominated. Based on the average relative abundance, the most abundance classes were Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, unidentified-Actinobacteria and Sphingobacteriia. Alphaproteobacteria and unidentified-Actinobacteria had significant differences among the four species. (4) Pearson correlation analysis showed that the relative abundance of dominant phylum and class was affected by the initial properties of root litter, especially the Proteobacteria and Alphaproteobacteria. In addition, there was a significant positive correlation between fine root decomposition rate and relative abundance of Proteobacteria and Alphaproteobacteria. Redundancy analysis (RDA) also demonstrated that the initial properties of fine root litter (initial N, P, C:N) had significant effects on the structures of bacterial community. These results can improve understanding the links between fine root litter decomposition and functional microbial communities.

Key words: decomposition, fine root, bacterial community, diversity

Table 1

Differences in initial element contents of fine root litter (mean ± SE, n = 3)"

树种 Species C (%) N (%) P (%) C:N N:P 木质素 Lignin (%)
RP 48.77 ± 0.33c 3.36 ± 0.002a 0.53 ± 0.05a 14.51 ± 0.09d 6.36 ± 0.34a 29.59 ± 0.47c
QA 46.39 ± 0.17d 1.08 ± 0.008b 0.46 ± 0.01a 43.02 ± 0.17c 2.34 ± 0.05b 33.78 ± 0.60b
PD 54.65 ± 0.17a 0.38 ± 0.009d 0.39 ± 0.03b 142.48 ± 3.72a 1.00 ± 0.07c 38.34 ± 0.30a
PT 49.96 ± 0.13b 0.85 ± 0.004c 0.41 ± 0.03b 59.04 ± 0.19b 2.10 ± 0.14b 37.78 ± 0.15a

Fig. 1

Difference in decomposition rate among four litter species (mean ± SE) in Mount Taishan. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia. Different lowercase letters represent significant differences among different species (p < 0.05)."

Table 2

Statistical analysis of bacterial diversity in Mount Taishan after one year of fine root decomposition (mean ± SE, n = 3)"

树种
Species
物种数 NO. of
observed species
覆盖率Coverage (%) Chao1指数
Chao1 index
Ace指数
Ace index
系统发育多样性Phylogenetic diversity Shannon-Wiener指数Shannon-Wiener index
RP 2 149 ± 71a 98.6 ± 0.1b 3 088.0 ± 140.4ab 3 062.2 ± 143.5ab 159.2 ± 4.2a 8.38 ± 0.59a
QA 1 970 ± 120a 97.7 ± 0.2a 2 824.2 ± 88.5a 2 843.8 ± 62.0a 147.8 ± 7.6a 8.14 ± 0.16a
PD 2 759 ± 25b 98.3 ± 0.2ab 3 544.7 ± 50.3c 3 530.6 ± 34.3c 198.6 ± 5.1b 8.81 ± 0.35b
PT 2 568 ± 39b 97.6 ± 0.2a 3 395.0 ± 2.2bc 3 341.9 ± 68.4bc 193.1 ± 3.2b 8.88 ± 0.18b

Table 3

Correlation analysis between bacterial α diversity and the initial properties of litter after one year of decomposition"

C (%) N (%) P (%) C:N N:P 木质素 Lignin (%)
物种数 NO. Of observed species 0.884** -0.541 0.679* 0.790* -0.496 0.726*
覆盖率 Coverage (%) 0.331 0.437 -0.482 0.126 0.517 -0.344
Chao1指数 Chao1 index 0.858** -0.413 0.608 0.706* -0.377 0.642
Ace指数 Ace index 0.874** -0.446 0.593 0.748* -0.405 0.661*
系统发育多样性 Phylogenetic diversity 0.829* -0.547 0.744* 0.730* -0.515 0.749*
Shannon-Wiener指数 Shannon-Wiener index 0.552 -0.292 0.491 0.378 -0.246 0.418

Fig. 2

Nonmetric Multidimensional Scaling (NMDS) ordination diagram of bacterial community structure in root litter after one year of decomposition in Mount Taishan. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia."

Fig. 3

Redundancy analysis (RDA) based on bacterial community structure and the initial properties of fine root litter. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia."

Fig. 4

Differences in relative abundances of major bacterial dominant groups among the four species in Mount Taishan(mean ± SE). A, Dominant classes. B, Dominant phyla. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia. Different lowercase letters indicate the significant differences in different species of the same bacterial group, while the same letter indicates no significant difference."

Table 4

Correlation analysis among the bacterial dominant phylum , the decomposition rate of fine roots , and the initial properties of litter"

优势门 Dominant phylum C (%) N (%) P (%) 木质素
Lignin (%)
C:N N:P 分解速率
Decomposition rate
变形菌门 Proteobacteria -0.64 0.57 0.77* -0.63 -0.69* 0.52 0.71*
放线菌门 Actinobacteria 0.61 -0.32 -0.69* 0.48 0.50 -0.25 -0.62
拟杆菌门 Bacteroidetes 0.60 0.09 0.09 0.09 0.43 0.03 -0.36
酸杆菌门 Acidobacteria -0.46 -0.48 -0.57 0.35 -0.16 -0.42 0.03
分解速率 Decomposition rate -0.76** 0.74** 0.67* -0.90** -0.82** 0.74** 1.00

Table 5

Correlation analysis among the decomposition rate of fine roots and bacterial dominant class and the initial properties of litter"

优势纲 Dominant class C (%) N (%) P (%) 木质素
Lignin (%)
C:N N:P 分解速率
Decomposition rate
α-变形菌纲 Alphaproteobacteria -0.33 0.79** 0.56 -0.71* -0.73* 0.84** 0.63*
β-变形菌纲 Betaproteobacteria -0.42 -0.18 0.09 -0.00 -0.11 -0.21 0.19
γ-变形菌纲 Gammaproteobacteria -0.08 0.49 0.47 -0.37 -0.25 0.43 0.24
不明放线菌纲unidentified-Actinobacteria 0.84** -0.25 -0.53 0.37 0.73* -0.25 -0.61
鞘脂杆菌纲 Sphingobacteriia 0.20 0.40 0.49 -0.23 -0.00 0.30 0.05

Fig. 5

Redundancy analysis (RDA) based on dominant bacterial phylum and the initial properties of fine root litter. PD, Pinus densiflora; PT, Pinus tabulaeformis; QA, Quercus acutissima; RP, Robinia pseudoacacia."

[1] Adam SW, Zacchaeus GC, Cindy ML ( 2013). Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshwater Science, 32, 663-672.
doi: 10.1899/12-122.1
[2] Barret M, Morrissey JP, O’Gara F ( 2011). Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils, 47, 729-743.
doi: 10.1007/s00374-011-0605-x
[3] Chapman SK, Koch GW ( 2007). What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem?Plant and Soil, 299, 153-162.
doi: 10.1007/s11104-007-9372-8
[4] Chigineva NI, Aleksandrova AV, Tiunov AV ( 2009). The addition of labile carbon alters litter fungal communities and decreases litter decomposition rates. Applied Soil Ecology, 42, 264-270.
doi: 10.1016/j.apsoil.2009.05.001
[5] Co?teaux M, Bottner P, Berg B ( 1995). Litter decomposition, climate and litter quality. Tree, 10, 63-66.
[6] Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2017). Bacterial structure and diversity in rhizosphere and non-?rhizosphere of Robinia pseudoacacia in the Yellow River Delta. Acta Pedologica Sinica, 54, 1293-1302.
doi: 10.11766/trxb201703230510
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2017). 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 54, 1293-1302.]
doi: 10.11766/trxb201703230510
[7] Eichorst SA, Kuske CR, Schmidt TM ( 2011). Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Applied and Environmental Microbiology, 77, 586-596.
doi: 10.1128/AEM.01080-10 pmid: 3020536
[8] Elser JJ, Acharya K, Kyle M ( 2003). Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 6, 936-943.
doi: 10.1046/j.1461-0248.2003.00518.x
[9] Fierer N, Bradford MA, Jackson RB ( 2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
doi: 10.1890/05-1839
[10] Gessner MO, Chauvet E, Dobson M ( 1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377-384.
doi: 10.2307/3546505
[11] Grier CC ( 1981). Biomass distribution and above- and below-?ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research, 11, 155-167.
[12] Gui H, Purahong W, Hyde KD, Xu JC, Mortimer PE ( 2017). The arbuscular mycorrhizal fungus Funneliformis mosseae alters bacterial communities in subtropical forest soils during litter decomposition. Frontiers in Microbiology, 8, 1-11.
doi: 10.3389/fmicb.2017.01120 pmid: 5476864
[13] Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J, Blazewicz SJ, Harden J, Turetsky MR, McGuire AD, Shah MB, VerBerkmoes NC, Lee LH, Mavrommatis K, Jansson JK . ( 2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521, 208-212.
doi: 10.1038/nature14238 pmid: 25739499
[14] Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N ( 2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 3, 442-453.
doi: 10.1038/ismej.2008.127 pmid: 19129864
[15] Kennedy AC ( 1999). Bacterial diversity in agroecosystems. Agriculture Ecosystems and Environment, 74(1-3), 65-76.
doi: 10.1016/S0167-8809(99)00030-4
[16] Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E ( 2006). Introduction to the Proteobacteria. The Prokaryotes, 5(3), 4-37.
[17] Luo YQ, Zhao XY, Wang T, Li YQ, Zuo XA, Ding JP ( 2017). Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 26(2), 197-207.
[ 罗永清, 赵学勇, 王涛, 李玉强, 左小安, 丁杰萍 ( 2017). 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 26(2), 197-207.]
[18] Lydell C, Dowell L, Sikaroodi M, Gillevet P , Emerson ( 2004). A population survey of members of the phylum Bacteroidetes isolated from salt marsh sediments along the east coast of the United States. Microbial Ecology, 48, 263-273.
doi: 10.1007/s00248-003-1068-x pmid: 15107955
[19] McLaren JR, Turkington R ( 2010). Plant functional group identity differentially affects leaf and root decomposition. Global Change Biology, 16, 3075-3084.
doi: 10.1111/j.1365-2486.2009.02151.x
[20] Meentemeyer V ( 1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472.
doi: 10.2307/1936576
[21] Rong L, Li XW, Zhu TH, Zhang J, Yuan WY, Wang Q ( 2009). Varieties of soil microorganisms decomposing Betula luminifera fine roots and Hemarthria compressa roots. Acta Prataculturae Sinica, 18(4), 117-124.
doi: 10.11686/cyxb20090417
[ 荣丽, 李贤伟, 朱天辉, 张健, 袁渭阳, 王巧 ( 2009). 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群. 草业学报, 18(4), 117-124.]
doi: 10.11686/cyxb20090417
[22] Sauvadet M, Chauvat M, Cluzeau D, Maron PA, Villenave C, Bertrand I ( 2016). The dynamics of soil micro-food web structure and functions vary according to litter quality. Soil Biology & Biochemistry, 95, 262-274.
doi: 10.1016/j.soilbio.2016.01.003
[23] Shen YF, Wang N, Cheng RM, Xiao WF, Yang S, Guo Y, Lei L, Zeng LX, Wang XR ( 2017). Characteristics of fine roots of Pinus massoniana in the Three Gorges Reservoir Area, China. Forests, 8(6), 1-13.
[24] Soares RA, Roesch LFW, Zanatta G, De Oliveira Camargo FA, Passaglia LMP ( 2006). Occurrence and distribution of nitrogen fixing bacterial community associated with oat ( Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology, 33, 221-234.
doi: 10.1016/j.apsoil.2006.01.001
[25] Sun CL, Zhang G, Cheng RJ, Zhu LQ, Ding JB, Chang WS ( 2017). Microbial community structure and diversity of sheepfold atmosphere by 16S rRNA high-throughput sequencing. Acta Veterinaria et Zootechnica Sinica, 48, 1314-1322.
doi: 10.11843/j.issn.0366-6964.2017.07.016
[ 孙翠丽, 张阁, 程汝佳, 朱良全, 丁家波, 常维山 ( 2017). 16S rRNA高通量测序方法检测羊圈空气微生物群落结构及多样性. 畜牧兽医学报, 48, 1314-1322.]
doi: 10.11843/j.issn.0366-6964.2017.07.016
[26] Sun H, Wang QX, Liu N, Li L, Zhang CG, Liu ZB, Zhang YY ( 2017). Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil. Applied Soil Ecology, 111, 17-24.
[27] Taylor BR, Parkinson D, Parsons WFJ ( 1989). Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology, 70, 97-104.
doi: 10.2307/1938416
[28] Tuomi M, Thum T, Jarvinen H, Fronzek S, Berg B, Harmon M, Trofymow JA, Sevanto S, Liski J ( 2009). Leaf litter decomposition—Estimates of global variability based on Yasso07 model. Ecological Modeling, 220, 3362-3371.
doi: 10.1016/j.ecolmodel.2009.05.016
[29] Urbanová M, ?najdr J, Baldrian P ( 2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biology & Biochemistry, 84, 53-64.
doi: 10.1016/j.soilbio.2015.02.011
[30] Větrovsky T, Baldrian P ( 2015). An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biology and Fertility of Soils, 51, 827-837.
doi: 10.1007/s00374-015-1029-9
[31] Wardle DA, Bardgett RD, Klironomos JN, Set?l? H, van der Putten WH, Wall DH ( 2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
doi: 10.1126/science.1094875 pmid: 15192218
[32] Wymore AS, Salpas E, Casaburi G, Liu CM, Price LB, Hungate BA, McDowell WH, Marks JC ( 2018). Effects of plant species on stream bacterial communities via leachate from leaf litter. Hydrobiologia, 807, 131-144.
doi: 10.1007/s10750-017-3386-x
[33] Zhang CH, Zhang LM, Liu XR, Xin XP, Li SG ( 2011). Root tissue and shoot litter decomposition of dominant species Stipa baicalensis in Hulun Buir meadow steppe of Inner Mongolia, China. Chinese Journal of Plant Ecology, 35, 1156-1166.
doi: 10.3724/SP.J.1258.2011.01156
[ 张彩虹, 张雷明, 刘杏认, 辛晓平, 李胜功 ( 2011). 呼伦贝尔草甸草原优势种贝加尔针茅根系组织和地上部分凋落物的分解. 植物生态学报, 35, 1156-1166.]
doi: 10.3724/SP.J.1258.2011.01156
[34] Zhang MJ ( 2016). Effects of Forest Gap Disturbance on Microbial Biomass and Bacterial Community Structure in the Process of Foliar Litter Decomposition. Master degree dissertation, Sichuan Agricultural University, Chengdu.
[ 张明锦 ( 2016). 林窗干扰对凋落叶分解过程中微生物生物量和细菌群落结构的影响. 硕士论文, 四川农业大学, 成都.]
[35] Zhang MJ, Zhang J, Ji TW, Liu H, Li X, Zhang Y, Yang WQ, Chen LH ( 2015). Influence of forest gap on bacterial community structure and diversity during litter decomposition. Ecology and Environment Sciences, 24, 1287-1294.
doi: 10.16258/j.cnki.1674-5906.2015.08.005
[ 张明锦, 张健, 纪托未, 刘华, 李勋, 张艳, 杨万勤, 陈良华 ( 2015). 林窗对凋落物分解过程中细菌群落结构和多样性的影响. 生态环境学报, 24, 1287-1294.]
doi: 10.16258/j.cnki.1674-5906.2015.08.005
[36] Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ ( 2014). An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. PLOS ONE, 9, e93773. DOI: 10.1371/journal.pone.0093773.
doi: 10.1371/journal.pone.0093773 pmid: 24743581
[37] Zhao BY, Xing P, Wu QL ( 2017). Microbes participated in macrophyte leaf litters decomposition in freshwater habitat. FEMS Microbiology Ecology, 93, fix108. DOI: 10.1093/ femsec/fix108.
doi: 10.1093/femsec/fix108 pmid: 28961908
[38] Zhao YY, Wu FZ, Yang WQ, Tan B, He W ( 2016). Variations in bacterial communities during Foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Canadian Journal of Microbiology, 62, 1-14.
doi: 10.1139/cjm-2015-0350 pmid: 26553381
[1] Xue-Fei LIU Lin Wu Hang Wang Liu Hong Li-Jun Xiong. Study on the growth and decomposition characteristics of Sphagnum in a subalpine wetland, southwestern Hubei, China [J]. Chin J Plant Ecol, 2020, 44(预发表): 0-0.
[2] Ben-Feng HAN Xin Zhou Xue Zhang. Verification of virus identity and host association using genomics technologies [J]. Biodiv Sci, 2020, 28(5): 0-0.
[3] Lintao Huang Hui Huang Lei Jiang. A revised taxonomy for Chinese hermatypic corals [J]. Biodiv Sci, 2020, 28(4): 515-523.
[4] Jinyuan Su,Yu Yan,Chong Li,Dan Li,Fang K. Du. Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms [J]. Biodiv Sci, 2020, 28(3): 376-384.
[5] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. Comparison of five associations of Taxus cuspidata and their species diversity [J]. Biodiv Sci, 2020, 28(3): 340-349.
[6] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China [J]. Biodiv Sci, 2020, 28(2): 226-230.
[7] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake [J]. Biodiv Sci, 2020, 28(2): 155-165.
[8] Yijia Geng,Yu Tian,Junsheng Li,Jing Xu. Progress and prospects of the Post-2020 Global Biodiversity Framework [J]. Biodiv Sci, 2020, 28(2): 238-243.
[9] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. The updated checklists of amphibians and reptiles of China [J]. Biodiv Sci, 2020, 28(2): 189-218.
[10] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China [J]. Biodiv Sci, 2020, 28(2): 117-127.
[11] Gongguo Li,Ping Li,Hangying Xu,Haiyan Yu,Jian Yu. Path analysis of zooplankton diversity and environmental factors in the water sources rivers, Zhejiang Province [J]. Biodiv Sci, 2020, 28(2): 166-175.
[12] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[13] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2020, 28(2): 219-225.
[14] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity [J]. Biodiv Sci, 2020, 28(2): 244-252.
[15] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. Threat status of non-lichenized macro-ascomycetes in China and its threatening factors [J]. Biodiv Sci, 2020, 28(1): 26-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Zhong-Hua YU Jing-Hua YANG Feng-Jian ZU Yuan-Gang. Metabolic Biology of Plant Alkaloids[J]. Chin Bull Bot, 2003, 20(06): 696 -702 .
[2] Chunlin Long;Meilan Li . Status and Conservation Strategies of Community Plant Genetic Resources—A Case Study in Manlun, a Dai Village in Xishuangbanna[J]. Chin Bull Bot, 2006, 23(2): 177 -185 .
[3] KONG Hai-Yan JIA Gui-Xia WEN Yue-Ge. The Role of Calcium in Flower Development[J]. Chin Bull Bot, 2003, 20(02): 168 -177 .
[4] CHEN Jian-San and ZHAO Shi-Xu. A Study Cell Embryology of Rice 84-15[J]. Chin Bull Bot, 1999, 16(03): 284 -287 .
[5] Yanqing Zhou, Wanshen Wang, Xiangnan Wang, Hongying Duan. Recent Progress in DNA Molecular Markers and Gene Functions of Rehmannia glutinosa[J]. Chin Bull Bot, 2015, 50(5): 665 -672 .
[6] Han Yeliang. A Discussion on the Northern Boundary of the Subtropical Evergreen Broad-leaf Forest Zone in Anhui Province (Abstract)[J]. Chin J Plan Ecolo, 1981, 5(1): 54 -57 .
[7] Li Yi-de, Zeng Qing-bo, Wu Zhong-min, Du Zhi-hu, Zhou Guang-yi, Chen Bu-feng, Zhang Zhen-cai, Chen Huan-qiang. Study on Biomass of Tropical Mountain Rain Forest in Jianfengling, Hainan Province[J]. Chin J Plan Ecolo, 1992, 16(4): 293 -300 .
[8] XIA Jiang-Bao, ZHANG Guang-Can, SUN Jing-Kuan, LIU Xia. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity[J]. Chin J Plan Ecolo, 2011, 35(3): 322 -329 .
[9] Deng Lianhe, Zhou Xincheng. Suggestion to Protect the Community Composed of Rare Tree Species of Houhe Forest Area in Wufeng County, Hubei Province[J]. Chin J Plan Ecolo, 1982, 6(1): 84 .
[10] JIANG Xiao-Jie, HU Yan-Ling, HAN Jian-Qiu, and ZHOU Yu-Mei. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants[J]. Chin J Plan Ecolo, 2014, 38(9): 941 -948 .