Chin J Plan Ecolo ›› 2008, Vol. 32 ›› Issue (4): 938-950.doi: 10.3773/j.issn.1005-264x.2008.04.024

• Research Articles • Previous Articles     Next Articles


YAN Mao-Fen;LI Xiang-Hua; WANG Ke-Jing*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100094, China
  • Online:2008-07-30 Published:2008-07-30
  • Contact: WANG Ke-Jing

Abstract: Aims Wild soybean (Glycine soja) is commonly accepted as the progenitor species of the cultivated soybean (Giycine max). It contains many characters potentially valuable for supplementing the soybean germplasm pool, yet little research has been done on genetic diversity in natural populations of wild soybean in China. Our objective was to evaluate genetic diversity in natural populations of wild soybean growing in the region of Beijing, China.
Methods We sampled ten representative natural populations in 2005. Every sampled population consisted of 28-30 individuals and was over 10 m apart. Forty public SSR primer pairs over the 20 linkage groups were applied to evaluate genetic diversity.
Important findings A total of 526 alleles (bands) were detected with an average number of 13.15 per locus. Mean expected heterozygosity per locus (He) was 0.369 for the populations, and the mean Shannon index (I) for the populations was 0.658. Mean observed heterozygosity per locus (Ho) for the populations was 1.29%. Between-population genetic diversity (Hs) averaged 0.446, and within-population genetic diversity (DST) averaged 0.362. Mean coefficient of gene differentiation for loci (GST) in the populations was estimated to be 0.544. This study showed that the center-western ecotype had higher genetic diversity than the northern and eastern ecotypes and that there appeared to be ecogeographically genetic divergence in the natural populations between the Taihang and the Yanshan mountains. A strongly drought-tolerant population had very low genetic diversity, and its tolerance gene(s) may be exploited for breeding.

No related articles found!
Full text



[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[10] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .