Chin J Plan Ecolo ›› 2010, Vol. 34 ›› Issue (10): 1220-1226.doi: 10.3773/j.issn.1005-264x.2010.10.011

• Research Articles • Previous Articles     Next Articles

Effects of cadmium stress on growth and nutrient accumulation, distribution and utilization in Osmanthus fragrans var. thunbergii

WU Fu-Zhong, YANG Wan-Qin*, ZHANG Jian, and ZHOU Li-Qiang   

  1. Sichuan Provincial Key Laboratory of Ecological Forestry Engineering, Sichuan Agricultural University, Ya’an, Sichuan 625014, China
  • Received:2009-12-21 Revised:2010-02-25 Online:2010-10-31 Published:2010-10-01
  • Contact: YANG Wan-Qin E-mail:scyangwq@163.com

Abstract: Aims The valuable ornamental plant Osmanthus fragrans var. thunbergii is grown in city gardens and on roadsides in the regions of the Yangtze River Basin, where often it has been contaminated with cadmium. Our objective was to characterize the effects of different cadmium stresses on (a) biomass production, (b) C, N and P accumulation and distribution patterns and (c) N and P use efficiency in O. fragrans var. thunbergii. Methods A controlled pot-experiment was arranged with different treatments of five cadmium concentrations (CK: 0, I: 25, II:50, III: 100, and IV: 200 mg·kg–1). One-year old O. fragrans var. thunbergii was cultivated in the pots. Biomass production and concentrations of C, N and P in plant components were measured over one growing season. Biomass, distribution of C, N and P and N and P use efficiency were calculated. Important findings Treatments with higher cadmium concentrations (II, III and IV) significantly decreased O. fragrans var. thunbergii biomass and C, N and P accumulation, as well as altered their distribution patterns, but the treatment with lower cadmium concentration (I) had no significant effects. Treatments with lower cadmium concentrations (I, II and III) increased N use efficiency but decreased P use efficiency, and both the lowest N and P use efficiencies were observed under the treatment with the highest cadmium concentration (IV). Results suggest that O. fragrans var. thunbergii could efficiently adapt to cadmium-contaminated environments by altering nutrient use strategy and biomass distribution pattern.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Xiling Dai;Jianguo Cao;Quanxi Wang* . Formation and Development of Sporoderm of Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae)[J]. Chin Bull Bot, 2008, 25(01): 72 -79 .
[2] Liu De-li. Heat-Shock Proteins of Plants and their Functions[J]. Chin Bull Bot, 1996, 13(01): 14 -19 .
[3] Chengqiang Ding, Dan Ma, Shaohua Wang, Yanfeng Ding. Optimization Process and Method of 2-D Electrophoresis for Rice Proteomics[J]. Chin Bull Bot, 2011, 46(1): 67 -73 .
[4] Xing Xue-rong Lu Chun-sheng Guo Da-li. Effect of Oraganic Acid to Nitrate Reductase and Nitrite Reductase Activity in the Vegetables[J]. Chin Bull Bot, 1995, 12(专辑2): 156 -162 .
[5] SONG Ke-Min. Phosphorus Nutrition of Plants: Phosphate Transport Systems and their Regulation[J]. Chin Bull Bot, 1999, 16(03): 251 -256 .
[6] CHEN Fa-Ju;YANG Ying-Gen;ZHAO De-Xiu;GUI Yao-Lin and GUO Zhong-Chen. Advances in Studies of Species Habitats Distribution and Chemical Composition of Snow Lotuses(Saussurea) in China[J]. Chin Bull Bot, 1999, 16(05): 561 -566 .
[7] YANG Hong-QiangJIE Yu-lingLI Jun. The Stresses Messenger from Roots and Its Production and Transport in Plant[J]. Chin Bull Bot, 2002, 19(01): 56 -62 .
[8] Hui Li, Guangcan Zhang, Huicheng Xie, Jingwei Xu, Chuanrong Li, Juwen Sun. The Effect of Phenol Concentration on Photosynthetic Physiological Parameters of Salix babylonica[J]. Chin Bull Bot, 2016, 51(1): 31 -39 .
[9] . [J]. Chin Bull Bot, 1996, 13(专辑): 97 -98 .
[10] LIU Xiao-Mei, FANG Jian, ZHANG Jing, LIN Wu-Ying, FAN Ting-Lu, FENG Hu-Yuan. EFFECTS OF LONG-TERM FERTILIZATION ON VERTICAL DISTRIBUTION OF MICROORGANISMS IN WHEAT FIELD SOIL[J]. Chin J Plan Ecolo, 2009, 33(2): 397 -404 .