Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (6): 543-556.doi: 10.17521/cjpe.2019.0045

• Research Articles • Previous Articles    

Diversity and potassium-solubilizing activity of rhizosphere potassium-solubilizing bacteria of invasive Solidago canadensis

YAN Ya-Nan1,2,YE Xiao-Qi1,*(),WU Ming1,YAN Ming2,ZHANG Xin-Li1   

  1. 1 Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Wetland Ecosystem Research Station of Hangzhou Bay, Fuyang, Zhejiang 311400, China
    2 School of Life Science, Shanxi Normal University, Linfen, Shanxi 041000, China
  • Received:2019-02-28 Revised:2019-05-29 Online:2019-09-30 Published:2019-06-20
  • Contact: YE Xiao-Qi E-mail:mengxqi@126.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(31770578)

Abstract:

Aims Solidago canadensis, an invasive herbaceous species, has a strong capacity of potassium enrichment, that may relate to its influence on soil microbial community. Rhizosphere potassium-soluble bacteria can convert mineral potassium into soluble forms being able to be used by plants. It is not known how invasion of S. canadensis may affect diversity and potassium-solubilizing activity of the potassium-solubilizing bacteria. Methods We compared S. canadensis and its coexisting native plant Imperata cylindrica in the reclaimed Hangzhou Bay wetland, Zhejiang Province. We compared the potassium contents of soil and the plant tissues of S. canadensis and Imperata cylindrica which coexists with the invasive species, the effect of potassium supply level on biomass accumulation of plants, and the quantity, diversity and potassium-soluble activity of the rhizosphere potassium-solubilizing bacteria. Important findings The potassium contents in stem and leaf of S. canadensis were significantly higher (1.59 and 7.33 times respectively) than that of I. cylindrica, the contents of available potassium in the 0-10 cm soil layer where the two species grew were significantly different, but not in the 10-20 cm soil layer. Potassium application experiments showed significant biomass increase in both S. canadensis and I. cylindrica, and tissue potassium concentrations as well. Potassium-dissolving medium culture results showed that the number of potassium-‌solubilizing bacteria of S. canadensis rhizosphere was 2.51 times higher than that of I. cylindrica. The strains with potassium-dissolving rings were identified, and the amount of released potassium was determined. Among the 15 strains of potassium-solubilizing bacteria isolated from the rhizosphere soil of S. canadensis, nine efficiently dissolved potassium, and the content of K + in the treatment solution was 85.11%-192.54% higher than that in the control. Strain H2-20 had the strongest ability with the dissolved K + of 10.657 mg·L -1. The potassium- solubilizing effect of rhizosphere potassium-solubilizing bacteria of S. canadensis was significantly higher than that of I. cylindrica. According to 16S rDNA identification, the 15 strains of bacteria associated with S. canadensis were of 11 genera, and 6 of them had been reported to have the potassium-solubilizing ability. Our results suggest that potassium-solubilizing bacteria in the rhizosphere of S. canadensis is abundant, and may play an important role in potassium enrichment.

Key words: invasive plant, rhizosphere potassium-solubilizing bacteria, potassium capacity, intrusion mechanism, phylogenetic tree

Table 1

Formula of culture medium for potassium-solubilizing bacteria used in this experiment"

成分
Ingredient
含量
Content (g·L-1)
成分
Ingredient
含量
Content (g·L-1)
蔗糖 Sucrose 5.0 Na2HPO4 2.0
MgSO4 0.5 FeCl3 0.005
CaCO3 0.1 土壤矿物
Soil mineral
1.0
琼脂 Agar 18.0 蒸馏水 Distilled water 1 000

Fig. 1

Contents of nitrogen, phosphorus and potassium in leaves and stems of Solidago canadensis and Imperata cylindrica (mean ± SE). **, p < 0.01; ns, no significant difference."

Fig. 2

Total N, total P and total K contents in different soil layers where Solidago canadensis and Imperata cylindrica grew (mean ± SE). Different lowercase letters indicate significant differences among the treatments (p < 0.05); ns, no significant difference (p > 0.05)."

Fig. 3

A biomass comparison of Solidago canadensis and Imperata cylindrica under different potassium treatments (mean ± SE). Different lowercase letters indicate significant differences among the treatments of different plants (p < 0.05)."

Fig. 4

A comparison of potassium-solubilizing bacteria numbers in rhizosphere of Solidago canadensis and Imperata cylindrica (mean ± SE). *, p < 0.05."

Table 2

Colony characteristics and potassium-solubilizing ability of 15 strains of rhizosphere potassium-solubilizing bacteria from Solidago canadensis "

菌株编号 Strain No. 菌落形态特征
Colony morphology characteristics
解钾圈半径
potassium-
solubilizing
ring (R)(cm)
菌落半径
Radius of
the colony
(r)(cm)
R/r
H5-1 菌斑小且不规则, 白色 Plaque small and irregular, white 0.29 0.26 1.14
H1-3 菌斑大, 凸起低, 色素淡且均匀 Plaque large, low protuberance, light and uniform pigmentation 1.08 0.93 1.16
H1-4 不规则凸起, 透明, 较少色素 Irregular protuberance, transparency, less pigmentation 0.56 0.48 1.17
H6-5 小液滴状, 边缘规则, 色素呈放射状 Small droplets with regular edges and radial pigments 0.47 0.45 1.04
H3-8 菌斑小且不规则, 色素深呈放射状 plaque small and irregular, dark and radial pigments 0.42 0.25 1.68
H5-10 不规则凸起, 菌斑乳白色, 边缘黄色沉着 Irregular protuberance, milky white plaque, yellow edge 0.66 0.53 1.26
H1-12 不规则液滴状, 边缘模糊, 中央色素沉着 Irregular droplet shape, blurred edge, central pigmentation 0.78 0.66 1.18
H2-14 液滴状, 凸起高, 色素呈圆形 Droplet-shaped, tall protuberance, rounded pigments 0.84 0.54 1.56
H1-15 菌斑小, 边缘不规则, 色素呈伞状 Plaque small, irregular margin, umbrella-shaped pigments 0.56 0.38 1.46
H2-16 不规则液滴状, 浑浊, 中央色素沉着 Irregular droplet, turbid, central pigmentation 0.62 0.40 1.55
H2-17 规则小液滴凸起, 色素少 Regular small droplets protruding, less pigmentation 0.52 0.32 1.63
H5-18 液滴状, 透明, 中央色素沉着 Droplet-like, transparent, central pigmentation 0.72 0.52 1.38
H1-19 边缘锯齿形, 液滴状, 色素呈同心圆状 Edge serrated, droplet-shaped, concentric circle of pigments 1.10 0.74 1.49
H2-20 菌斑较大, 规则液滴状, 色素均匀 Plaque large, regular droplet shape, uniform pigmentation 1.00 0.64 1.56
H1-21 规则液滴状, 凸起高, 透明, 色素少 Regular droplet shape, high protrusion, transparent, less pigmentation 0.94 0.56 1.68

Table 3

Colony characteristics and potassium-solubilizing ability of 5 strains of rhizosphere potassium-solubilizing bacteria from Imperata cylindrica"

菌株编号
Strain No.
菌落形态特征
Colony morphology characteristics
解钾圈半径
potassium-
solubilizing
ring (R)(cm)
菌落半径
Radius of
the colony
(r)(cm)
R/r
B1-6 凸起低, 浑浊, 中央色素呈同心圆状 Low protrusion, turbid, concentric circle of central pigments 0.74 0.55 1.34
B6-7 不规则凸起, 浑浊 Irregular bulge, turbidity 0.65 0.55 1.18
B2-9 菌斑小且不规则, 白色, 无凸起 Plaque small and irregular, white, without protuberance 0.92 0.70 1.31
B4-11 规则液滴状, 凸起较高, 色素淡且均匀 Regular droplet shape, higher protuberance, light and uniform
pigmentation
0.50 0.41 1.22
B6-13 液滴状, 凸起高, 色素均匀沉着 Droplet-like, protruding, uniformly pigmented 0.56 0.46 1.21

Table 4

Phylogenetic analysis of rhizosphere potassium-solubilizing bacteria from Solidago canadensis."

菌株编号
Strain No.
登录号
Accession number
最相近菌株(登录号)
Most similar strain (registration number)
序列相似性
sequence similarity
H5-1 MH490984 Pseudoflavitalea soli KIS20-3 (NR_148655) 96%
H2-3 MH490985 Mitsuaria sp. SS48 (HQ891978) 99%
H1-4 MH490986 Rhizobium sp. KMM 9576 (LC126306) 100%
H6-5 MH490987 Microbacterium sp. 3B2 (MG763154) 99%
H3-8 MH490990 Streptomyces variabilis SD22 (MH244336) 98%
H5-10 MH490992 Azotobacter chroococcum YCYS (JQ692178) 99%
H1-12 MH490994 Stenotrophomonas panacihumi 5-III (KP969077) 99%
H2-14 MH490996 Pseudomonas sp. EA_S_32 (KJ642336) 98%
H1-15 MH490997 Cupriavidus sp. FZ96 (KF803333) 99%
H2-16 MH490998 Ensifer adhaerens WJB133 (KU877667) 100%
H2-17 MH490999 Rhizobium taeanense PSB 2-6 (DQ114473) 99%
H5-18 MH491000 Pseudoflavitalea soli KIS20-3 (NR_148655) 96%
H1-19 MH491001 Filimonas endophytica SR 2-06 (KJ572396) 99%
H2-20 MH491002 Lysobacter niastensis GH41-7 (NR_043868) 99%
H1-21 MH491003 Siphonobacter aquaeclarae HPG59 (JQ291601) 99%

Table 5

Phylogenetic analysis of rhizosphere potassium-solubilizing bacteria from Imperata cylindrica"

菌株编号
Strain No.
登录号
Accession number
最相近菌株(登录号)
Most similar strain (registration number)
序列相似性
sequence similarity
B1-6 MH490988 Microbacterium imperiale (JN585685) 99%
B6-7 MH490989 Enterobacter sp. PRd5 (KY203970) 99%
B2-9 MH490991 Alloactinosynnema album 03-9939 (NR_116323) 99%
B4-11 MH490993 Chryseolinea sp. SDU1-6 (MG662377) 95%
B6-13 MH490995 Pseudoflavitalea soli KIS20-3 (NR_148655) 96%

Fig. 5

Phylogenetic tree of 15 strains rhizosphere potassium-solubilizing bacteria of Solidago canadensis. The numbers in the figure refer the bootstrap values for testing the reliability of branch of evolutionary tree, the greater the value, the higher the reliability."

Fig. 6

Phylogenetic tree of 5 strains rhizospheric potassium-solubilizing bacteria from Imperata cylindrica. The numbers in the figure refer the bootstrap values for testing the reliability of branch of evolutionary tree, the greater the value, the higher the reliability."

Fig. 7

A comparison of means and single potassium solubilization amounts of potassium-solubilizing bacteria in rhizosphere of Solidago canadensis and Imperata cylindrica (mean ± SE). AVG, mean potassium dissolution amount of different rhizosphere potassium-solubilizing bacteria."

[1] Aerts R, Chapin III FS (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
[2] Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. 70-109.
[ 鲍士旦 (2000). 土壤农化分析(第三版). 中国农业出版社, 北京. 70-109.]
[3] Belnap J, Phillips SL (2001). Soil biota in an ungrazed grassland: Response to annual grass (Bromus tectorum) invasion. Ecological Applications, 11, 1261-1275.
[4] Blossey B, Nötzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. Journal of Ecology, 83, 887-889.
[5] Bowen JL, Kearns PJ, Byrnes JEK, Wigginton S, Allen WJ, Greenwood M, Tran K, Yu J, Cronin JT, Meyerson LA (2017). Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nature Communications, 8, 433. DOI: 10.1038/s41467-017-00626-0.
[6] Cai QS (2013). Plant Physiology Experiments. China Agricultural University Press, Beijing. 8-9.
[ 蔡庆生 (2013). 植物生理学实验. 中国农业大学出版社, 北京. 8-9.]
[7] Chen C, Fu YY, Huang L, Wang YJ, He XL, Xiao M (2009). The analysis of the diversity of the partial rhizosphere bacteria of Solidago canadensis L. on Chongming Island, Shanghai. Journal of Shanghai Normal University (Natural Sciences), 38, 516-521.
[ 陈晨, 傅盈盈, 黄璐, 王云菁, 何小丽, 肖明 (2009). 上海崇明东滩加拿大一枝黄花根际部分可培养细菌的多样性分析. 上海师范大学学报(自然科学版), 38, 516-521.]
[8] Chen T, Liu WL, Zhang CB, Wang J (2012). Effects of Solidago canadensis invadation on dynamics of native plant communities and their mechanisms. Chinese Journal of Plant Ecology, 36, 253-261.
[ 陈彤, 刘文莉, 张崇邦, 王江 (2012). 加拿大一枝黄花入侵对本土植物群落动态的影响及其机制. 植物生态学报, 36, 253-261.]
[9] Coats VC, Pelletreau KN, Rumpho ME (2014). Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry ( Berberis thunbergii DC.). Molecular Ecology, 23, 1318-1332.
[10] de la Peña E, de Clercq N, Bonte D, Roiloa S, Rodríguez- Echeverría S, Freitas H (2010). Plant-soil feedback as a mechanism of invasion by Carpobrotus edulis. Biological Invasions, 12, 3637-3648.
[11] Dong M, Lu JZ, Zhang WJ, Chen JK, Li B (2006). Canada goldenrod ( Solidago canadensis): An invasive alien weed rapidly spreading in China. Acta Phytotaxonomica Sinica, 44, 72-85.
[ 董梅, 陆建忠, 张文驹, 陈家宽, 李博 (2006). 加拿大一枝黄花——一种正在迅速扩张的外来入侵植物. 植物分类学报, 44, 72-85.]
[12] Du YS (2014). Phenotypic Plasticity and Adaptation of Solidago canadensis. Master degree dissertation, Beijing Forestry University, Beijing. 60-62.
[ 杜乐山 (2014). 加拿大一枝黄花的表型可塑性与适应性研究. 硕士学位论文, 北京林业大学, 北京. 60-62.]
[13] Duda JJ, Freeman DC, Emlen JM, Belnap J, Kitchen SG, Zak JC, Sobek E, Tracy M, Montante J (2003). Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biology and Fertility of Soils, 38, 72-77.
[14] Fang F, Guo SL, Huang LB (2004). Allelopathic effects of the invasive plant Solidago canadensis. Ecologic Science, 23, 331-334.
[ 方芳, 郭水良, 黄林兵 (2004). 入侵杂草加拿大一枝黄花的化感作用. 生态科学, 23, 331-334.]
[15] Ge HL, Ji XE (2017). Screening, identification and promoting effects of potassium-solubilizing bacteria in rhizosphere of cucumber. Northern Horticulture, (13), 21-25.
[ 葛红莲, 纪秀娥 (2017). 黄瓜根际解钾细菌的分离筛选、鉴定及其促生效果. 北方园艺, (13), 21-25.]
[16] Graham RD, Ulrich A (1972). Potassium deficiency-induced changes in stomatal behavior, leaf water potentials, and root system permeability in Beta vulgaris L. Plant Physiology, 49, 105-109.
[17] Guo SL, Fang F (2003). Physiological adaptation of the invasive plant Solidago canadensis to environments. Acta Phytoecologica Sinica, 27, 47-52.
[ 郭水良, 方芳 (2003). 入侵植物加拿大一枝黄花对环境的生理适应性研究. 植物生态学报, 27, 47-52.]
[18] Guo XB, Wu HS, Liu HA, Chen JH, Shi GH (2001). Effect of Bacillus mucilaginosus preparation on the growth and development of rice plant. Acta Agriculturae Universitatis Jiangxiensis, 23, 447-449.
[ 郭勋斌, 吴洪生, 刘怀阿, 陈佳宏, 石光辉 (2001). 钾细菌制剂对水稻生长发育的影响. 江西农业大学学报, 23, 447-449.]
[19] Hao JH, Qian HJ, Jiang W, Shen ZG (2009). Traits of sexual reproduction in Solidago canadensis L. Ecology and Environmental Sciences, 18, 2278-2282.
[ 郝建华, 钱海军, 姜雯, 沈宗根 (2009). 加拿大一枝黄花有性生殖特征研究. 生态环境学报, 18, 2278-2282.]
[20] Holmgren M, Scheffer M, Huston MA (1997). The interplay of facilitation and competition in plant communities. Ecology, 78, 1966-1975.
[21] Hu DJ, Dong RR, Ge DZ (1993). Theory and Practice of Plant Potassium Nutrition. Hunan Science & Technology Press, Changsha. 58-109.
[ 胡笃敬, 董任瑞, 葛旦之 (1993). 植物钾营养的理论与实践. 湖南科学技术出版社, 长沙. 58-109.]
[22] Huang H, Guo SL (2005). Study on reproductive biology of the invasive plant Solidago canadensis. Acta Ecologica Sinica, 25, 2795-2803.
[ 黄华, 郭水良 (2005). 外来入侵植物加拿大一枝黄花繁殖生物学研究. 生态学报, 25, 2795-2803.]
[23] Jiang ZL, Liu WX, Wan FH, Li ZY (2008). Differences in soil enzymatic activities and soil nutrients of Ageratina adenophora and native plants communities at the rhizosphere zones. Journal of Agro-Environment Science, 27, 660-664.
[ 蒋智林, 刘万学, 万方浩, 李正跃 (2008). 紫茎泽兰与本地植物群落根际土壤酶活性和土壤肥力的差异. 农业环境科学学报, 27, 660-664.]
[24] Ju RT, Li H, Shi ZR, Li B (2012). Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611.
[ 鞠瑞亭, 李慧, 石正人, 李博 (2012). 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
[25] Ju W (2016). Study on Isolation and Identification of High Efficient Potassium Bacteria from Poplar Rhizospheric Soil. Master degree dissertation, Nanjing Forestry University, Nanjing. 31-33.
[ 鞠伟 (2016). 杨树根际高效解钾细菌的分离筛选与鉴定. 硕士学位论文, 南京林业大学, 南京. 31-33.]
[26] Keane RM, Crawley MJ (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170.
[27] Kourtev PS, Ehrenfeld JG, Häggblom M (2002). Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152-3166.
[28] Li CG, Zhong Y, Li XX, Jiang X, Xie CW (2017). Screening and identification of a new type of potassium bacteria. Journal of Guizhou University (Natural Sciences), 34, 132-135.
[ 李春钢, 钟艳, 李夏夏, 姜雄, 谢承卫 (2017). 一种新型解钾菌的筛选及鉴定. 贵州大学学报(自然科学版), 34, 132-135. ]
[29] Li GQ (2009). Effects of Invasive Plant Solidago canadensis L. on Microbial Community Diversity in Rhizosphere Soil. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. 44-46.
[ 李国庆 (2009). 入侵植物加拿大一枝黄花对根际土壤微生物群落多样性的影响研究. 硕士学位论文, 福建农林大学, 福州. 44-46.]
[30] Li XX, Gao XX, Chen X, Lu WH, Dong CX, Cui ZL, Cao H (2014). Isolation and identification of an efficient strain of potassium-dissolving bacteria and opatimization of its incubation condition. Acta Pedologica Sinica, 51, 381-388.
[ 李新新, 高新新, 陈星, 卢维浩, 董彩霞, 崔中利, 曹慧 (2014). 一株高效解钾菌的筛选、鉴定及发酵条件的优化. 土壤学报, 51, 381-388.]
[31] Li YF (1994). Characteristic and function of silicate bacterial fertilizer. Soil and Fertilizer Sciences in China, 2, 48-49.
[ 李元芳 (1994). 硅酸盐细菌肥料的特性和作用. 土壤肥料, 2, 48-49.]
[32] Liang L, Ye XQ, Wu M, Shao XX, Li CM (2016). Invasion effects of Solidago canadensis on soil nutrients and active organic carbon components in reclamation district of Hangzhou Bay wetland. Soils, 48, 680-685.
[ 梁雷, 叶小齐, 吴明, 邵学新, 李长明 (2016). 加拿大一枝黄花入侵对杭州湾湿地围垦区土壤养分及活性有机碳组分的影响. 土壤, 48, 680-685.]
[33] Liao D, Huang HB, Zhuang SX, Hong YW (2018). Effects of exotic Spartina alterniflora on rhizosphere and endophytic bacterial community structures and diversity in roots of native mangroves. Chinese Journal of Applied and Environmental Biology, 24, 269-275.
[ 廖丹, 黄华斌, 庄峙厦, 洪有为 (2018). 互花米草入侵对红树秋茄根际与根内细菌群落结构与多样性的影响. 应用与环境生物学报, 24, 269-275.]
[34] Liao M, Xie XM, Peng Y, Chai JJ, Chen N (2013). Characteristics of soil microbial community functional and structure diversity with coverage of Solidago canadensis L. Journal of Central South University, 20, 749-756.
[35] Ling XG (2010). Principles and Methods of Soil Microbiology Research. Higher Education Press, Beijing. 323-326.
[ 林先贵 (2010). 土壤微生物研究原理与方法. 高等教育出版社, 北京. 323-326.]
[36] Lorenzo P, Rodríguez-Echeverría S, González L, Freitas H (2010). Effect of invasive Acacia dealbata Link. on soil microorganisms as determined by PCR-DGGE. Applied Soil Ecology, 44, 245-251.
[37] Lu HM, Ruan HG, Tang GM, Cai YC, Guo ZX, Wang J (2006). Evaluation of harmfulness and utility on Canada Goldenrod (Solidago canadensis). Journal of Shanghai Jiaotong University (Agricultural Science), 24, 402-406.
[ 陆慧明, 阮海根, 汤根妹, 蔡云彩, 郭志霞, 王坚 (2006). 加拿大一枝黄花利害分析. 上海交通大学学报(农业科学版), 24, 402-406.]
[38] Martin PA, Newton AC, Bullock JM (2017). Impacts of invasive plants on carbon pools depend on both species’ traits and local climate. Ecology, 98, 1026-1035.
[39] Mei LX, Chen X, Tang JJ (2005). Allelopathic effects of invasive weed Solidago canadensis on native plants. Chinese Journal of Applied Ecology, 16, 2379-2382.
[ 梅玲笑, 陈欣, 唐建军 (2005). 外来杂草加拿大一枝黄花对入侵地植物的化感效应. 应用生态学报, 16, 2379-2382.]
[40] Nijjer S, Rogers WE, Lee CTA, Siemann E (2008). The effects of soil biota and fertilization on the success of Sapium sebiferum. Applied Soil Ecology, 38, 1-11.
[41] Niu HB, Liu WX, Wan FH (2007). Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties. Acta Ecologica Sinica, 27, 3051-3060.
[ 牛红榜, 刘万学, 万方浩 (2007). 紫茎泽兰(Ageratina adenophora)入侵对土壤微生物群落和理化性质的影响. 生态学报, 27, 3051-3060.
[42] Ren MX, Zhang QG (2009). The relative generality of plant invasion mechanisms and predicting future invasive plants. Weed Research, 49, 449-460.
[43] Roberts KJ, Anderson RC (2001). Effect of garlic mustard [ Alliaria petiolata(Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. The American Midland Naturalist, 146, 146-152.
[44] Shen LH, Guo QX, Lin WX, Chen Y, Huang Z (2007). Impacts of invasive alien weed Solidago canadensis L. on microbial population in the root soil. Chinese Agricultural Science Bulletin, 23, 323-327.
[ 沈荔花, 郭琼霞, 林文雄, 陈颖, 黄振 (2007). 加拿大一枝黄花对土壤微生物区系的影响研究. 中国农学通报, 23, 323-327.]
[45] Shi Q (2018). The Effect of Brevibaterium frigoritolerans and Bacillus megaterium in the Invasion of Flaveria bidentis. Master degree dissertation, Hebei University, Baoding, Hebei. 20-22.
[ 石青 (2018). 耐寒短杆菌和巨大芽孢杆菌在黄顶菊入侵过程中的作用. 硕士学位论文, 河北大学, 河北保定. 20-22.]
[46] Sun ZK, He WM (2010). Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLOS ONE, 5, e15418. DOI: 10.1371/journal.‌pone.0015418.
[47] Tai FJ, Zhu XZ, Han CX, Zhang C, Shao H (2016). Effects of aqueous extract of the invasive plant Xanthium italicum Moretti on soil microbial community, soil enzyme activity and soil nutrient. Ecological Science, 35, 71-78.
[ 邰凤姣, 朱珣之, 韩彩霞, 张弛, 邵华 (2016). 外来入侵植物意大利苍耳对土壤微生物群落、土壤酶活性和土壤养分的影响. 生态科学, 35, 71-78.]
[48] The Editorial Board of Flora of China, Chinese Academy of Sciences (1985). Flora of China. Science Press, Beijing. 74, 76.
[ 中国科学院中国植物志编辑委员会 (1985). 中国植物志. 科学出版社, 北京. 74, 76.]
[49] Uddin MN, Robinson RW, Caridi D, Al Harun MAY (2014). Suppression of native Melaleuca ericifolia by the invasive Phragmites australis through allelopathic root exudates. American Journal of Botany, 101, 479-487.
[50] Wang C, Zhou J, Liu J, Jiang K, Xiao H, Du D (2018). Responses of the soil fungal communities to the co-invasion of two invasive species with different cover classes. Plant Biology, 20, 151-159.
[51] Wang LF, Wang DX, Shangguan ZP (2013). Structural characters and nutrient contents of leaves as well as nitrogen distribution among different organs of big\headed wheat. Acta Ecologica Sinica, 33, 5219-5227.
[ 王丽芳, 王德轩, 上官周平 (2013). 大穗型小麦叶片性状、养分含量及氮素分配特征. 生态学报, 33, 5219-5227.]
[52] Wang YL, Gao RR, Yu JY (2009). Invasive structural foundation of exotic plant Canada goldenrod. Acta Ecologica Sinica, 29, 108-119.
[ 王玉良, 高瑞如, 余玖银 (2009). 外来植物加拿大一枝黄花(Solidago canadensis)入侵的结构基础. 生态学报, 29, 108-119. ]
[53] Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
[54] Wu F, Liu XL, Zhang N, Zhang SS, Guo H, Zhang BF, Qiu NQ (2010). Isolation and identification of mulberry rhizospheric silicate bacteria and determination of their potassium- releasing activities. Science of Sericulture, 36, 323-329.
[ 吴凡, 刘训理, 张楠, 张莎莎, 国辉, 张本峰, 仇念全 (2010). 桑树根际硅酸盐细菌的分离鉴定及解钾能力测定. 蚕业科学, 36, 323-329.]
[55] Yan XL, Shou HY, Ma JS (2012). The problem and status of the alien invasive plants in China. Plant Diversity and Resources, 34, 287-313.
[ 闫小玲, 寿海洋, 马金双 (2012). 中国外来入侵植物研究现状及存在的问题. 植物分类与资源学报, 34, 287-313.]
[56] Yang GQ, Guo J, Gui FR (2014). Effects of allelochemicals from Eupatorium adenophorum on soil available phosphorus content and growth of Bacillus megaterium. Jiangsu Agricultural Sciences, 42(12), 137-140.
[ 杨国庆, 郭娇, 桂富荣 (2014). 紫茎泽兰的化感物质对土壤有效磷含量和巨大芽孢杆菌生长的影响. 江苏农业科学, 42(12), 137-140.]
[57] Yang X, Zhang LH, Zheng C, Zhang JL, Han JM, Dong JG (2012). Effects of Flaveria bidentis invasion on soil microbial communities, enzyme activities and nutrients. Plant Nutrition and Fertilizer Science, 18, 907-914.
[ 杨星, 张利辉, 郑超, 张金林, 韩建民, 董金皋 (2012). 黄顶菊入侵对土壤微生物、土壤酶活性及土壤养分的影响. 植物营养与肥料学报, 18, 907-914.]
[58] Yi LB, Peng QZ, He QZ, Peng QJ (2012). Isolation and identification of potash feldspar-solubilizing bacteria and their potassium-releasing activities. Chinese Journal of Microecology, 24, 773-776, 785.
[ 易浪波, 彭清忠, 何齐庄, 彭清静 (2012). 高效钾长石分解菌株的筛选、鉴定及解钾活性研究. 中国微生态学杂志, 24, 773-776, 785.]
[59] Zhang HL, Zhu M, Li GJ (2015a). Impact of reproductive traits on the invasive ability of Solidago canadensis L. Journal of China University of Metrology, 26, 324-330.
[ 张海亮, 朱敏, 李干金 (2015a). 加拿大一枝黄花繁殖性状对其入侵性的影响. 中国计量学院学报, 26, 324-330.]
[60] Zhang HL, Zhu M, Li GJ (2015b). Factors influencing the nonrandom abscission of Solidago canadensis seeds. Chinese Journal of Plant Ecology, 39, 258-263.
[ 张海亮, 朱敏, 李干金 (2015b). 影响加拿大一枝黄花种子非随机脱落的因素. 植物生态学报, 39, 258-263.]
[61] Zhang MY, Chen YF, Zhou DB, Qi DF, Gao ZF, Zhang XY (2016). Isolation, identification and fermentation conditions optimization of potassium bacteria in Castor rhizosphere soil. Chinese Journal of Tropical Crops, 37, 2268-2275.
[ 张妙宜, 陈宇丰, 周登博, 起登凤, 高祝芬, 张锡炎 (2016). 蓖麻根际土壤解钾菌的筛选鉴定及发酵条件的优化. 热带作物学报, 37, 2268-2275.]
[62] Zhang Q, Yao LJ, Yang RY, Yang XY, Tang JJ, Chen X (2007). Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopathy Journal, 20, 71-77.
[63] Zhang SS, Jin YL, Tang JJ, Chen X (2009). The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Applied Soil Ecology, 41, 215-222.
[64] Zhang TR, Huangfu CH, Bai XM, Yang DL, Li G, Lai Y, Zhao JN (2010). Effects of Flaveria bidentis invasion on soil nutrient contents and enzyme activities. Chinese Journal of Ecology, 29, 1353-1358.
[ 张天瑞, 皇甫超河, 白小明, 杨殿林, 李刚, 赖欣, 赵建宁 (2010). 黄顶菊入侵对土壤养分和酶活性的影响. 生态学杂志, 29, 1353-1358.]
[65] Zhang WJ, Rui WY, Tu C, Diab HG, Louws FJ, Mueller JP, Creamer N, Bell M, Wagger MG, Hu S (2005). Responses of soil microbial community structure and diversity to agricultural deintensification. Pedosphere, 15, 440-447.
[66] Zhao JL, Cheng CQ, Gu XY, Liu B (2014). Effects of root exudates from invasive plant (Mirabilis jalapa) on soil microenviroment under different land-use types. Advanced Materials Research, 998-999, 1419-1424.
[67] Zhou ZR (2010). On Influence of Solidago canadensis Invasion on Rhizosphere Micro-Environment of Soil. Master degree dissertation, Nanjing Agricultural University, Nanjing. 33-36.
[ 周振荣 (2010). 外来入侵植物加拿大一枝黄花对根际土壤微环境的影响研究. 硕士学位论文, 南京农业大学, 南京. 33-36.]
[1] Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen. Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators [J]. Biodiv Sci, 2019, 27(3): 306-313.
[2] Chenyang Xue,Yufeng Xu,Bo Qu. Comparison of morphology, photosynthesis, and growth among Xanthium strumarium, X. sibiricum and their hybrid under different nitrogen levels [J]. Biodiv Sci, 2018, 26(6): 554-563.
[3] Shiguo Sun,Bin Lu,Xinmin Lu,Shuangquan Huang. On reproductive strategies of invasive plants and their impacts on native plants [J]. Biodiv Sci, 2018, 26(5): 457-467.
[4] Chun-Feng GU, Xiao-Qi YE, Ming WU, Xue-Xin SHAO, Sheng-Wu JIAO. Effects of glyphosate on interspecific competition between Solidago canadensis and Imperata cylindrica [J]. Chin J Plan Ecolo, 2017, 41(4): 439-449.
[5] Wei Fu, Ning Wang, Fang Pang, Yulong Huang, Jun Wu, Shanshan Qi, Zhicong Dai, Daolin Du. Soil microbiota and plant invasions: current and future [J]. Biodiv Sci, 2017, 25(12): 1295-1302.
[6] Yukai Chen,Xiaobo Yang,Donghai Li,Wenxing Long. Status of vascular plant species on Hainan Island [J]. Biodiv Sci, 2016, 24(8): 948-956.
[7] PENG Yang, PENG Pei-Hao, LI Jing-Ji. Simulated nitrogen deposition influences the growth and competitive ability of Centaurea stoebe populations [J]. Chin J Plan Ecolo, 2016, 40(7): 679-685.
[8] Ning Wang,Weifang Li,Bing Zhou,Xiaohong Yan. Invasiveness, clonal form and geographical origin of invasive clonal plant species in China [J]. Biodiv Sci, 2016, 24(1): 12-.
[9] LUO Wen-Qi,FU Shao-Huai,YANG Xiao-Bo,CHEN Yu-Kai,ZHOU Wei,YANG Qi,TAO Chu,ZHOU Wen-Song. Distribution patterns of alien invasive plants and their influences on native plants of Hainan Island [J]. Chin J Plan Ecolo, 2015, 39(5): 486-500.
[10] Xiaoling Yan,Quanru Liu,Haiyang Shou,Xianfeng Zeng,Yong Zhang,Li Chen,Yan Liu,Haiying Ma,Shuyan Qi,Jinshuang Ma. The categorization and analysis on the geographic distribution patterns of Chinese alien invasive plants [J]. Biodiv Sci, 2014, 22(5): 667-676.
[11] Sikai Wang,Qiang Sheng,Tianjiang Chu,Bo Li,Jiakuan Chen,Jihua Wu. Impact of invasive plants on food webs and pathways [J]. Biodiv Sci, 2013, 21(3): 249-259.
[12] Liying Song, Zhanhong Ke, Lanlan Sun, Changlian Peng. Effect of Simulated Acid Rain on Gas Exchanges of Three Compositae Invasive Plants [J]. Chin Bull Bot, 2013, 48(2): 160-167.
[13] Baojiang Zheng, Lei Pan. Species composition of alien invasive plants in Heilongjiang Province [J]. Biodiv Sci, 2012, 20(2): 231-234.
[14] Mo Gao, Renyong Hu, Xianxing Chen, Weicheng Li, Bingyang Ding. Effects of disturbance, topography, and soil conditions on the distribution of invasive plants in Wenzhou [J]. Biodiv Sci, 2011, 19(4): 424-431.
[15] Hongyu Niu, Zhengfeng Wang, Juyu Lian, Wanhui Ye, Hao Shen. New progress in community assembly: community phylogenetic structure combining evolution and ecology [J]. Biodiv Sci, 2011, 19(3): 275-283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] LI Yan WANG Rong LI Guan GOU Ping. Purification and Properties of Alliinase from Fresh Garlic (Allium sativum)[J]. Chin Bull Bot, 2005, 22(05): 579 -583 .
[7] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[8] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[9] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[10] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .