Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (11): 1094-1102.doi: 10.17521/cjpe.2018.0140

• Research Articles • Previous Articles     Next Articles

Variations of root traits in three Xizang grassland communities along a precipitation gradient

ZHOU Wei1,LI Hong-Bo2,*(),ZENG Hui1   

  1. 1School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
    2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2018-06-11 Accepted:2018-10-16 Online:2019-03-13 Published:2018-11-20
  • Contact: Hong-Bo LI E-mail:lihongboxy@163.com
  • Supported by:
    Supported by the National Key R&D Program of China(2016YFC0501802)

Abstract:

Aims Root functional traits and their variations mediate coexistence and adaptive strategy of plant species. Yet, strong environmental constraints may induce convergence of root traits among different plant species. To study the variations of root traits and clarify the diverse adaptive strategies across plant species, we sampled three alpine grasslands along a precipitation gradient in the Xizang Plateau.
Methods In three grassland communities along a precipitation gradient: Nagqu, Baingoin and Nyima from east to west of Xizang Plateau, we collected 22 coexisting plant species and measured three key root traits: 1st-order root diameter, 1st-order lateral root length and root branch intensity.
Important findings The main results showed that: (1) the root of plants in the alpine grassland was generally thin, and the interspecific variation was also small (22.76%); (2) the root diameter of 86% plant species was in the range from 0.073 mm to 0.094 mm. Compared with the thick-root species, thin-root species had a higher root branching intensity, but shorter lateral root length. In addition, at community-level, plants mainly increased root diameter and lateral root length, but reduced root branching intensity to adapt to the decreasing precipitation; while at species-level, the plant species exhibited diverse adaptive strategies along the precipitation gradient.

Key words: trait variation, adaptive strategy, root branching, root diameter, root length, alpine grassland

Table 1

Basic information of the sampling sites of root in Xizang alpine grassland communities"

地点
Site
经纬度
Latitude and
longitude
年平均气温
Mean annual
temperature (℃)
年降水量
Mean annual
precipitation (mm)
海拔
Elevation (m)
土壤氮含量
Soil N (%)
土壤碳含量
Soil C (%)
土壤碳氮比
Soil C:N
那曲 Nagqu 31.65° N, 92.02° E -2.2 445 4 600 0.193 1.965 22.97
班戈 Baingoin 31.43° N, 90.03° E -1.2 329 4 700 0.117 1.081 13.93
尼玛 Nyima 32.08° N, 86.90° E -3.1 286 4 780 0.115 2.062 18.24

Fig. 1

Variations of phylogeny and traits among the 22 plant species in the alpine grassland."

Table 2

Summary of the three root traits for 22 species in Xizang alpine grassland"

根属性 Root trait 最小值 Min. 最大值 Max. 平均值 Mean 变异系数 Coefficient of variation (%)
一级根直径 1st-order root diameter (mm) 0.073 0.142 0.088 22.76
一级根长度 1st-order root length (mm) 0.335 5.239 1.541 80.19
根系分支强度 Root branching intensity (No.cm-1) 1.119 12.041 4.439 61.05

Table 3

Pearson correlations with (top right) and without (bottom left) phylogenetically independent contrasts for root traits across 22 species in Xizang alpine grassland"

根属性 Root trait 一级根直径 1st-order root diameter 分支强度 Root branching intensity 一级根长度 1st-order root length
一级根直径 1st-order root diameter -0.008ns 0.672**
根系分支强度 Root branching intensity -0.432* -0.139ns
一级根长度 1st-order root length 0.728** -0.573**

Fig. 2

Community-weighted root traits of the three grasslands along the precipitation gradient in Xizang alpine grassland."

Fig. 3

Root trait mean values of seven regionally common species (appearing in two or three sites at the same time) at three grassland sites (mean + SE) in Xizang alpine grassland. Ad, Artemisia demissa; Ts, Trisetum spicatum; Lp, Leontopodium pusillum; Sp, Stipa purpurea; Pb, Potentilla bifurca; Om, Oxytropis microphylla; Hs, Heteropappus semiprostratus."

Fig. 4

The average percentage of root traits of seven regionally common species (appearing in two or three sites at the same time) to water stress at three grassland sites in Xizang alpine grassland. Ad, Artemisia demissa; Ts, Trisetum spicatum; Lp, Leontopodium pusillum; Sp, Stipa purpurea; Pb, Potentilla bifurca; Om, Oxytropis microphylla; Hs, Heteropappus semiprostratus."

[1] Ackerly DD, Cornwell WK ( 2007). A trait-based approach to community assembly: Partitioning of species trait values into within-and among-community components. Ecology Letters, 10, 135-145.
doi: 10.1111/j.1461-0248.2006.01006.x pmid: 17257101
[2] Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C ( 2011). When and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology Evolution & Systematics, 13, 217-225.
doi: 10.1016/j.ppees.2011.04.003
[3] Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S ( 2010). A multi-trait approach reveals the structure and the relative importance of intraspecific vs. interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
doi: 10.1111/j.1365-2435.2010.01727.x
[4] Bernston GM ( 1997). Topological scaling and plant root system architecture: Developmental and functional hierarchies. New Phytologist, 135, 621-634.
doi: 10.1046/j.1469-8137.1997.00687.x
[5] Bystrova EI, Zhukovskaya NV, Ivanov VB ( 2018). Dependence of root cell growth and division on root diameter. Russian Journal of Developmental Biology, 49, 79-86.
doi: 10.1134/S1062360418020029
[6] Chen J, Luo Y, Xia J, Cao J ( 2016). Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agricultural & Forest Meteorology, 220, 21-29.
doi: 10.1016/j.agrformet.2016.01.010
[7] Chen W, Zeng H, Eissenstat DM, Guo D ( 2013). Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Global Ecology & Biogeography, 22, 846-856.
doi: 10.1111/geb.12048
[8] Cornwell WK, Ackerly DD ( 2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126.
doi: 10.1890/07-1134.1
[9] Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet'ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD ( 2016). The global spectrum of plant form and function. Nature, 529, 167-171.
doi: 10.1038/nature16489 pmid: 26700811
[10] Dwyer JM, Laughlin DC ( 2017). Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecology Letters, 20, 872-882.
doi: 10.1111/ele.12781 pmid: 28510261
[11] Eissenstat DM ( 1991). On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytologist, 118, 63-68.
doi: 10.1111/j.1469-8137.1991.tb00565.x
[12] Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT ( 2015). Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist, 208, 114-124.
doi: 10.1111/nph.13451 pmid: 25970701
[13] Fajardo A, Piper FI ( 2011). Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytologist, 189, 259.
doi: 10.1111/j.1469-8137.2010.03468.x pmid: 21039558
[14] Fitter AH ( 1987). An architectural approach to the comparative ecology of plant root systems. New Phytologist, 106, 61-77.
doi: 10.1111/j.1469-8137.1987.tb04683.x
[15] Jiang YB, Fan M, Zhang YJ ( 2017). Effect of short-term warming on plant community features of alpine meadow in Northern Tibet. Chinese Journal of Ecology, 36, 616-622.
doi: 10.13292/j.1000-4890.201703.033
[ 姜炎彬, 范苗, 张扬建 ( 2017). 短期增温对藏北高寒草甸植物群落特征的影响. 生态学杂志, 36, 616-622.]
doi: 10.13292/j.1000-4890.201703.033
[16] Jung V, Muller S ( 2010). Intraspecific variability and trait- based community assembly. Journal of Ecology, 98, 1134-1140.
doi: 10.1111/j.1365-2745.2010.01687.x
[17] Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO ( 2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
doi: 10.1093/bioinformatics/btq166 pmid: 20395285
[18] Kichenin E, Freschet GT ( 2013). Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Functional Ecology, 27, 1254-1261.
doi: 10.1111/1365-2435.12116
[19] Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D ( 2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
doi: 10.1111/nph.12842 pmid: 24824672
[20] Kraft NJB, Godoy O, Levine JM ( 2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802.
doi: 10.1073/pnas.1413650112 pmid: 25561561
[21] Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JH, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M ( 2011). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
doi: 10.1038/nature16476 pmid: 26700807
[22] Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA ( 2012). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecology Letters, 15, 831-840.
doi: 10.1111/j.1461-0248.2012.01803.x pmid: 22625657
[23] Laughlin DC, Joshi C, van Bodegom PM, Bastow ZA, Fulé PZ ( 2012). A predictive model of community assembly that incorporates intraspecific trait variation. Ecology Letters, 15, 1291-1299.
doi: 10.1111/j.1461-0248.2012.01852.x pmid: 22906233
[24] Laughlin DC, Messier J ( 2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends in Ecology & Evolution, 30, 487-496.
doi: 10.1016/j.tree.2015.06.003 pmid: 26122484
[25] Li H, Liu B, Mccormack ML, Ma Z, Guo D ( 2017). Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient. New Phytologist, 216, 1140-1150.
doi: 10.1111/nph.14710 pmid: 28758691
[26] Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, Guo D ( 2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
doi: 10.1111/nph.13434 pmid: 25925733
[27] Lynch JP ( 2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112, 347.
doi: 10.1093/aob/mcs293
[28] McCormack ML, Adams TS, Smithwick EA, Eissenstat DM ( 2012). Predicting fine root lifespan from plant functional traits in temperate trees. New Phytologist, 195, 823-831.
doi: 10.1111/j.1469-8137.2012.04198.x pmid: 22686426
[29] Messier J, Mcgill BJ, Lechowicz MJ ( 2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848.
doi: 10.1111/j.1461-0248.2010.01476.x pmid: 20482582
[30] Muscarella R, Uriarte M ( 2016). Do community-weighted mean functional traits reflect optimal strategies? Proceedings of the Royal Society B: Biological, 283, 20152434. DOI: 10.?1098/rspb.2015.2434.
doi: 10.1098/rspb.2015.2434 pmid: 27030412
[31] Nosil P, Harmon LJ, Seehausen O ( 2009). Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution, 24, 145-156.
doi: 10.1016/j.tree.2008.10.011 pmid: 19185951
[32] Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E ( 2012). Evidence for a “plant community economics spectrum” driven by nutrient and water limitations in a mediterranean rangeland of southern France. Journal of Ecology, 100, 1315-1327.
doi: 10.1111/1365-2745.12000
[33] Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
doi: 10.2307/3100029
[34] Reich PB ( 2014). The world-wide “fast-slow” plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301.
doi: 10.1111/1365-2745.12211
[35] Umaña MN, Zhang C, Cao M, Lin L, Swenson NG ( 2015). Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18, 1329.
doi: 10.1111/ele.12527 pmid: 26415689
[36] Valladares F, Bastias CC, Godoy O, Granda E, Escudero A ( 2015). Species coexistence in a changing world. Frontiers in Plant Science, 6, 866.
doi: 10.3389/fpls.2015.00866 pmid: 4604266
[37] Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB ( 2017). A worldview of root traits: The influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
doi: 10.1111/nph.14571
[38] Violle C, Enquist BJ, Mcgill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J ( 2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
[39] Wu JS, Li XJ, Shen ZX, Zhang XZ, Shi PL, Yu CQ, Wang JS, Zhou YT ( 2012). Species diversity distribution pattern of alpine grasslands communities along a precipitation gradient across Northern Tibetan Plateau. Acta Prataculturae Sinica, 21, 17-25.
doi: 10.11686/cyxb20120303
[ 武建双, 李晓佳, 沈振西, 张宪洲, 石培礼, 余成群, 王景升, 周宇庭 ( 2012). 藏北高寒草地样带物种多样性沿降水梯度的分布格局. 草业学报, 21, 17-25.]
doi: 10.11686/cyxb20120303
[40] Zhan A, Schneider H, Lynch JP ( 2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology, 168, 1603-1615.
doi: 10.1104/pp.15.00187 pmid: 26077764
[41] Zhu GL, Li J, Wei XH, He NP ( 2017). Longitudinal patterns of productivity and plant diversity in Tibetan alpine grasslands. Journal of Natural Resources, 32, 210-222.
[ 朱桂丽, 李杰, 魏学红, 何念鹏 ( 2017). 青藏高寒草地植被生产力与生物多样性的经度格局. 自然资源学报, 32, 210-222.]
[1] CAO Deng-Chao, GAO Xiao-Peng, LI Lei, GUI Dong-Wei, ZENG Fan-Jiang, KUANG Wen-Nong, YIN Ming-Yuan, LI Yan-Yan, Aili PULATI. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China [J]. Chin J Plant Ecol, 2019, 43(2): 165-173.
[2] ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plan Ecolo, 2018, 42(2): 164-172.
[3] Chun-Li LI, Qi LI, Liang ZHAO, Xin-Quan ZHAO. Responses of plant community biomass to nitrogen and phosphorus additions in natural and restored grasslands around Qinghai Lake Basin [J]. Chin J Plan Ecolo, 2016, 40(10): 1015-1027.
[4] ZHANG Qian, ZHAO Cheng-Zhang, DONG Xiao-Gang, MA Xiao-Li, HOU Zhao-Jiang, and LI Yu. Trade-off between the biomass and number of flowers in Stellera chamaejasme along an elevation gradient in a degraded alpine grassland [J]. Chin J Plan Ecolo, 2014, 38(5): 452-459.
[5] WANG Xie, XIANG Cheng-Hua, LI Xian-Wei, and WEN Dong-Ju. Short-term effects of a winter wildfire on diversity and intensity of soil microbial function in the subalpine grassland of western Sichuan, China [J]. Chin J Plan Ecolo, 2014, 38(5): 468-476.
[6] WEN Jun, ZHOU Hua-Kun, YAO Bu-Qing, LI Yi-Kang, ZHAO Xin-Quan, CHEN Zhe, LIAN Li-Ye, and GUO Kai-Xian. Characteristics of soil respiration in different degraded alpine grassland in the source region of Three-River [J]. Chin J Plan Ecolo, 2014, 38(2): 209-218.
[7] WANG Xie, XIANG Cheng-Hua, LI Xian-Wei, and WEN Dong-Ju. How a winter wildfire affect plant community in subalpine grassland of western Sichuan, China? [J]. Chin J Plan Ecolo, 2014, 38(11): 1194-1204.
[8] GUO Jing-Heng, ZENG Fan-Jiang, LI Chang-Jun, and ZHANG Bo. Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert [J]. Chin J Plan Ecolo, 2014, 38(1): 36-44.
[9] LI Yu, ZHAO Cheng-Zhang, DONG Xiao-Gang, HOU Zhao-Jiang, MA Xiao-Li, and ZHANG Qian. Twig and leaf trait differences in Stellera chamaejasme with slope in alpine grassland [J]. Chin J Plan Ecolo, 2013, 37(8): 709-717.
[10] Shikui Dong,Lin Tang,Xuexia Wang,Yinghui Liu,Shiliang Liu,Quanru Liu,Yu Wu,Yuanyuan Li,Xukun Su,Chen Zhao. Minimum plot size for estimating plant biodiversity of the alpine grasslands on the Qinghai-Tibetan Plateau [J]. Biodiv Sci, 2013, 21(6): 651-657.
[11] YE Xue-Hua, HU Yu-Kun, LIU Zhi-Lan, GAO Shu-Qin, and DONG Ming. Water heterogeneity affects water storage in two rhizomatous clonal plants Leymus secalinus and Calamagrostis pseudophragmites [J]. Chin J Plan Ecolo, 2013, 37(5): 427-435.
[12] WANG Xie, XIANG Cheng-Hua, LI Xian-Wei, and WEN Dong-Ju. Effects of a winter wildfire on plant community structure and forage quality in subalpine grassland of western Sichuan, China [J]. Chin J Plan Ecolo, 2013, 37(10): 922-932.
[13] ZHOU Lei, HE Hong-Lin, ZHANG Li, SUN Xiao-Min, SHI Pei-Li, REN Xiao-Li, and YU Gui-Rui. Simulations of phenology in alpine grassland communities in Damxung, Xizang, based on digital camera images [J]. Chin J Plan Ecolo, 2012, 36(11): 1125-1135.
[14] LIU Chang-Cheng, LIU Yu-Guo, and GUO Ke. Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats [J]. Chin J Plan Ecolo, 2011, 35(10): 1070-1082.
[15] SHI Fu-Sun, WU Ning, WU Yan. Responses of plant growth and substance allocation of three dominant plant species to experimental warming in an alpine grassland, Northwestern Sichuan, China [J]. Chin J Plan Ecolo, 2010, 34(5): 488-497.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Organizing Committee of the Fourth Xishuangbanna International Symposium. The Xishuangbanna Declaration on Plant Conservation[J]. Biodiv Sci, 2019, 27(1): 114 -115 .
[2] LIN Fang, XU Zhi-Hong and XUE Hong-Wei. Phospholipases in Signalling Transduction of Higher Plants[J]. J Integr Plant Biol, 2001, 43(10): 991 -1002 .
[3] NIE Jing-Lei,HAO Xiao-Jiang. SPIRAMILACTONE B, A NEW DITERPENOID FROM SPIRAEA JAPONICA VAR. STELLARIS[J]. Plant Diversity, 1996, 18(02): 1 -3 .
[4] Yuecun Ma, Biao Zhu, Zhenzhong Sun, Chuang Zhao, Yan Yang, Shilong Piao. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch[J]. J Plant Ecol, 2014, 7(3): 240 -249 .
[5] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[6] Shih Chu. Taxonomic Study on Genera of Tribe Lactuceae (Compositae) from China[J]. J Syst Evol, 1993, 31(5): 432 -450 .
[7] Bi Bojun. A Study of the Climatical Ecology and the Selection of the Suitable Land for the Cultivation of Panax ginseng[J]. Chin J Plan Ecolo, 1985, 9(2): 92 -100 .
[8] Ki-Oug YOO, Su-Kil JANG. Infrageneric relationships of Korean Viola based on eight chloroplast markers[J]. J Syst Evol, 2010, 48(6): 474 -481 .
[9] Dhia Bouktila, Maha Mezghani, Mohamed Marrakchi and Hanem Makni. Characterization of Wheat Random Amplified Polymorphic DNA Markers Associated with the H11 Hessian Fly Resistance Gene[J]. J Integr Plant Biol, 2006, 48(8): .
[10] . The research status on Ammopiptanthus mongolicus,a rare and endangered plant species[J]. Biodiv Sci, 1995, 03(3): 153 -156 .