Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (9): 952-960.DOI: 10.17521/cjpe.2021.0101
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
SONG Yu-Han1, ZHANG Peng1, JIN Guang-Ze1,2,*()
Received:
2021-03-19
Accepted:
2021-06-03
Online:
2021-09-20
Published:
2021-07-22
Contact:
JIN Guang-Ze
Supported by:
SONG Yu-Han, ZHANG Peng, JIN Guang-Ze. Characteristics of shrub leaf carbon, nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages[J]. Chin J Plant Ecol, 2021, 45(9): 952-960.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0101
演替阶段 Successional stage | 乔木组成 Tree composition | 灌木组成 Shrub composition |
---|---|---|
演替阶段I (白桦次生林) Successional stage I (Secondary birch forest) | 5白桦; 2红松; 1兴安落叶松; 1水曲柳+春榆+色木槭+山杨+黄檗-枫桦-红皮云杉-裂叶榆-臭冷杉-胡桃楸-紫椴 5 Betula platyphylla; 2 Pinus koraiensis; 1 Larix gmelinii; 1 Fraxinus mandschurica + Ulmus davidiana var. japonica + Acer pictum subsp. mono + Populus davidiana + Phellodendron amurense - Betula costata - Picea koraiensis - Ulmus laciniata - Abies nephrolepis - Juglans mandshurica - Tilia amurensis | 7暴马丁香; 1东北山梅花; 1刺五加+珍珠梅+早花忍冬+毛榛子-光萼溲疏 7 Syringa reticulata subsp. amurensis; 1 Philadelphus schrenkii; 1 Acanthopanax senticosus + Sorbaria sorbifolia + Lonicera praeflorens + Corylus mandshurica - Deutzia glabrata |
演替阶段II (落叶阔叶混交林) Successional stage II (Mixed deciduous broad-leaved forest) | 4水曲柳; 2山杨; 1紫椴; 1色木槭; 1白桦+胡桃楸+鱼鳞云杉-春榆-红松-红皮云杉-青楷槭-稠李-裂叶榆-蒙古栎 4 Fraxinus mandschurica; 2 Populus davidiana; 1 Tilia amurensis; 1 Betula platyphylla + Juglans mandshurica + Picea jezoensis var. microsperma - Ulmus laciniata - Pinus koraiensis - Picea koraiensis - Acer tegmentosum - Padus racemose - Ulmus laciniata - Quercus mongolica | 7暴马丁香; 2毛榛; 1瘤枝卫矛+东北山梅花+刺五加+光萼溲疏-早花忍冬 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica; 1 Euonymus verrucosus + Philadelphus schrenkii + Acanthopanax senticosus + Deutzia glabrata - Lonicera praeflorens |
演替阶段III (针阔混交林) Succession stage III (Mixed coniferous and broad-leaved forest) | 4臭冷杉; 4红松; 1春榆; 1红皮云杉+鱼鳞云杉+白桦+色木槭-花楷槭-枫桦-紫椴-胡桃楸-稠李 4 Abies nephrolepis; 4 Pinus koraiensis; 1 Ulmus davidiana var. japonica; 1 Picea koraiensis + Picea jezoensis var. microsperma + Betula platyphylla + Acer pictum subsp. mono - Acer ukurunduense - Betula costata - Tilia amurensis - Juglans mandshurica - Padus racemosa | 7暴马丁香; 2毛榛+瘤枝卫矛+早花忍冬-刺五加-光萼溲疏-珍珠梅 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica + Euonymus verrucosus + Lonicera praeflorens - Acanthopanax senticosus - Deutzia glabrata - Sorbaria sorbifolia |
演替阶段IV (阔叶红松林) Succession stage IV (Mixed broadleaved-Korean pine forest) | 4红松; 2枫桦; 1色木槭; 1鱼鳞云杉; 1红皮云杉+青楷槭+紫椴+白桦+黄檗+裂叶榆-水曲柳-山杨-稠李-臭冷杉-花楷槭-春榆-胡桃楸 4 Pinus koraiensis; 2 Betula costata; 1 Acer pictum subsp. mono; 1 Picea jezoensis var. microsperma; 1 Picea koraiensis + Acer tegmentosum + Tilia amurensis + Betula platyphylla + Phellodendron amurense + Ulmus laciniata - Fraxinus mandschurica - Populus davidiana - Padus racemosa - Abies nephrolepis - Acer ukurunduense - Ulmus davidiana var. japonica - Juglans mandshurica | 2东北山梅花; 2瘤枝卫矛; 1暴马丁香; 1光萼溲疏; 1毛榛; 1早花忍冬; 1刺五加; 1龙牙楤木-绣线菊-东北茶藨子 2 Philadelphus schrenkii; 2 Euonymus verrucosus; 1 Syringa reticulata subsp. amurensis; 1 Deutzia glabrata; 1 Corylus mandshurica; 1 Lonicera praeflorens; 1 Acanthopanax senticosus; 1 Aralia elata - Spiraea salicifolia - Ribes mandshuricum |
Table 1 Tree and shrub composition at different successional stages in mixed broadleaved-Korean pine forest
演替阶段 Successional stage | 乔木组成 Tree composition | 灌木组成 Shrub composition |
---|---|---|
演替阶段I (白桦次生林) Successional stage I (Secondary birch forest) | 5白桦; 2红松; 1兴安落叶松; 1水曲柳+春榆+色木槭+山杨+黄檗-枫桦-红皮云杉-裂叶榆-臭冷杉-胡桃楸-紫椴 5 Betula platyphylla; 2 Pinus koraiensis; 1 Larix gmelinii; 1 Fraxinus mandschurica + Ulmus davidiana var. japonica + Acer pictum subsp. mono + Populus davidiana + Phellodendron amurense - Betula costata - Picea koraiensis - Ulmus laciniata - Abies nephrolepis - Juglans mandshurica - Tilia amurensis | 7暴马丁香; 1东北山梅花; 1刺五加+珍珠梅+早花忍冬+毛榛子-光萼溲疏 7 Syringa reticulata subsp. amurensis; 1 Philadelphus schrenkii; 1 Acanthopanax senticosus + Sorbaria sorbifolia + Lonicera praeflorens + Corylus mandshurica - Deutzia glabrata |
演替阶段II (落叶阔叶混交林) Successional stage II (Mixed deciduous broad-leaved forest) | 4水曲柳; 2山杨; 1紫椴; 1色木槭; 1白桦+胡桃楸+鱼鳞云杉-春榆-红松-红皮云杉-青楷槭-稠李-裂叶榆-蒙古栎 4 Fraxinus mandschurica; 2 Populus davidiana; 1 Tilia amurensis; 1 Betula platyphylla + Juglans mandshurica + Picea jezoensis var. microsperma - Ulmus laciniata - Pinus koraiensis - Picea koraiensis - Acer tegmentosum - Padus racemose - Ulmus laciniata - Quercus mongolica | 7暴马丁香; 2毛榛; 1瘤枝卫矛+东北山梅花+刺五加+光萼溲疏-早花忍冬 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica; 1 Euonymus verrucosus + Philadelphus schrenkii + Acanthopanax senticosus + Deutzia glabrata - Lonicera praeflorens |
演替阶段III (针阔混交林) Succession stage III (Mixed coniferous and broad-leaved forest) | 4臭冷杉; 4红松; 1春榆; 1红皮云杉+鱼鳞云杉+白桦+色木槭-花楷槭-枫桦-紫椴-胡桃楸-稠李 4 Abies nephrolepis; 4 Pinus koraiensis; 1 Ulmus davidiana var. japonica; 1 Picea koraiensis + Picea jezoensis var. microsperma + Betula platyphylla + Acer pictum subsp. mono - Acer ukurunduense - Betula costata - Tilia amurensis - Juglans mandshurica - Padus racemosa | 7暴马丁香; 2毛榛+瘤枝卫矛+早花忍冬-刺五加-光萼溲疏-珍珠梅 7 Syringa reticulata subsp. amurensis; 2 Corylus mandshurica + Euonymus verrucosus + Lonicera praeflorens - Acanthopanax senticosus - Deutzia glabrata - Sorbaria sorbifolia |
演替阶段IV (阔叶红松林) Succession stage IV (Mixed broadleaved-Korean pine forest) | 4红松; 2枫桦; 1色木槭; 1鱼鳞云杉; 1红皮云杉+青楷槭+紫椴+白桦+黄檗+裂叶榆-水曲柳-山杨-稠李-臭冷杉-花楷槭-春榆-胡桃楸 4 Pinus koraiensis; 2 Betula costata; 1 Acer pictum subsp. mono; 1 Picea jezoensis var. microsperma; 1 Picea koraiensis + Acer tegmentosum + Tilia amurensis + Betula platyphylla + Phellodendron amurense + Ulmus laciniata - Fraxinus mandschurica - Populus davidiana - Padus racemosa - Abies nephrolepis - Acer ukurunduense - Ulmus davidiana var. japonica - Juglans mandshurica | 2东北山梅花; 2瘤枝卫矛; 1暴马丁香; 1光萼溲疏; 1毛榛; 1早花忍冬; 1刺五加; 1龙牙楤木-绣线菊-东北茶藨子 2 Philadelphus schrenkii; 2 Euonymus verrucosus; 1 Syringa reticulata subsp. amurensis; 1 Deutzia glabrata; 1 Corylus mandshurica; 1 Lonicera praeflorens; 1 Acanthopanax senticosus; 1 Aralia elata - Spiraea salicifolia - Ribes mandshuricum |
Fig. 1 Leaf stoichiometric characteristics at community level in mixed broadleaved-Korean pine forests at different successional stages (mean ± SE). Different lowercase letters of the same organ indicate significant differences (p < 0.05). The unit of total carbon (C), total nitrogen (N) and total phosphorus (P) content is g·kg-1.
Fig. 2 Relationships of soil nitrogen (N) and phosphorus (P) contents with leaf stoichiometric characteristics at individual scale in mixed broadleaved-Korean pine forests at different successional stages. *, p < 0.05. LN, leaf N content; LP, leaf P content; L(N:P), leaf N:P ratio; SN, soil N content; SP, soil P content.
叶片化学计量 Leaf stoichiometry | R² | 物种多样性解释度 Interpretation of species diversity (%) | 土壤化学性质解释度 Interpretation of soil chemical properties (%) | ||||
---|---|---|---|---|---|---|---|
H′ | S | J | SC | SN | SP | ||
LC | 0.69 | 8.80 | 4.44 | 15.05 | 45.31* | 8.01 | 18.38 |
LN | 0.82 | 26.66* | 36.11** | 4.94 | 5.73 | 5.14 | 21.42 |
LP | 0.62 | 35.96* | 40.18* | 6.82 | 9.16 | 3.24 | 4.64 |
L(C:N) | 0.74 | 28.88* | 33.41** | 4.51 | 13.25 | 6.52 | 13.43 |
L(C:P) | 0.59 | 34.79* | 33.99* | 8.25 | 16.55 | 4.31 | 2.11 |
L(N:P) | 0.46 | 22.12 | 16.76 | 23.11 | 9.23 | 3.60 | 25.17 |
Table 2 Results of hierarchical partitioning for the effects of species diversity and soil chemical properties on leaf carbon (C), nitrogen (N) and phosphorus (P) stoichiometry at community scale in mixed broadleaved-Korean pine forests
叶片化学计量 Leaf stoichiometry | R² | 物种多样性解释度 Interpretation of species diversity (%) | 土壤化学性质解释度 Interpretation of soil chemical properties (%) | ||||
---|---|---|---|---|---|---|---|
H′ | S | J | SC | SN | SP | ||
LC | 0.69 | 8.80 | 4.44 | 15.05 | 45.31* | 8.01 | 18.38 |
LN | 0.82 | 26.66* | 36.11** | 4.94 | 5.73 | 5.14 | 21.42 |
LP | 0.62 | 35.96* | 40.18* | 6.82 | 9.16 | 3.24 | 4.64 |
L(C:N) | 0.74 | 28.88* | 33.41** | 4.51 | 13.25 | 6.52 | 13.43 |
L(C:P) | 0.59 | 34.79* | 33.99* | 8.25 | 16.55 | 4.31 | 2.11 |
L(N:P) | 0.46 | 22.12 | 16.76 | 23.11 | 9.23 | 3.60 | 25.17 |
Fig. 3 Linear relationships of leaf nitrogen (N) and phosphorus (P) contents, carbon (C):N ratio and C:P ratio with Shannon diversity index and Species richness in mixed broadleaved-Korean pine forest at different successional stages. *, p < 0.05; **, p < 0.01. H', Shannon diversity index; S, Species richness. LN, leaf N content; LP, leaf P content; L(C:N), leaf C:N ratio; L(C:P), leaf C:P ratio.
[1] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W, (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59.
DOI URL |
[3] |
Boelman NT, Gough L, Wingfield J, Goetz S, Asmus A, Chmura HE, Krause JS, Perez JH, Sweet SK, Guay KC (2015). Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra. Global Change Biology, 21, 1508-1520.
DOI URL |
[4] |
Braakhekke WG, Hooftman DAP (1999). The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science, 10, 187-200.
DOI URL |
[5] |
Cao JY, Liu JF, Yuan Q, Xu DY, Fan HD, Chen HY, Tan B, Liu LB, Ye D, Ni J (2020). Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 44, 715-729.
DOI URL |
[ 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健 (2020). 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 44, 715-729.] | |
[6] |
Cao YB, Wang BT, Wei TT, Ma H (2016). Ecological stoichiometric characteristics and element reserves of three stands in a closed forest on the Chinese loess plateau. Environmental Monitoring and Assessment, 188, 80. DOI: 10.1007/s10661-015-5057-6.
DOI URL |
[7] |
Chapin III FS, Shaver GR, Kedrowski RA (1986). Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology, 74, 167-195.
DOI URL |
[8] | Chen C, Wang GJ, Zhao Y, Zhou GX, Li L, Gao JQ (2016). Seasonal dynamics and allometric growth relationships of C, N, and P stoichiometry in the organs of Cunninghamia lanceolata from Huitong. Acta Ecologica Sinica, 36, 7614-7623. |
[ 陈婵, 王光军, 赵月, 周国新, 李栎, 高吉权 (2016). 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系. 生态学报, 36, 7614-7623.] | |
[9] |
Chen FS, Niklas KJ, Liu Y, Fang XM, Wan SZ, Wang HM (2015). Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiology, 35, 1106-1117.
DOI URL |
[10] |
Du EZ, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226.
DOI URL |
[11] |
Elser JJ, Urabe J (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80, 735-751.
DOI URL |
[12] | Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755-767. |
[13] | Fang JY, Shen ZH, Tang ZY, Wang ZH (2004). The protocol for the survey plan for plant species diversity of China's mountains. Biodiversity Science, 12, 5-9. |
[ 方精云, 沈泽昊, 唐志尧, 王志恒 (2004). “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性, 12, 5-9.]
DOI |
|
[14] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[15] |
Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61.
DOI URL |
[16] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[17] |
Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
DOI PMID |
[18] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL |
[19] | He JS, Han XG (2010). Ecological stoichiometry: searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6. |
[ 贺金生, 韩兴国 (2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.]
DOI |
|
[20] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL |
[21] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. The Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[22] | Li XN, Guo QX, Wang XC, Zheng HF (2010). Allometry of understory tree species in a natural secondary forest in northeast China. Scientia Silvae Sinicae, 46(8), 22-32. |
[ 李晓娜, 国庆喜, 王兴昌, 郑海富 (2010). 东北天然次生林下木树种生物量的相对生长. 林业科学, 46(8), 22-32.] | |
[23] | Liu XZ, Zhou GY, Zhang DQ, Liu SZ, Chu GW, Yan JH (2010). N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 34, 64-71. |
[ 刘兴诏, 周国逸, 张德强, 刘世忠, 褚国伟, 闫俊华 (2010). 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 34, 64-71.]
DOI |
|
[24] |
Makino W, Cotner JB, Sterner RW, Elser JJ (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology, 17, 121-130.
DOI URL |
[25] |
McGroddy ME, Daufresne T, Hedin LO (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401.
DOI URL |
[26] |
Michalet R, Brooker RW, Lortie CJ, Maalouf JP, Pugnaire FI (2015). Disentangling direct and indirect effects of a legume shrub on its understorey community. Oikos, 124, 1251-1262.
DOI URL |
[27] |
Nally RM, Walsh CJ (2004). Hierarchical partitioning public- domain software. Biodiversity and Conservation, 13, 659-660.
DOI URL |
[28] |
Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC, (2003). Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 84, 2191-2199.
DOI URL |
[29] |
Peña-Claros M (2003). Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica, 35, 450-461.
DOI URL |
[30] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[31] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
PMID |
[32] |
Roscher C, Thein S, Schmid B, Scherer-Lorenzen M (2008). Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. Journal of Ecology, 96, 477-488.
DOI URL |
[33] |
Sistla SA, Appling AP, Lewandowska AM, Taylor BN, Wolf AA (2015). Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos, 124, 949-959.
DOI URL |
[34] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[35] |
Su Y, Ma XF, Gong YM, Li KH, Han WX, Liu XJ (2021). Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China's grasslands: a meta-analysis. Catena, 199, 105110. DOI: 10.1016/j.catena.2020.105110.
DOI URL |
[36] |
Teste FP, Veneklaas EJ, Dixon KW, Lambers H (2014). Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Functional Ecology, 28, 819-828.
DOI URL |
[37] |
Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY (2018). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739.
DOI URL |
[38] |
Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS (2010). Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
[39] |
van Ommen Kloeke AEE, Douma JC, Ordoñez JC, Reich PB, van Bodegom PM (2012). Global quantification of contrasting leaf life span strategies for deciduous and evergreen species in response to environmental conditions. Global Ecology and Biogeography, 21, 224-235.
DOI URL |
[40] |
Wardle DA, Walker LR, Bardgett RD (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509-513.
PMID |
[41] |
Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL |
[42] |
Xu LN, Jin GZ (2012). Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China. Biodiversity Science, 20, 470-481.
DOI |
[ 徐丽娜, 金光泽 (2012). 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 20, 470-481.]
DOI |
|
[43] |
Yan ER, Wang XH, Huang JJ (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil, 289, 187-197.
DOI URL |
[44] |
Yan ZB, Li P, Chen YH, Han WX, Fang JY (2016). Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific Reports, 6, 20099. DOI: 10.1038/srep20099.
DOI URL |
[45] |
Zhang JH, He NP, Liu CC, Xu L, Chen Z, Li Y, Wang RM, Yu GR, Sun W, Xiao CW, Chen HYH, Reich PB (2020). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543.
DOI URL |
[46] |
Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP (2018a). C:N:P stoichiometry in China's forests: from organs to ecosystems. Functional Ecology, 32, 50-60.
DOI URL |
[47] |
Zhang Q, Xiong GM, Li JX, Lu ZJ, Li YL, Xu WT, Wang Y, Zhao CM, Tang ZY, Xie ZQ (2018b). Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types. Plant and Soil, 427, 305-319.
DOI URL |
[48] |
Zheng MH, Chen H, Li DJ, Luo YQ, Mo JM (2020). Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests. Ecology Letters, 23, 336-347.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn