Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (10): 889-898.doi: 10.17521/cjpe.2019.0214

• Research Articles • Previous Articles     Next Articles

Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season

LI Xin-Hao1,2,YAN Hui-Juan1,2,WEI Teng-Zhou1,2,ZHOU Wen-Jun1,2,JIA Xin1,2,3,ZHA Tian-Shan1,2,3,*()   

  1. 1School of Soil and Water Conservation, Beijing Forestry University, Beijing 100089, China
    2Yanchi Ecology Research Station of Mau Us Desert, Beijing 100089, China
    3Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100089, China
  • Received:2019-08-07 Accepted:2019-10-14 Online:2020-02-24 Published:2019-10-20
  • Contact: ZHA Tian-Shan E-mail:tianshanzha@bjfu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(31670708);the National Natural Science Foundation of China(31670710);the Fundamental Research Funds for the Central Universities(2015ZCQ-SB-02)

Abstract:

Aims This study is to examine the relative changes in resource use efficiencies and their responses to the environmental variables of a typical desert plant Artemisia ordosica in the semi-arid area of Northwest China. Methods We measured the net photosynthetic rate (Pn), transpiration rate (E), leaf surface photosynthetically active radiation (PARl), leaf surface temperature (Tl), leaf surface relative humidity (RHl) of Artemisia ordosica from May to October, 2018 using a portable photosynthesis analyzer. We also analyzed nitrogen per leaf area (Narea) in the lab. We related nitrogen use efficiency (NUE), water use efficiency (WUE), light use efficiency (LUE) of the plant and their relative changes to the environmental variables. Important findings Temperature mainly affected the Pn of Artemisia ordosica under sufficient and stable light intensity. There was a significantly negative correlation between NUE, WUE and VPD1, Tl. NUE, WUE and LUE was positively correlated. The maximum NUE, WUE and LUE occurred in May, July and September, respectively, being 9.43 μmol CO2·g-1·s-1, 3.86 mmol·mol-1, and 0.04 mol·mol-1. The changes in resource use efficiencies were mainly affected by Pn. The results indicate that temperature affects resource use efficiencies by affecting the distribution of plant N and changes in Pn. WUE was significantly and positively correlated with LUE. These results may contribute to development of the energy exchange process model for the desert ecosystems.

Key words: photosynthesis, nitrogen use efficiency, water use efficiency, light use efficiency, Artemisia ordosica

Fig. 1

Dynamics in daily means of environmental variables from May 1 to October 1 in the sample plots of Artemisia ordosica in Mau Us Sandyland. P, precipitation; PARa, photosynthetically active radiation; RHa, air relative humidity; SWC, soil water content; Ta, air temperature; VPDa, air saturated water vapor pressure difference."

Table 1

Gas exchange parameters of Artemisia ordosica in Mau Us Sandyland"

日期 Date
(Month-day)
E
(mmol·m-2·s-1)
gs
(mol·m2·s-1)
Narea
(g·m-2)
SLA
(cm2·g-1)
LSP
(μmol·m-2·s-1)
Pn
(μmol·m-2·s-1)
PAR
(μmol·m-2·s-1)
05-1614.11 (1.6)0.51 (0.03)4.29 (1.20)61.30 (10.20)1 057 (95.1)28.78 (5.6)1 476.21 (96.7)
05-2210.60 (2.4)0.72 (0.11)4.16 (0.41)72.77 (12.10)1 034 (26.8)39.30 (5.1)1 787.40 (102.4)
06-0411.63 (1.9)0.38 (0.05)4.24 (0.57)43.22 (6.07)792 (54.7)22.40 (4.2)1 185.47 (123.7)
06-1312.84 (1.5)0.41 (0.06)4.36 (0.81)45.55 (5.47)784 (43.2)22.42 (4.1)1 357.43 (111.9)
06-2316.40 (3.4)0.53 (0.09)3.85 (0.73)61.98 (8.81)694 (41.9)24.30 (3.6)1 260.54 (98.6)
07-0517.93 (4.1)0.48 (0.08)3.70 (0.42)75.20 (7.34)1 119 (80.6)21.16 (2.7)1 662.20 (89.4)
07-1316.14 (1.9)0.52 (0.12)3.61 (0.64)60.50 (10.31)731 (45.7)19.77 (3.4)1 319.01 (127.5)
07-236.68 (0.9)0.37 (0.06)3.83 (0.78)83.50 (14.81)1 234 (56.4)33.36 (4.1)1 152.30 (131.6)
08-055.30 (0.8)0.36 (0.09)3.83 (0.17)60.84 (4.59)594 (12.9)10.70 (1.9)766.48 (234.8)
08-148.80 (1.1)0.46 (0.10)4.04 (0.59)56.34 (4.96)779 (61.1)23.10 (5.1)927.46 (194.5)
08-2312.83 (5.4)0.49 (0.14)3.95 (0.88)58.53 (10.31)613 (31.8)11.94 (2.7)746.55 (84.9)
09-0214.20 (3.9)0.68 (0.22)3.91 (0.46)72.58 (11.62)847 (61.7)27.01 (4.1)1 148.57 (154.6)
09-147.21 (2.1)0.63 (0.19)3.81 (0.53)68.65 (9.96)880 (31.1)23.34 (4.5)1 156.36 (164.8)
09-235.68 (1.1)0.59 (0.18)4.12 (0.33)65.02 (8.13)764 (26.8)20.28 (4.2)1 192.83 (147.6)

Table 2

Nitrogen allocation parameters in photosynthetic system of Artemisia ordosica in Mau Us Sandyland"

日期 Date (Month-day)PcPbPlPp
05-160.210 (0.06)0.015 (0.005)0.050 (0.010)0.275 (0.06)
05-220.340 (0.06)0.025 (0.006)0.006 (0.021)0.347 (0.05)
06-040.281 (0.02)0.014 (0.002)0.018 (0.015)0.301 (0.03)
06-130.282 (0.04)0.016 (0.003)0.050 (0.010)0.297 (0.04)
06-230.230 (0.07)0.019 (0.003)0.013 (0.021)0.248 (0.05)
07-050.211 (0.06)0.030 (0.005)0.002 (0.012)0.253 (0.06)
07-130.206 (0.04)0.020 (0.002)0.050 (0.012)0.276 (0.04)
07-230.242 (0.10)0.029 (0.006)0.075 (0.026)0.350 (0.03)
08-050.190 (0.01)0.023 (0.003)0.044 (0.011)0.253 (0.02)
08-140.282 (0.03)0.029 (0.008)0.004 (0.011)0.311 (0.03)
08-230.270 (0.03)0.015 (0.002)0.030 (0.006)0.291 (0.03)
09-020.272 (0.06)0.018 (0.001)0.004 (0.012)0.282 (0.04)
09-140.261 (0.04)0.015 (0.003)0.039 (0.010)0.308 (0.04)
09-230.290 (0.04)0.022 (0.006)0.006 (0.009)0.318 (0.05)

Fig. 2

Effect of temperature (T) on nitrogen distribution allocation ratio of photosynthesis system(Pp) of Artemisia ordosica in Mau Us Sandyland."

Fig. 3

Seasonal changes in nitrogen use efficiency (NUE), water use efficiency (WUE), light use efficiency (LUE) of Artemisia ordosica in Mau Us Sandyland (mean ± SD). The horizontal dashed lines in the figure are the average values of the corresponding resource use efficiency."

Table 3

Fitting parameters of the relationship between photosynthesis rate of Artemisia ordosica and environmental variables in Mau Us Sandyland"

abcdiSSER2pAIC
E-0.004 5 (0.774 5)21.130 0 (9.446 3)347.40.083 30.998 950.95
Tl-0.567 3 (5.304 0)37.450 0 (2.940 0)224.70.353 10.025 144.86
PARl-0.007 6 (0.010 6)29.320 0 (11.833 7)288.60.169 20.144 048.36
Narea-0.125 7 (4.862 4)21.560 0 (18.830 0)347.30.000 30.956 050.96
E × Tl0.373 2 (0.684 5)-0.689 4 (0.529 1)36.698 2 (14.125 5)198.70.427 90.046 345.14
E × PARl0.892 3 (0.979 6)-0.017 8 (0.014 7)30.043 7 (10.716 9)211.40.391 50.065 146.01
E × Narea-0.006 7 (0.824 3)-0.130 0 (5.157 6)21.650 4 (22.947 2)347.30.000 30.998 452.96
Tl × PARl-0.526 2 (0.648 0)-0.001 3 (0.012 6)37.658 2 (15.047 4)223.70.356 10.088 846.80
Tl × Narea-0.581 4 (0.510 8)-0.796 4 (4.135 7)40.900 1 (23.240 6)221.10.363 50.083 446.63
Narea × PARl-0.776 6 (4.740 7)-0.008 0 (0.011 4)32.677 2 (23.971 2)285.20.178 90.338 252.20
E × Tl × PARl0.824 8 (0.903 7)-0.478 1 (0.581 3)-0.011 3 (0.015 7)37.566 1 (13.437 9)158.20.544 50.041 843.95
E × Tl × Narea0.367 4 (0.722 6)-0.699 8 (0.561 1)-0.696 5 (4.138 5)39.723 7 (23.345 1)195.90.435 90.112 346.94
E × PARl × Narea0.909 9 (1.027 7)-0.018 5 (0.015 7)-1.043 5 (4.281 2)34.571 8 (21.699 6)205.30.408 90.138 747.60
Tl × PARl × Narea-0.529 9 (0.681 9)-0.001 7 (0.013 4)-0.871 6 (4.416 7)41.487 4 (25.038 0)219.50.368 30.186 748.53
E × Tl × PARl × Narea0.843 1 (0.948 1)-0.481 7 (0.608 5)-0.012 0 (0.016 7)-1.110 3 (3.935 1)42.441 8 (22.281 5)151.40.564 20.084 345.33

Table 4

Correlation between nitrogen use efficiency (NUE), water use efficiency (WUE), light use efficiency (LUE) and environmental variables of Artemisia ordosica in Mau Us Sandyland"

SWC10SWC30TlVPDl
NUER20.380.21-0.30-0.29
p0.176 90.461 30.031 00.025 5
WUER2-0.080.07-0.42-0.31
p0.772 00.804 60.010 90.036 9
LUER20.0010.12-0.28-0.27
p0.996 40.679 20.051 30.058 0
[1] .Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants—An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392.
doi: 10.1146/annurev.es.16.110185.002051
[2] .Burnham KP, Anderson DR (2002). Model selection and multi- model inference: A practical information. In: The Oretic Approach. 2nd edn. Springer-Verlag, New York, USA.
[3] .Burnham KP, Anderson DR, Huyvaert KP (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons.Behavioral Ecology and Sociobiology, 65, 23-35.
doi: 10.1007/s00265-010-1029-6
[4] .Chaves MM, Osório J, Pereira JS (2004). Water use efficiency and photosynthesis. Plant Biology, 42-74.
[5] .Chen ZH, Zha TS, Jia X, Wu YJ, Wu B, Zhang YQ, Guo JB, Qin SG, Chen GP, Peltola H (2015). Leaf nitrogen is closely coupled to phenophases in a desert shrub ecosystem in China.Journal of Arid Environments, 122, 124-131.
doi: 10.1016/j.jaridenv.2015.07.002
[6] .Cowan IR, Farquhar GD (1977). Stomatal function in relation leaf metabolism and environment. In: Jennings DH ed. Integration of Activity in the Higher Plant. Cambridge University Press, Cambridge, UK. 471-505.
[7] .Han Q, Kawasaki T, Nakano T, Chiba Y (2004). Spatial and seasonal variability of temperature responses of biochemical photosynthesis parameters and leaf nitrogen content within a Pinus densiflora crown. Tree Physiology, 24, 737-744.
doi: 10.1093/treephys/24.7.737 pmid: 15123445
[8] .Haque MS, Kjaer KH, Rosenqvist E, Sharma DK, Ottosen CO (2014). Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures. Environmental and Experimental Botany, 99, 1-8.
doi: 10.1016/j.envexpbot.2013.10.017
[9] .Harley PC, Thomas RB, Reynolds JF, Strain BR (1992). Modelling photosynthesis of cotton grown in elevated CO2.Plant, Cell and Environment, 15, 271-282.
doi: 10.1111/pce.1992.15.issue-3
[10] .Kang BW, Liu JJ, Sun JH, Li YF (2010). Study on root distribution of Artemisa ordosica in the Mu Us Sandy land. Research of Soil and Water Conservation, 17, 119-123.
[康博文, 刘建军, 孙建华, 李岩峰 (2010). 陕北毛乌素沙漠黑沙蒿根系分布特征研究. 水土保持研究, 17, 119-123.]
[11] .Li JC, Sun Y, Zhao G, Pan ZX, Zhang L, Yue XW, Fan JC, Wang YD, He GX, Fan B, Fang HD (2018). Light response characteristics of photosynthesis of sweet corn under different soil moisture at the filling stage in dry-hot valley.Chinese Journal of Tropical Crops, 39, 2169-2175.
[李建查, 孙毅, 赵广, 潘志贤, 张雷, 岳学文, 范建成, 王艳丹, 何光熊, 樊博, 方海东 (2018). 干热河谷不同土壤水分下甜玉米灌浆期光合作用光响应特征. 热带作物学报, 39, 2169-2175.]
[12] .Liu HX, Guo ZG, Guo XH, Zhou XR, Hui WS, Wang KY (2009). Effect of addition of silicon on water use efficiency and yield components of alfalfa under the different soil moisture.Acta Ecologica Sinica, 29, 3075-3080.
[刘慧霞, 郭正刚, 郭兴华, 周雪荣, 惠文森, 王康英 (2009). 不同土壤水分条件下硅对紫花苜蓿水分利用效率及产量构成要素的影响. 生态学报, 29, 3075-3080.]
[13] .Loustau D, Brahim MB, Gaudillere JP, Dreyer E (1999). Photosynthetic responses to phosphorus nutrition in two-year- old maritime pine seedlings.Tree Physiology, 19, 707-715.
doi: 10.1093/treephys/19.11.707 pmid: 12651309
[14] .Ma JY, Zha TS, Jia X, Tian Y, Bourque CPA, Liu P, Bai YJ, Wu YJ, Ren C, Yu HQ, Zhang F, Zhou CX, Chen WJ (2018). Energy and water vapor exchange over a young plantation in northern China.Agricultural and Forest Meteorology, 263, 334-345.
doi: 10.1016/j.agrformet.2018.09.004
[15] .Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002). Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data.Plant, Cell & Environment, 25, 1167-1179.
[16] .Meng P, Li YL, You GC, Wang M (2012). Characteristics of photosynthetic productivity and water-consumption for transpiration inPinus densiflora var. zhangwuensis and Pinus sylvestris var. mongolica. Acta Ecologica Sinica, 32, 3050-3060.
[孟鹏, 李玉灵, 尤国春, 王曼 (2012). 彰武松、樟子松光合生产与蒸腾耗水特性. 生态学报, 32, 3050-3060.]
[17] .Niinemets Ü, Tenhunen JD (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant, Cell & Environment, 20, 845-866.
[18] .Pei B, Zhang GC, Zhang SY, Wu Q, Xu ZQ (2013). Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings. Acta Ecologica Sinica, 33, 1386-1396.
doi: 10.5846/stxb
[裴斌, 张光灿, 张淑勇, 吴芹, 徐志强 (2013). 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响. 生态学报, 33, 1386-1396.]
doi: 10.5846/stxb
[19] .Porcar-Castell A (2011). A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiologia Plantarum, 143, 139-153.
doi: 10.1111/j.1399-3054.2011.01488.x
[20] .Reich PB, Walters MB, Tabone TJ (1989). Response of Ulmus americana seedlings to varying nitrogen and water status. 2. Water and nitrogen use efficiency in photosynthesis. Tree Physiology, 5, 173-184.
doi: 10.1093/treephys/5.2.173 pmid: 14972985
[21] .Ruan CJ, Li DQ (2001). Stomatal conductance and influence factors of seabuckthorn in Loess Hilly Region.Acta Botanica Boreali-Occidentalia Sinica, 21, 30-36.
[阮成江, 李代琼 (2001). 黄土丘陵区沙棘气孔导度及其影响因子. 西北植物学报, 21, 30-36.]
[22] .Schimel DS (2010). Drylands in the earth system.Science, 327, 418-419.
doi: 10.1126/science.1184946 pmid: 20093461
[23] .Shi ZM, Tang JC, Cheng RM, Luo D, Liu SR (2015). A review of nitrogen allocation in leaves and factors in its effects.Acta Ecologica Sinica, 35, 5909-5919.
[史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣 (2015). 植物叶片氮分配及其影响因子研究进展. 生态学报, 35, 5909-5919.]
[24] .Sun Y, Xu WJ, Fan AL (2006). Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light.Chinese Journal of Applied Ecology, 17, 399-402.
[孙艳, 徐伟君, 范爱丽 (2006). 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响. 应用生态学报, 17, 399-402.]
[25] .Tang JC, Liu P, Shi ZM (2016). Photosynthetic characteristics of five tree species in southern subtropical China.Chinese Journal of Ecology, 35, 2341-2347.
[唐敬超, 刘萍, 史作民 (2016). 南亚热带五种树种幼苗光合特征. 生态学杂志, 35, 2341-2347.]
[26] .Tarvainen L, Wallin G, Räntfors M, Uddling J (2013). Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand.Oecologia, 173, 1179-1189.
doi: 10.1007/s00442-013-2703-y
[27] .Tarvainen L, Räntfors M, Wallin G (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.Tree Physiology, 34, 488-502.
doi: 10.1093/treephys/tpu036
[28] .Tarvainen L, Räntfors M, Wallin G (2015). Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand.Plant, Cell & Environment, 38, 2487-2496.
doi: 10.1111/pce.12565 pmid: 25944258
[29] .Troeng E, Linder S (1982). Gas exchange in a 20-year-old stand of scots pine. I. Net photosynthesis of current and one-year-old shoots within and between seasons.Physiologia Plantarum, 54, 7-14.
doi: 10.1111/ppl.1982.54.issue-1
[30] .Wang JY, Zhao YS, Yang HR, Yan Y (2006). Response to soil drought stress of photosynthesis and transpiration of Poplar ( Populus alba × Populus berolinensis). Science of Soil and Water Conservation, 4, 56-61.
[王晶英, 赵雨森, 杨海如, 闫毅 (2006). 银中杨光合作用和蒸腾作用对土壤干旱的响应. 中国水土保持科学, 4, 56-61.]
[31] .Wang KY, Kellomäki S, Li C, Zha T (2003). Light and water- use efficiencies of pine shoots exposed to elevated carbon dioxide and temperature.Annals of Botany, 92, 53-64.
doi: 10.1093/aob/mcg110 pmid: 12740213
[32] .Wang YL, Liu J, Li WB, Li F (2015). Study on characteristics in photosynthesis, transpiration and water use efficiency of Tamarix hispida Willd. in the lower reaches of the Tarim river. Xinjiang Agricultural Sciences, 52, 292-299.
[王燕凌, 刘君, 李文兵, 李芳 (2015). 塔里木河下游刚毛柽柳光合作用、蒸腾作用及水分利用效率特性研究. 新疆农业科学, 52, 292-299.]
[33] .Wang Y, Lü GH, Gao LJ, Ren ML, Su Q, Sun LJ (2013). Stomatal conductance characteristics of desert species Poacynum pictum(Schrenk.) Baill of and the impact factors. Journal of Arid Land Resources and Environment, 27, 158-163.
[王芸, 吕光辉, 高丽娟, 任曼丽, 苏前, 孙丽君 (2013). 荒漠植物白麻气孔导度特征及其影响因子研究. 干旱区资源与环境, 27, 158-163.]
[34] .Zhang WQ, He KN, Wang ZN, Tian JH, Yin J (2006). Effects of light radiation intensity on photosynthetic characteristics and water use efficiency to seedlings of Platycladus orientalis and Pinus tabulaeformis. Science of Soil and Water Conservation, 4, 108-113.
[张卫强, 贺康宁, 王正宁, 田晶会, 尹婧 (2006). 光辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响. 中国水土保持科学, 4, 108-113.]
[1] Zhao-Zhong FENG Li Pin You GuoZhang Zheng-zhen Li Qin Ping Long JinPeng Shuo Liu. Impacts of elevated carbon dioxide concentration on terrestrial ecosystems: Problems and prospective [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[2] Zhang Lu,He Xinhua. Nitrogen Utilization Mechanism in C3 and C4 Plants [J]. Chin Bull Bot, 2020, 55(2): 228-239.
[3] Han Mei-ling, Tan Ru-jiao, Chao Dai-yin. A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 5-8.
[4] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
[5] Aizezitiyuemaier MAIMAITI, Yusufujiang RUSULI, HE Hui, Baihetinisha ABUDUKERIMU. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017 [J]. Chin J Plant Ecol, 2019, 43(6): 490-500.
[6] LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207.
[7] ZHANG Zhi-Guo, WEI Hai-Xia. Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land [J]. Chin J Plant Ecol, 2019, 43(11): 979-987.
[8] ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680.
[9] CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plan Ecolo, 2018, 42(5): 585-594.
[10] Chao-Yang FENG, He-Song WANG, Jian-xin SUN. Temporal changes of vegetation water use efficiency and its influencing factors in Northern China [J]. Chin J Plan Ecolo, 2018, 42(4): 453-465.
[11] Wang Yucai, Zhang Hengjia, Deng Haoliang, Wang Shijie, Ba Yuchun. Effect of Regulated Deficit Irrigation on Water Use and Yield of Isatis indigotica [J]. Chin Bull Bot, 2018, 53(3): 322-333.
[12] Chen Xu, Xiaolong Liu, Qian Li, Fenglou Ling, Zhihai Wu, Zhian Zhang. Effect of Salt Stress on Photosynthesis and Chlorophyll Fluorescence Characteristics of Rice Leaf for Nitrogen Levels [J]. Chin Bull Bot, 2018, 53(2): 185-195.
[13] ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plan Ecolo, 2018, 42(2): 229-239.
[14] Muqier Hasi, Xueyao Zhang, Guoxiang Niu, Yinliu Wang, Jianhui Huang. Effects of Nitrogen Addition on Ecosystem CO2 Exchange in a Meadow Steppe, Inner Mongolia [J]. Chin Bull Bot, 2018, 53(1): 27-41.
[15] Ji-Mei HAN, Wang-Feng ZHANG, Dong-Liang XIONG, Jaume FLEXAS, Ya-Li ZHANG. Mesophyll conductance and its limiting factors in plant leaves [J]. Chin J Plan Ecolo, 2017, 41(8): 914-924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Zhong-shu. Plant Growth Regutators in Relation to Plant Water Status[J]. Chin Bull Bot, 1985, 3(04): 1 -6 .
[2] Li Da Jue;Han Yun-zhou and Wan Li-ping. Studies on Germplasm Collections of Carthamus tinctorius IV Screening of the characterization of Seed Domancy[J]. Chin Bull Bot, 1990, 7(02): 50 -52 .
[3] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[4] Yang Hong-yuan. Basic Principle and Method of Fluorescence Microscopy[J]. Chin Bull Bot, 1984, 2(06): 45 -48 .
[5] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .
[6] LI Ling-Hao and CHEN Zuo-Zhong. The Global Carbon Cycle in Grassland Ecosystems and Its Responses to Global Change I . Carbon Flow Compartment Model, Inputs and Storage[J]. Chin Bull Bot, 1998, 15(02): 14 -22 .
[7] Huanhuan Xu, Jian Kang, Mingxiang Liang. Research Advances in the Metabolism of Fructan in Plant Stress Resistance[J]. Chin Bull Bot, 2014, 49(2): 209 -220 .
[8] . [J]. Chin Bull Bot, 2013, 48(1): 4 -5 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 45 .
[10] SHU Qun-Fang;ZHOU Lu;LI Wen-Bin;ZHANG LI-Ming and SUN Yong-Ru. Study on Gel Electrophoresis of Protein from Plant and Our Improved Methods[J]. Chin Bull Bot, 1998, 15(06): 73 -78 .