Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (5): 383-395.DOI: 10.17521/cjpe.2018.0252
Special Issue: 生物多样性
• Reviews • Next Articles
ZHANG Xin-Xin,WANG Xi,HU Ying,ZHOU Wei,CHEN Xiao-Yang,HU Xin-Sheng()
Received:
2018-10-06
Accepted:
2019-04-07
Online:
2019-05-20
Published:
2019-10-18
Contact:
HU Xin-Sheng
ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. Advances in the study of population genetic diversity at plant species’ margins[J]. Chin J Plant Ecol, 2019, 43(5): 383-395.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0252
模型 Model | 主要观点 Main point | 参考文献 Reference |
---|---|---|
随机生态位模型或断棒模型 Stochastic niche model or broken stick model | 每一物种生态位超体积的占有和分布不受其他物种影响。 The niche occupation and its size distribution of each species are random and independent of the niche sizes of other species. | |
对数正态分布模型 Lognormal distribution model | 物种占有的生态位是随机分布的并受大量因素综合影响, 并不优待某些种。 The niche size of a species is random and determined by the joint effects of a large number of factors, and no selective advantage is present among species. | |
生态位优先占领模型 Niche pre-emption model | 第一位优势种优先占领生态位空间大部, 第二位占领其余下的大部, 以此类推, 末位只占留下的极少空间。 The first dominant species occupies the largest niche space, followed by the species that occupies the second largest niche in the remaining space, and so on. The last species occupies the minimum niche. | |
群落中性理论 Neutral community theory | 群落内个体总数固定, 某一物种多度的增加必然伴随其他物种的减少; 所有个体出生率、死亡率相同。 The community size is fixed, and a decrease of one species’ abundance is equally compensated by other species. All individuals in the community have the same birth and death rates. | |
自然选择-基因流机制 Mechanism of natural selection-gene flow | 基因由中心向边缘种群的迁移与边缘种群的自然选择作用持衡。 Effects of gene flow from the central to marginal population are in balance with the effects of natural selection in the marginal population. |
Table 1 Theoretical models of a species’ distribution
模型 Model | 主要观点 Main point | 参考文献 Reference |
---|---|---|
随机生态位模型或断棒模型 Stochastic niche model or broken stick model | 每一物种生态位超体积的占有和分布不受其他物种影响。 The niche occupation and its size distribution of each species are random and independent of the niche sizes of other species. | |
对数正态分布模型 Lognormal distribution model | 物种占有的生态位是随机分布的并受大量因素综合影响, 并不优待某些种。 The niche size of a species is random and determined by the joint effects of a large number of factors, and no selective advantage is present among species. | |
生态位优先占领模型 Niche pre-emption model | 第一位优势种优先占领生态位空间大部, 第二位占领其余下的大部, 以此类推, 末位只占留下的极少空间。 The first dominant species occupies the largest niche space, followed by the species that occupies the second largest niche in the remaining space, and so on. The last species occupies the minimum niche. | |
群落中性理论 Neutral community theory | 群落内个体总数固定, 某一物种多度的增加必然伴随其他物种的减少; 所有个体出生率、死亡率相同。 The community size is fixed, and a decrease of one species’ abundance is equally compensated by other species. All individuals in the community have the same birth and death rates. | |
自然选择-基因流机制 Mechanism of natural selection-gene flow | 基因由中心向边缘种群的迁移与边缘种群的自然选择作用持衡。 Effects of gene flow from the central to marginal population are in balance with the effects of natural selection in the marginal population. |
Fig. 1 Effects of selfing on population genetic structure. The population differentiation coefficient Fst was calculated according to the equation $\frac{1}{F_{st}}=1+4N_{e}(1-\frac{1}{2}\alpha)(m_{s}+\frac{1-\alpha}{2}m_{p})$, and the parameters used were seed flow ms = 0.02, effective population size Ne = 50, and pollen flow mp were 0.001, 0.01 and 0.05.
分类群 Taxonomic group | 中心/亚中心种群 Central/subcentral population | 边缘种群 Marginal population | 参考文献 Reference |
---|---|---|---|
Leavenworthia alabamica | 自交不亲和 Self-incompatibility | 自交亲和/自我受精 Self-compatible/self-fertilization | |
Juncus atratus | 低近交率 Low inbreeding rates | 高近交率, 异交率为5.6% High inbreeding, outcrossing rate = 5.6% | |
Camissoniopsis cheiranthifolia | 自交不亲和 Self-incompatibility | 自交亲和 Self-compatible | |
Vriesea gigantean | 混合交配系统, 低自交率 Mixed mating system, low selfing rates | 混合交配系统, 高自交率 Mixed mating system, high selfing rates | |
Echium plantagineum; Centaurea solstitialis | 本地种群自交不亲和 Self-incompatible in native populations | 入侵种自交亲和 Self-compatible in invasive populations | |
冷杉属, 云杉属, 松属 Abies, Picea and Pinus genera | 混合交配系统, 低自交率(高种群密度) Mixed mating system, low selfing rates (high population density) | 混合交配系统, 高自交率(低种群密度) Mixed mating system, high selfing rates (low population density) | |
Arabidopsis lyrata | 异交 Outcrossing | 自交、混合交配系统 Selfing/mixed-mating |
Table 2 Contrasts in mating systems between central and marginal populations of a range of plant species
分类群 Taxonomic group | 中心/亚中心种群 Central/subcentral population | 边缘种群 Marginal population | 参考文献 Reference |
---|---|---|---|
Leavenworthia alabamica | 自交不亲和 Self-incompatibility | 自交亲和/自我受精 Self-compatible/self-fertilization | |
Juncus atratus | 低近交率 Low inbreeding rates | 高近交率, 异交率为5.6% High inbreeding, outcrossing rate = 5.6% | |
Camissoniopsis cheiranthifolia | 自交不亲和 Self-incompatibility | 自交亲和 Self-compatible | |
Vriesea gigantean | 混合交配系统, 低自交率 Mixed mating system, low selfing rates | 混合交配系统, 高自交率 Mixed mating system, high selfing rates | |
Echium plantagineum; Centaurea solstitialis | 本地种群自交不亲和 Self-incompatible in native populations | 入侵种自交亲和 Self-compatible in invasive populations | |
冷杉属, 云杉属, 松属 Abies, Picea and Pinus genera | 混合交配系统, 低自交率(高种群密度) Mixed mating system, low selfing rates (high population density) | 混合交配系统, 高自交率(低种群密度) Mixed mating system, high selfing rates (low population density) | |
Arabidopsis lyrata | 异交 Outcrossing | 自交、混合交配系统 Selfing/mixed-mating |
植物种 Species | 边缘种群与中心种群遗传多样性 Genetic diversity in marginal vs. central populations | 生态或进化机制 Ecological or evolutionary mechanisms | 参考文献 Reference |
---|---|---|---|
樱桃 Cerasus pseudocerasus | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应、瓶颈效应 Founder effect, bottleneck effect | |
北沙柳 Salix psammophila | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应 Founder effect | |
花苜蓿、青海苜蓿 Medicago ruthenica, M. archiducis-nicolai | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应 Founder effect | |
毛红椿 Toona ciliata var. pubescens | 边缘种群高于中心种群 marginal populations > central populations | 生境破碎化 Habitat fragmentation | |
红松 Pinus koraiensis | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应、瓶颈效应 Founder effect, bottleneck effect | |
领春木 Euptelea pleiospermum | 边缘种群低于中心种群 marginal populations < central populations | 冰期后扩张、不对称基因流 Postglacial expansion and asymmetric gene flow |
Table 3 Comparison of genetic diversity between central and marginal populations of various plant species and the potential ecological or evolutionary processes responsible for the observed differences
植物种 Species | 边缘种群与中心种群遗传多样性 Genetic diversity in marginal vs. central populations | 生态或进化机制 Ecological or evolutionary mechanisms | 参考文献 Reference |
---|---|---|---|
樱桃 Cerasus pseudocerasus | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应、瓶颈效应 Founder effect, bottleneck effect | |
北沙柳 Salix psammophila | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应 Founder effect | |
花苜蓿、青海苜蓿 Medicago ruthenica, M. archiducis-nicolai | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应 Founder effect | |
毛红椿 Toona ciliata var. pubescens | 边缘种群高于中心种群 marginal populations > central populations | 生境破碎化 Habitat fragmentation | |
红松 Pinus koraiensis | 边缘种群低于中心种群 marginal populations < central populations | 奠基者效应、瓶颈效应 Founder effect, bottleneck effect | |
领春木 Euptelea pleiospermum | 边缘种群低于中心种群 marginal populations < central populations | 冰期后扩张、不对称基因流 Postglacial expansion and asymmetric gene flow |
1 | Avolio ML, Smith MD (2013). Correlations between genetic and species diversity: Effects of resource quantity and heterogeneity. Journal of Vegetation Science, 24, 1185-1194. |
2 | Baker HG (1955). Self-compatibility and establishment after “long-distance” dispersal. Evolution, 9, 347-349. |
3 | Baker HG (1967). Support for Baker’s Law—As a rule. Evolution, 21, 853-856. |
4 | Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M, Bergelson J (2006). Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Molecular Ecology, 15, 1405-1418. |
5 | Barrett SCH (1995). Mating-system evolution in flowering plants: Micro- and macroevolutionary approaches. Acta Botanica Neerlandica, 44, 385-402. |
6 | Barrett SCH (2014). Evolution of Mating Systems: Outcrossing Versus Selfing. Princeton University Press, Princeton. 356-362. |
7 | Barton N (2001). Adaptation at the edge of a species’ range. In: Silvertown J, Antonovics J eds. Integrating Ecology and Evolution in a Spatial Context. Blackwell Science,London. 365-392. |
8 | Blum MJ, Bagley MJ, Walters DM, Daniel FB, Chaloud DJ, Cade BS (2012). Genetic diversity and species diversity of stream fishes covary across a land-use gradient. Oecologia, 168, 83-95. |
9 | Busch JW (2005). The evolution of self-compatibility in geographically marginal populations of Leavenworthia alabamica(Brassicaceae). American Journal of Botany, 92, 1503-1512. |
10 | Caballero A, Hill WG (1992). Effective size of non-random mating populations. Genetics, 130, 909-916. |
11 | Callahan CM, Rowe CA, Ryel RJ, Shaw JD, Madritch MD, Mock KE (2013). Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides). Journal of Biogeography, 40, 1780-1791. |
12 | Case TJ, Taper ML (2000). Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. The American Naturalist, 155, 583-605. |
13 | Charlesworth D (2006). Evolution of plant breeding systems. Current Biology, 16, 726-735. |
14 | Chen DM, Kang HZ, Liu CJ (2011). An overview on the potential quaternary glacial refugia of plants in China mainland. Bulletin of Botanical Research, 31, 623-632. |
[ 陈冬梅, 康宏樟, 刘春江 (2011). 中国大陆第四纪冰期潜在植物避难所研究进展. 植物研究, 31, 623-632.] | |
15 | Chen T, Wang XR, Luo H, Wang CT, Zhang JZ, Luo MM (2012). Chloroplast DNA trnQ-rps16 variation and genetic structure of nine wild Chinese cherry(Cerasus pseudocerasus Lindl.) populations. Hereditas, 34, 1475-1483. |
[ 陈涛, 王小蓉, 罗华, 王春涛, 张家志, 罗明敏 (2012). 9个野生中国樱桃群体叶绿体DNA trnQ-rps16序列变异及其遗传结构分析. 遗传, 34, 1475-1483.] | |
16 | Chhatre VE, Rajora OP (2014). Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, eastern white pine (Pinus strobus) from northern Ontario. PLOS ONE, 9, e97291. DOI: 10.1371/journal.pone.0097291. |
17 | Chu CJ, Maestre FT, Xiao S, Weiner J, Wang YS, Duan ZH, Wang G (2008). Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 11, 1189-1197. |
18 | Coyne JA, Orr HA (2004). Speciation. Sinauer Associates, Sunderland, USA. |
19 | Crutsinger GM, Souza L, Sanders NJ (2008). Intraspecific diversity and dominant genotypes resist plant invasions. Ecology Letters, 11, 16-23. |
20 | Dart SR, Samis KE, Austen E, Ecket CG (2012). Broad geographic covariation between floral traits and the mating system in Camissoniopsis cheiranthifolia(Onagraceae): Multiple stable mixed mating systems across the species’ range. Annals of Botany, 109, 599-611. |
21 | Darwin C (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London. |
22 | de Lafontaine G, Ducousso A, Lefevre S, Magnanou E, Petit RJ (2013). Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Molecular Ecology, 22, 4397-4412. |
23 | Durka W (1999). Genetic diversity in peripheral and subcentral populations of Corrigiola litoralis L.( lllecebraceae). Heredity, 83, 476-484. |
24 | Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou PO, Goodwillie C, Johnston MO, Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marin M, Winn AA (2010). Plant mating systems in a changing world. Trends in Ecology & Evolution, 25, 35-43. |
25 | Eckert CG, Samis KE, Lougheed SC (2008). Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Molecular Ecology, 17, 1170-1188. |
26 | Feng FJ, Han SJ, Wang HM (2006). Genetic diversity and genetic differentiation of natural Pinus koraiensis population. Journal of Forestry Research, 17, 21-24. |
27 | Fisher RA (1930). The Genetical Theory of Natural Selection. Oxford University Press, Oxford. |
28 | Gao LZ, Gao CW (2016). Lowered diversity and increased inbreeding depression within peripheral populations of wild rice Oryza rufipogon. PLOS ONE, 11, e0150468. DOI: 10.1371/journal.pone.0150468. |
29 | Gaston K (2003). The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford. 100-101. |
30 | Griffin PC, Willi Y (2014). Evolutionary shifts to self- fertilisation restricted to geographic margins in North American Arabidopsis lyrata. Ecology Letters, 17, 484-490. |
31 | Grossenbacher D, Briscoe Runquist RD, Goldberg EE, Brandvain Y (2015). Geographic range size is predicted by plant mating system. Ecology Letters, 18, 706-713. |
32 | Grossenbacher D, Briscoe Runquist RD, Goldberg EE, Brandvain Y (2016). No association between plant mating system and geographic range overlap. American Journal of Botany, 103, 110-117. |
33 | Gugger PF, González-Rodríguez A, Rodríguez-Correa H, Sugita S, Cavender-Bares J (2011). Southward Pleistocene migration of Douglas-fir into Mexico: Phylogeography, ecological niche modeling, and conservation of “rear edge” populations. New Phytologist, 189, 1185-1199. |
34 | Guo Q (2012). Incorporating latitudinal and central-marginal trends in assessing genetic variation across species ranges. Molecular Ecology, 21, 5396-5403. |
35 | Haldane JBS (1956). The relation between density regulation and natural selection. Proceedings of the Royal Society of London: Series B, Biological Sciences, 145, 306-308. |
36 | Hampe A, Petit RJ (2005). Conserving biodiversity under climate change: The rear edge matters. Ecology Letters, 8, 461-467. |
37 | Hao L, Zhang L, Zhang GS, Wang Y, Han SL, Bai YR (2017). Genetic diversity and population genetic structure of Salix psammophila. Acta Botanica Boreali-Occidentalia Sinica, 37, 1507-1516. |
[ 郝蕾, 张磊, 张国盛, 王颖, 韩胜利, 白玉荣 (2017). 北沙柳群体遗传多样性和遗传结构分析. 西北植物学报, 37, 1507-1516.] | |
38 | Havrdova A, Douda J, Krak K, Vit P, Hadincova V, Zakravsky P, Mandak B (2015). Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Molecular Ecology, 24, 4759-4777. |
39 | He T, Lamont BB, Krauss SL, Enright NJ, Miller BP (2008). Covariation between intraspecific genetic diversity and species diversity within a plant functional group. Journal of Ecology, 96, 956-961. |
40 | Hirao AS, Watanabe M, Tsuyuzaki S, Shimono A, Li X, Masuzawa T, Wada N (2017). Genetic diversity within populations of an arctic-alpine species declines with decreasing latitude across the Northern Hemisphere. Journal of Biogeography, 44, 2740-2751. |
41 | Hirsch H, Wagner V, Danihelka J, Ruprecht E, Sánchez-Gómez P, Seifert M, Hensen I (2015). High genetic diversity declines towards the geographic range periphery of Adonis vernalis, a Eurasian dry grassland plant. Plant Biology, 17, 1233-1241. |
42 | Hu XS (2011). Mating system and the critical migration rate for swamping selection. Genetics Research, 93, 233-254. |
43 | Hu XS, Ennos RA (1999). Scoring the mating systems of natural populations of three Larix taxa in China: L. gmelinii(Rupr.) Rupr., L. olgensis Henry and L. principis-rupprechtii Mayr. Scientia Silvae Sinicae, 35(1), 21-31. |
44 | Hu XS, He FL (2005). Background selection and population differentiation. Journal of Theoretical Biology, 235, 207-219. |
45 | Hu XS, He FL, Hubbell SP (2006). Neutral theory in macroecology and population genetics. Oikos, 113, 548-556. |
46 | Hu XS, Yeh FC, Wang ZQ (2011). Structural genomics: Correlation blocks, population structure, and genome architecture. Current Genomics, 12, 55-70. |
47 | Hu XS, Zeng W, Li BL (2003). Impacts of one-way gene flow on genetic variance components in a natural population. Silvae Genetica, 52, 18-24. |
48 | Hu XS, Zhang XX, Zhou W, Hu Y, Wang X, Chen XY (2019). Mating system shifts a species’ range. Evolution, 73, 158-174. |
49 | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. 1772. |
50 | Johnson MTJ, Lajeunesse MJ, Agrawal AA (2006). Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. Ecology Letters, 9, 24-34. |
51 | Johnston MO, Porcher E, Cheptou PO, Eckert CG, Elle E, Geber MA, Kalisz S, Kelly JK, Moeller DA, Vallejo-Marin M, Winn AA (2009). Correlations among fertility components can maintain mixed mating in plants. The American Naturalist, 173, 1-11. |
52 | Jump AS, Woodward EI, Burke T (2003). Cirsium species show disparity in patterns of genetic variation at their range-edge, despite similar patterns of reproduction and isolation. New Phytologist, 160, 359-370. |
53 | Kawecki TJ (2008). Adaptation to marginal habitats. Annual Review of Ecology, Evolution, and Systematics, 39, 321-342. |
54 | Kimmins JP (2004). Forestry Ecology: A Foundation for Sustainable Forest Management and Environmental Ethics in Forestry. 3rd edn. Pearson Education, Upper Saddle River, New Jersey. |
55 | Kirkpatrick M, Barton NH (1997). Evolution of a species’ range. The American Naturalist, 150, 1-23. |
56 | Kirkpatrick M, Ravigné V (2002). Speciation by natural and sexual selection: Models and experiments. The American Naturalist, 159, 22-35. |
57 | Kotowska AM, Cahill JF, Keddie BA (2010). Plant genetic diversity yields increased plant productivity and herbivore performance. Journal of Ecology, 98, 237-245. |
58 | Kropf M (2012). Genetic variation, biogeographical history, and conservation of Anthyllis montana L. ssp. jacquinii(Kern.) Hayek (Fabaceae) at its northern distribution limit. International Journal of Plant Sciences, 173, 789-801. |
59 | Laikre L, Allendorf FW, Aroner LC, Aroner LC, Baker CS, Gregovich DP, Hansen MM, Jackson JA, Kendall KC, McKelvey K, Neel MC, Olivieri I, Ryman N, Schwartz MK, Bull RS, Stetz JB, Tallmon DA, Taylor BL, Vojta CD, Waller DM, Waples RS (2010). Neglect of genetic diversity in implementation of the convention on biological diversity. Conservation Biology, 24, 86-88. |
60 | Lamy T, Jarne P, Laroche F, Pointier JP, Huth G, Segard A, David P (2013). Variation in habitat connectivity generates positive correlations between species and genetic diversity in a metacommunity. Molecular Ecology, 2, 4445-4456. |
61 | Laroche F, Jarne P, Lamy T, David P, Massol F (2015). A neutral theory for interpreting correlations between species and genetic diversity in communities. The American Naturalist, 185, 59-69. |
62 | Lázaronogal A, Matesanz S, Garcíafernández A, Traveset A, Valladares F (2017). Population size, center-periphery, and seed dispersers’ effects on the genetic diversity and population structure of the Mediterranean relict shrub Cneorum tricoccon. Ecology and Evolution, 7, 7231-7242. |
63 | Lepais O, Muller SD, Samia BS-L, Benslama M, Rhazi L, Belouahem-Abed D, Daoud-Bouttour A, Gammar AM, Ghrabi-gammar Z, Bacles CFE (2013). High genetic diversity and distinctiveness of rear-edge climate relicts maintained by ancient tetraploidisation for Alnus glutinosa. PLOS ONE, 8, e75029. DOI: 10.1371/journal.pone.0075029. |
64 | Levin DA (2012). Mating system shifts on the trailing edge. Annals of Botany, 109, 613-620. |
65 | Liu J, Jiang JM, Zou J, Xu JL, Shen H, Diao SF (2013). Genetic diversity of central and marginal populations of Toona ciliata var. pubescens, an endangered tree species endemic to China. Chinese Journal of Plant Ecology, 37, 52-60. |
[ 刘军, 姜景民, 邹军, 徐金良, 沈汉, 刁松峰 (2013). 中国特有濒危树种毛红椿核心和边缘居群的遗传多样性. 植物生态学报, 37, 52-60.] | |
66 | MacArthur RH (1957). On the relative abundance of bird species. Proceedings of the National Academy of Sciences of the United States of America, 43, 283-295. |
67 | Mandak B, Bimova KA, Plackova I, Mahelka V, Chrtek J (2005). Loss of genetic variation in geographically marginal populations of Atriplex tatatica(Chenopodiaceae). Annals of Botany, 96, 901-902. |
68 | Matos PG, Clarisse PS, Bodanese-Zanettini MH, Christian L, Fernanda B (2015). Limited pollen flow and high selfing rates toward geographic range limit in an Atlantic forest bromeliad. Flora, 211, 1-10. |
69 | Michalski SG, Durka W (2007). High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Molecular Ecology, 16, 4715-4727. |
70 | Moeller DA, Briscoe Runquist RD, Moe AM, Geber MA, Goodwillie C, Cheptou P, Eckert CG, Elle E, Johnston MO, Kalisz S, Ree RH, Sargent RD, Vallejo-Marin M, Winn AA (2017). Global biogeography of mating system variation in seed plants. Ecology Letters, 20, 375-384. |
71 | Munoz F, Violle C, Cheptou PO (2016). CSR ecological strategies and plant mating systems: Outcrossing increases with competitiveness but stress-tolerance is related to mixed mating. Oikos, 125, 1296-1303. |
72 | Onge KRST, Kallman T, Slotte T, Lascoux M, Palme AE (2011). Contrasting demographic history and population structure in Capsella rubella and Capsella grandiflora, two closely related species with different mating systems. Molecular Ecology, 20, 3306-3320. |
73 | Otto SP, Marks JC (1996). Mating systems and the evolutionary transition between haploidy and diploidy. Biological Journal of the Linnean Society, 57, 197-218. |
74 | Pannel JR (2015). Evolution of the mating system in colonizing plants. Molecular Ecology, 24, 2018-2037. |
75 | Pellissier L, Eidesen PB, Ehrich D, Descombes P, Schonswetter P, Tribsch A, Westergaard KB, Alvarez N, Guisan A, Zimmermann NE, Normand S, Vittoz P, Luoto M, Damgaard C, Brochmann C, Wisz MS, Alsos IG (2016). Past climate-driven range shifts and population genetic diversity in arctic plants. Journal of Biogeography, 43, 461-470. |
76 | Persson H, Wide B, Andersson S, Svensson L (2004). Allozyme diversity and genetic structure of marginal and central populations of Corylus avellana L.(Betulaceae) in Europe. Plant Systematics and Evolution, 244, 157-179. |
77 | Petanidou T, Godfree RC, Song DS, Kantsa A, Dupont YL, Waser NM (2011). Self-compatibility and plant invasiveness: Comparing species in native and invasive ranges. Perspectives in Plant Ecology, Evolution and Systematics, 14, 3-12. |
78 | Pettengill JB, Briscoe Runquist RD, Moeller DA (2016). Mating system divergence affects the distribution of sequence diversity within and among populations of recently diverged subspecies of Clarkia xantiana(Onagraceae). American Journal of Botany, 103, 99-109. |
79 | Pironon S, Papuga G, Villellas J, Angert AL, Garcia MB, Thompson JD (2017). Geographic variation in genetic and demographic performance: New insights from an old biogeographical paradigm. Biological Reviews, 92, 1877-1909. |
80 | Polechova J, Barton NH (2015). Limits to adaptation along environmental gradients. Proceedings of the National Academy of Sciences of the United States of America, 112, 6401-6406. |
81 | Preston FW (1948). The commonness and rarity of species. Ecology, 29, 254-283. |
82 | Provan J (2013). The effects of past, present and future climate change on range-wide genetic diversity in northern North Atlantic marine species. Frontiers of Biogeography, 5, 60-66. |
83 | Provan J, Maggs CA (2012). Unique genetic variation at a species’ rear edge is under threat from global climate change. Proceedings: Biological Sciences, 279, 39-47. |
84 | Prus-Glowacki W, Urbaniak L, Bujas E, Curtu AL (2012). Genetic variation of isolated and peripheral populations of Pinus sylvestris(L.) from glacial refugia. Flora, 207, 150-158. |
85 | Puşcaş M, Taberlet P, Choler P (2008). No positive correlation between species and genetic diversity in European alpine grasslands dominated by Carex curvula. Diversity and Distributions, 14, 852-861. |
86 | Razanajatovo M, Maurel N, Dawson W, Essl F, Kreft H, Pergl J, Pysek P, Weigelt P, Winter M, Kleunen MV (2016). Plants capable of selfing are more likely to become naturalized. Nature Communications, 30, 1511-1520. |
87 | Restoux G, Silva DE, Sagnard F, Torre F, Klein E, Fady B (2008). Life at the margin: The mating system of Mediterranean conifers. Web Ecology, 8, 94-102. |
88 | Sagarin RD, Gaines SD, Gaylord B (2006). Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology & Evolution, 21, 524-530. |
89 | Scalfi M, Piotti A, Rossi M, Piovani P (2009). Genetic variability of Italian southern Scots pine (Pinus sylvestris L.) populations: The rear edge of the range. European Journal of Forest Research, 128, 377-386. |
90 | Sexton JP, Mclntyre PJ, Angert AL, Rice KJ (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415-436. |
91 | Sexton JP, Strauss SY, Rice KJ (2011). Gene flow increases fitness at the warm edge of a species’ range. Proceedings of the National Academy of Sciences of the United States of America, 108, 11704-11709. |
92 | Stebbins GL (1957). Self fertilization and population variability in the higher plants. The American Naturalist, 91, 337-354. |
93 | Taberlet P, Zimmermann NE, Englisch T, Tribsch A, Holderegger R, Alvarez N, Niklfeld H, Coldea G, Mirek Z, Moilanen A, Ahlmer W, Marsan PA, Bona E, Bovio M, Choler P, Cieślak E, Colli L, Cristea V, Dalmas JP, Frajman B, Garraud L, Gaudeul M, Gielly L, Gutermann W, Jogan N, Kagalo AA, Korbecka G, Küpfer P, Lequette B, Letz DR, Manel S, Mansion G, Marhold K, Martini F, Negrini R, Niño F, Paun O, Pellecchia M, Perico G, Piękoś-Mirkowa H, Prosser F, Puşcaş M, Ronikier M, Scheuerer M, Schneeweiss GM, Schönswetter P, Schratt-Ehrendorfer L, Schüpfer F, Selvaggi A, Steinmann K, Thiel-Egenter C, van Loo M, Winkler M, Wohlgemuth T, Wraber T, Gugerli F, Vellend M (2012). Genetic diversity in widespread species is not congruent with species richness in alpine plant communities. Ecology Letters, 15, 1439-1448. |
94 | Trotter MV, Spencer HG (2013). Models of frequency dependent selection with mutation from parental alleles. Genetics, 195, 231-242. |
95 | Vekemans X, Poux C, Goubet PM, Castric V (2014). The evolution of selfing from outcrossing ancestors in Brassicaceae: What have we learned from variation at the S-locus? Journal of Evolutionary Biology, 27, 1372-1385. |
96 | Vellend M (2005). Species diversity and genetic diversity: Parallel processes and correlated patterns. The American Naturalist, 166, 199-215. |
97 | Volis S, Ormanbekova D, Shulgina I (2016a). Role of selection and gene flow in population differentiation at the edge vs. interior of the species range differing in climatic conditions. Molecular Ecology, 25, 1449-1464. |
98 | Volis S, Ormanbekova D, Yermekbayev K, Song M, Shulgina I (2016b). The conservation value of peripheral populations and a relationship between quantitative trait and molecular variation. Evolutionary Biology, 43, 26-36. |
99 | Wagner V, Durka W, Hensen I (2011). Increased genetic differentiation but no reduced genetic diversity in peripheral vs. central populations of a steppe grass. American Journal of Botany, 98, 1173-1179. |
100 | Wagner V, Treiber J, Danihelka J, Reprecht E, Wesche K, Hensen I (2012). Declining genetic diversity and increasing genetic isolation toward the range periphery of Stipa pennata, a Eurasian feather grass. International Journal of Plant Sciences, 173, 802-811. |
101 | Wei XZ, Bao DC, Meng HJ, Jiang MX (2017). Pattern and drivers of species-genetic diversity correlation in natural forest tree communities across a biodiversity hotspot. Journal of Plant Ecology, 11, 761-770. |
102 | Wei XZ, Sork VL, Meng HJ, Jiang MX (2016). Genetic evidence for central-marginal hypothesis in a Cenozoic relict tree species across its distribution in China. Journal of Biogeography, 43, 2173-2185. |
103 | Whittaker RH (1972). Evolution and measurement of species diversity. Taxon, 21, 213-351. |
104 | Whittaker RJ, Triantis KA, Ladle RJ (2010). A general dynamic theory of oceanic island biogeography: Extending the MacArthur-Wilson theory to accommodate the rise and fall of volcanic islands. In: Losos JB, Ricklefs RE, MacArthur RH eds. The Theory of Island Biogeography Revisited. Princeton University Press, Princeton. 88-115. |
105 | Willi Y, Maeaettaenen K (2010). Evolutionary dynamics of mating system shifts in Arabidopsis lyrata. Journal of Evolutionary Biology, 23, 2123-2131. |
106 | Wright S (1969). Evolution and the Genetics of Populations. University Chicago Press, Chicago. 1191-1192. |
107 | Wu JB, Gao YB, Bao XY, Gao H, Jia MQ, Li J, Zhao NX (2010). Genetic diversity of Stipa grandis P. Smirn populations across the species’ range in the Inner Mongolia Plateau of China. Biochemical Systematics and Ecology, 38, 471-477. |
108 | Wu XP, Shen YF, Wang HQ (2016). Analysis of genetic diversity and population genetic structure of Medicago archiducis-nolai and Medicago ruthenica populations based on cpDNA trnL-trnF sequences. Pratacultural Science, 33, 1136-1146. |
[ 吴小培, 沈迎芳, 王海庆 (2016). 基于trnL-trnF序列的扁蓿豆和青藏扁蓿豆遗传多样性及其群体遗传结构分析. 草业科学, 33, 1136-1146.] | |
109 | Xu WM, Liu L, He TH, Cao M, Sha LQ, Hu YH, Li QM, Li J (2016). Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest. Scientific Reports, 6, 20652. DOI: 10.1038/srep20652. |
110 | Yang AH, Dick CW, Yao X, Huang H (2016). Impacts of biogeographic history and marginal population genetics on species range limits: A case study of Liriodendron chinense. Scientific Reports, 6, 25632. DOI: 10.1038/srep25632. |
111 | Zhang DY, Jiang XH (2001). Mating system evolution, resource allocation, and genetic diversity in plants. Acta Phytoecologia Sinica, 25, 130-143. |
[ 张大勇, 姜新华 (2001). 植物交配系统的进化、资源分配对策与遗传多样性. 植物生态学报, 25, 130-143.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn