Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (3): 245-257.doi: 10.17521/cjpe.2018.0311

• Research Articles • Previous Articles     Next Articles

Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China

TANG Dan-Dan1,2,WU Yi1,2,LIU Wen-Yao1,*(),HU Tao1,2,HUANG Jun-Biao1,2,ZHANG Ting-Ting1,2   

  1. 1 CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-07 Revised:2019-03-01 Online:2019-04-23 Published:2019-03-20
  • Contact: LIU Wen-Yao
  • Supported by:
    Supported by the National Natural Science Foundation of China(31770496);Supported by the National Natural Science Foundation of China(41471050);Biodiversity Conservation Strategy Program of Chinese Academy of Sciences(ZSSD-016);The "135 Program" of Chinese Academy of Sciences(2017XTBG-T01)


Aims The objectives of this study were to characterize the carbon (C) : nitrogen (N) : phosphorus (P) stoichiometry of the “host branches-haustorias-parasitic branches-parasitic leaves” continuum and to better understand nutrient relationship between hemiparasite plants and their hosts.

Methods The study site is located in the Xujiaba area of Ailao Mountain, Yunnan Province. Two common hemiparasite plants Loranthus delavayi and Taxillus delavayi were selected, and the C, N and P concentrations of host branches, haustorias, parasitic branches and parasitic leaves were measured.

Important findings The results showed that, the tendency of C, N, P stoichiometry characteristics of host branches-haustorias-parasitic branches-parasitic leaves were species specific, and were not identical between the two hemiparasites. The host branches of the same parasitic plant have similar C, N, and P stoichiometry characteristics, and the host species have no significant effect on the stoichiometry of hemiparasites. There was a close coupling relationship between the C, N, P stoichiometry characteristics in the host branches, and the haustorias was weaker than the host branch, the parasitic branch was weaker than the haustorias, and there was no significant correlation between the N and P concentrations in the parasitic leaf. There was a significant negative correlation between the host branches and the parasitic leaves of C concentration. The C, N, P stoichiometry characteristics of the haustorias were more similar to the parasitic branches, and it had a very significant positive correlation with the host branches. As a key part of the host and parasitic plants, the haustorias had a significant correlation with the host branches, which reflected the importance of the host branch nutrients to the parasitic plants. The element stoichiometry and their relationship of the haustorias were more similar to those of the parasitic branches, which embodied that haustorias as a parasitic plant organ had physiological functions similar to those of the parasitic branches. These results provided important data for in-depth study of nutrient utilization strategies and ecological adaptability of hemiparasitic plants.

Key words: hemiparasite, ecological stoichiometry, branch, haustoria, leaf

Fig. 1

Changes of C, N, P concentrations and stoichiometry in the host branches, haustorias, parasitic branches, parasitic leaves in two common hemiparasites in Ailao Mountain (mean ± SE). a, host branch; b, haustorias; c, parasitic branches; d, parasitic leaves."

Table 1

Differences in the stoichiometric characteristics of C, N, and P in different organs of the same parasitic plant between different hosts in Ailao Mountain"

椆树桑寄生 Loranthus delavayi 柳叶钝果寄生 Taxillus delavayi
物种 Species 器官 Organ 物种×器官 Species × Organ R2 物种 Species 器官 Organ 物种×器官 Species × Organ R2
C * ns ns 0.336 ns *** ns 0.863
N ns *** ns 0.657 ns *** ns 0.445
P ns *** ns 0.526 ns *** ns 0.747
C:N ns *** ns 0.712 ns *** ns 0.586
C:P ns *** ns 0.663 ns *** ns 0.826
N:P ns ns ns 0.211 ns *** ns 0.730


平均值 Mean (mg·g-1) 变异系数 Coefficient of variation (%)
寄主枝 Host branch 449.90c 4.01c 1.55ab 113.55a 345.09ab 3.01b 0.78 11.95 35.38 11.39 55.68 50.37
吸器 Haustoria 474.80b 9.15b 1.18b 52.23b 410.69a 7.89a 2.04 8.22 13.11 9.31 14.80 14.89
寄生枝 Parasitic branch 486.10a 8.90b 1.03b 56.34b 503.09a 9.08a 2.14 20.55 25.82 17.28 26.25 25.43
寄生叶 Parasitic leaf 478.00ab 15.65a 2.90a 31.85c 220.41b 7.20ab 2.76 24.57 56.37 19.60 55.53 55.33
寄主枝 Host branch 460.28c 2.64c 0.32c 184.03a 1 618.57a 9.37ab 1.60 24.17 39.11 24.54 29.85 35.49
吸器 Haustoria 477.17a 7.67b 0.73b 63.47b 679.07b 10.74a 2.17 15.76 18.88 13.52 19.79 16.11
寄生枝 Parasitic branch 483.50a 7.65b 0.94b 64.18b 564.00b 8.77b 1.39 12.87 33.30 12.19 28.24 25.40
寄生叶 Parasitic leaf 431.61c 10.10a 3.16a 45.82c 158.13c 3.76c 2.98 27.51 37.24 26.87 44.33 58.43
寄主枝 Host branch 456.57b 3.13c 0.76c 158.86a 1 163.70a 7.10cbd 1.75 28.19 90.78 63.46 58.70 31.62
吸器 Haustoria 476.32a 8.20b 0.89b 59.46b 583.22b 9.72a 2.10 15.59 29.32 15.45 29.58 21.25
寄生枝 Parasitic branch 484.43a 8.10b 0.97b 61.38b 542.25b 8.88ab 1.68 17.91 30.38 15.00 27.77 24.99
寄生叶 Parasitic leaf 448.18bc 12.08a 3.06a 40.83c 180.37c 4.99d 5.79 34.24 43.48 30.48 52.63 66.97

Fig. 2

N-P scaling of host branches, haustorias, parasitic branches and parasitic leaves in two common hemiparasites in Ailao Mountain."

Table 3

Correlation relationship of C, N, P stoichiometry of the host branches, haustorias, parasitic branches and parasitic leaves in two common hemiparasites in Ailao Mountain"

组成 Composition 寄主枝 Host branch 吸器 Haustoria 寄生枝 Parasitic branch 寄生叶 Parasitic leaf
C和N C and N -0.496** 0.080 0.221 0.595**
C和P C and P -0.588** -0.243 -0.126 -0.259
C和N:P C and N:P 0.477* 0.462* 0.242 0.621**
N和P N and P 0.716** 0.662** 0.419* -0.257
N和C:P N and C:P -0.619** -0.666** -0.388* 0.285
P和C:N P and C:N -0.599** -0.722** -0.402* 0.196

Table 4

Correlation between host branches, haustorias, parasitic branches, and parasitic leaves of C, N, and P stoichiometry in two common hemiparasites in Ailao Mountain"

组成 Composition C N P C:N C:P N:P
寄主枝与吸器 Host branch and haustoria 0.163 0.508** 0.772** 0.589** 0. 784** 0.731**
寄主枝与寄生枝 Host branch and parasitic branch 0.142 0.502** 0.154 0.470* 0.178 -0.075
寄主枝与寄生叶 Parasitic branch and parasitic leaf -0.636** 0.409* 0.160 0.289 0.123 -0.134
吸器与寄生枝 Haustoria and parasitic branch 0. 460* 0.216 0.489** 0.184 0.452* 0.289
吸器与寄生叶 Haustoria and parasitic leaf -0.160 0.296 -0.048 0.186 -0.157 -0.133
寄生枝与寄生叶 Parasitic branch and parasitic leaf 0.033 0.674** 0.168 0.673** 0.134 0.371
[1] Bell TL, Adams MA ( 2011). Attack on all fronts: Functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems. Tree Physiology, 31, 3-15.
[2] Chen L, Huang L, Li X, You S, Yang S, Zhang Y, Wang W ( 2013). Water and nutrient relationships between a mistletoe and its mangrove host under saline conditions. Functional Plant Biology, 40, 475-483.
[3] Cleveland CC, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass. Biogeochemistry, 85, 235-252.
[4] Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC ( 2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19.
[5] Cui GY, Cao Y, Chen YM ( 2015). Characteristics of nitrogen and phosphorus stoichiometry across components of forest ecosystem in Shaanxi Province. Chinese Journal of Plant Ecology, 39, 1146-1155.
[ 崔高阳, 曹扬, 陈云明 ( 2015). 陕西省森林各生态系统组分氮磷化学计量特征. 植物生态学报, 39, 1146-1155.]
[6] Demey A, de Frenne P, Baeten L, Verstraeten G, Hermy M, Boeckx P, Verheyen K ( 2015). The effects of hemiparasitic plant removal on community structure and seedling establishment in semi-natural grasslands. Journal of Vegetation Science, 26, 409-420.
[7] Demey A, Rütting T, Huygens D, Staelens J, Hermy M, Verheyen K, Boeckx P ( 2014). Hemiparasitic litter additions alter gross nitrogen turnover in temperate semi-natural grassland soils. Soil Biology & Biochemistry, 68, 419-428.
[8] Duarte CM ( 1992). Nutrient concentration of aquatic plants: Patterns across species. Limnology and Oceanography, 37, 882-889.
[9] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, Mccauley E, Schulz KL ( 2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
[10] Garten CT ( 1976). Correlations between concentrations of elements in plants. Nature, 261, 686-688.
[11] Gebauer R, Volařík D, Urban J ( 2012). Quercus pubescens and its hemiparasite Loranthus europaeus: Nutrient dynamics of leaves and twigs. Acta Physiologiae Plantarum, 34, 1801-1809.
[12] Gebauer R, Volařík D, Urban J ( 2018). Seasonal variations of sulphur, phosphorus and magnesium in the leaves and current-year twigs of hemiparasitic mistletoe Loranthus europaeus Jacq. and its host Quercus pubescens Willd. Journal of Forest Science, 66-73.
[13] Glatzel G ( 1983). Mineral nutrition and water relations of hemiparasitic mistletoes: A question of partitioning. Experiments with Loranthus europaeus on Quercus petraea and Quercus robur. Oecologia, 56, 193-201.
[14] Glatzel G, Geils BW ( 2009). Mistletoe ecophysiology: Host- parasite interactions. Botany, 87, 10-15.
[15] Gong L, Li HL, Liu YT, An SQ ( 2017). Effects of nitrogen and phosphorus fertilizers on carbon, nitrogen, and phosphorus stoichiometry of oasis cotton in the upper reaches of Tarim River, Xinjiang, China. Acta Ecologica Sinica, 37, 7689-7697.
[ 贡璐, 李红林, 刘雨桐, 安申群 ( 2017). N、P施肥对塔里木河上游绿洲棉花C、N、P生态化学计量特征的影响. 生态学报, 37, 7689-7697.]
[16] Güsewell S, Koerselman W ( 2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evolution and Systematics, 5, 37-61.
[17] Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
[18] Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH ( 2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
[19] Hatcher M, Dick JTA, Dunn AM ( 2012). Diverse effects of parasites in ecosystems: Linking interdependent processes. Frontiers in Ecology and the Environment, 10, 186-194.
[20] He HL, Yang XC, Wang D, Sun YY, Yin CY, Li T, Li YX, Zhou GY, Zhang L, Liu Q ( 2017). Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus of Sibiraea angustata shrub in eastern Qinghai-‌Tibetan Plateau. Chinese Journal of Applied and Environmental Biology, 21, 1128-1135.
[ 贺合亮, 阳小成, 王东, 孙誉育, 尹春英, 李婷, 黎云祥, 周国英, 张林, 刘庆 ( 2017). 青藏高原东部窄叶鲜卑花灌丛土壤C、N、P生态化学计量学特征. 应用与环境生物学报, 21, 1128-1135.]
[21] He M, Chen H, Pan CD, Hu Y, Xiao ZZ, Wang B ( 2015). Seasonal variation and correlation of mineral element concentrations between Juglans regia ‘Xinwen 185’ leaves and fruits. Xinjiang Agricultural Sciences, 52, 1399-1406.
[ 何苗, 陈虹, 潘存德, 胡渊, 肖真真, 王蓓 ( 2015). 新温185号核桃叶片和果实矿质元素浓度时节变化及其相关性. 新疆农业科学, 52, 1399-1406.]
[22] Hedin LO ( 2004). Global organization of terrestrial plant-nutrient interactions. Proceedings of the National Academy of Sciences of the United States of America, 101, 10849-10850.
[23] Hidaka A, Kitayama K ( 2015). Physiological linkage in co-variation of foliar nitrogen and phosphorus in tropical tree species along a gradient of soil phosphorus availability. Journal of Tropical Ecology, 31, 221-229.
[24] Hu F, Kong CH ( 2004). Selectivity and influence of parasite plants on their hosts. Chinese Journal of Applied Ecology, 15, 905-908.
[ 胡飞, 孔垂华 ( 2004). 寄生植物对寄主的选择和影响. 应用生态学报, 15, 905-908.]
[25] Hu YS, Yao XY, Liu YH ( 2014). N and P stoichiometric traits of plant and soil in different forest succession stages in Changbai Mountains. Chinese Journal of Applied Ecology, 25, 632-638.
[ 胡耀升, 么旭阳, 刘艳红 ( 2014). 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征. 应用生态学报, 25, 632-638.]
[26] Huang XY, Guan KY, Li AR ( 2011). Biological traits and their ecological significances of parasitic plants: A review. Chinese Journal of Ecology, 30, 1838-1844.
[ 黄新亚, 管开云, 李爱荣 ( 2011). 寄生植物的生物学特性及生态学效应. 生态学杂志, 30, 1838-1844.]
[27] Jiang LL, He S, Wu LF, Yan YF, Weng SF, Liu J, Wang WQ, Zeng CS ( 2014). Characteristics of stoichiometric homeostasis of three plant species in wetlands in Minjiang estuary. Wetland Science, 12, 293-298.
[ 蒋利玲, 何诗, 吴丽凤, 颜远烽, 翁少峰, 刘静, 王维奇, 曾从盛 ( 2014). 闽江河口湿地3种植物化学计量内稳性特征. 湿地科学, 12, 293-298.]
[28] Jiang PP, Cao Y, Chen YM, Zhao YP ( 2017). N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shaanxi Province. Acta Ecologica Sinica, 37, 443-454.
[ 姜沛沛, 曹扬, 陈云明, 赵一娉 ( 2017). 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征. 生态学报, 37, 443-454.]
[29] Kerkhoff AJ, Fagan WF, Else JJ, Enquist BJ ( 2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, 103-122.
[30] Koerselman W, Meuleman AFM ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
[31] Lepš J, Těšitel J ( 2015). Root hemiparasites in productive communities should attack competitive host, and harm them to make regeneration gaps. Journal of Vegetation Science, 26, 407-408.
[32] Li S, Liu WY, Wang LS, Yang GP, Li DW ( 2007). Species diversity and distribution of epiphytic lichens in the primary and secondary forests in Ailao Mountain, Yunnan. Biodiversity Science, 15, 445-455.
[ 李苏, 刘文耀, 王立松, 杨国平, 李达文 ( 2007). 云南哀牢山原生林及次生林群落附生地衣物种多样性与分布. 生物多样性, 15, 445-455.]
[33] Li W ( 2016). Global pattern of plant ecological stoichiometrics characteristics. Journal of Nanchang Institute of Technology, 35(6), 6-10.
[ 李威 ( 2016). 植物生态化学计量学的全球格局综述. 南昌工程学院学报, 35(6), 6-10.]
[34] Li XW, Sun K, Li FY ( 2014). Variation in leaf nitrogen and phosphorus stoichiometry in the nitrogen-fixing Chinese sea-buckthorn (Hippophae rhamnoides L. subsp. sinensis Rousi) across northern China. Ecological Research, 29, 723-731.
[35] Li YH, Chen SL, Lu D, Zhu KX, Zhao MH, Pei HH, Ruan JL ( 2009). Study on the contents of total flavonoids of herbataxilli from different host-plants. Lishizhen Medicine and Materia Medicare Research, 20, 3009-3010.
[ 李永华, 陈士林, 卢栋, 朱开昕, 赵明惠, 裴河欢, 阮金兰 ( 2009). 不同寄主植物桑寄生总黄酮含量研究. 时珍国医国药, 20, 3009-3010.]
[36] Li YH, Su BW, Zhang XJ, Zhu KX, Pei HH, Zhao MH, Lu D ( 2012). Influence of host plant on the volatile components of taxilli herba. Lishizhen Medicine and Materia Medicare Research, 23, 574-578.
[ 李永华, 苏本伟, 张协君, 朱开昕, 裴河欢, 赵明惠, 卢栋 ( 2012). 寄主植物对桑寄生药材挥发性成分的影响研究. 时珍国医国药, 23, 574-578.]
[37] Liao ZW, Mao XY, Liu KX ( 2014). Effect of organic Carbon fertlizer on nutrient balance—Analysis of carbon, a short board, in plant nutrition. Acta Pedologica Sinica, 51, 656-659.
[ 廖宗文, 毛小云, 刘可星 ( 2014). 有机碳肥对养分平衡的作用初探——试析植物营养中的碳短板. 土壤学报, 51, 656-659.]
[38] Liu WT, Wei ZJ, Lü SJ, Sun SX ( 2015). Research advancees in stoichiometry of grassland in China. Acta Agrestia Sinica, 23, 914-926.
[ 刘文亭, 卫智军, 吕世杰, 孙世贤 ( 2015). 中国草原生态化学计量学研究进展. 草地学报, 23, 914-926.]
[39] Lu ZY, Song L, Wang X, Li YW, Zhang YP, Sha LQ ( 2017). Ecological stoichiometry characteristics of the litterfall-humus-soil continuum systems under different successional stages of the subtropical forest in SW China. Mountain Reseach, 35, 274-282.
[ 鲁志云, 宋亮, 王训, 李玉武, 张一平, 沙丽清 ( 2017). 哀牢山森林凋落物与腐殖质及土壤的生态化学计量特征. 山地学报, 35, 274-282.]
[40] Luo Y, Gong L, Zhu ML, An SQ ( 2017). Stoichometry charateristics of leaves and soil of four shrubs in the upper reacher of the Tarim River Desert. Acta Ecologica Sinica, 37, 8326-8335.
[ 罗艳, 贡璐, 朱美玲, 安申群 ( 2017). 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征. 生态学报, 37, 8326-8335.]
[41] Michaels AF ( 2003) . The ratios of life. Science, 300, 906-907.
[42] Minden V, Kleyer M ( 2015). Internal and external regulation of plant organ stoichiometry. Plant Biology, 16, 897-907.
[43] Nave LE, Heckman KA, Muñoz AB, Swanston CW ( 2017). Radiocarbon suggests the hemiparasitic annual Melampyrum lineare Desr. may acquire carbon from stressed hosts. Radiocarbon, 60, 1-13.
[44] Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW ( 1998). Molecular phylogenetic and evolutionary studies of parasitic plants. Molecular Systematics of Plants II. Springer,New York. 211-241.
[45] Niklas KJ ( 2006). Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Annals of Botany, 97, 155-163.
[46] Niklas KJ, Cobb ED ( 2005). N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 92, 1256-1263.
[47] Norton DA, Lange PJD ( 1999). Host specificity in Parasitic mistletoes (Loranthaceae) in New Zealand. Functional Ecology, 13, 552-559.
[48] Phoenix GK, Press MC ( 2010). Linking physiological traits to impacts on community structure and function: The role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology, 93, 67-78.
[49] Press MC, Phoenix GK ( 2010). Impacts of parasitic plants on natural communities. New Phytologist, 166, 737-751.
[50] Qiu XZ, Xie SC ( 1998). Studies on the Forest Ecosystem in Ailao Mountains, Yunnan, China. Yunnan Science and Technology Press, Kunming.
[ 邱学忠, 谢寿昌 ( 1998). 云南哀牢山森林生态系统研究. 云南科技出版社, 昆明.]
[51] Quested HM, Callaghan TV, Cornelissen JHC, Press MC ( 2010). The impact of hemiparasitic plant litter on decomposition: Direct, seasonal and litter mixing effects. Journal of Ecology, 93, 87-98.
[52] Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of National Academy of Sciences of the United States of America, 101, 11001-11006.
[53] Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ ( 2010). Evidence of a General 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B, 277, 877-883.
[54] Ren SJ, Yu GR, Tao B, Wang SQ ( 2007). Leaf nitrogen and phosphorus stoichiometry across 643 terrestrial plant species in NSTEC. Environmental Science, 28, 2665-2673.
[ 任书杰, 于贵瑞, 陶波, 王绍强 ( 2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.]
[55] Selosse MA, Charpin M, Not F ( 2017). Mixotrophy everywhere on land and in water: The grand écart hypothesis. Ecology Letters, 20, 246.
[56] Sterner RW, Elser JJ ( 2002). Ecological Stoichiometry:The Biology of Elements From Molecules to the Biosphere. Princeton University Press, Princeton. 225-226.
[57] Suriyagoda LDB, Rajapaksha R, Pushpakumara G, Lambers H ( 2017). Nutrient resorption from senescing leaves of epiphytes, hemiparasites and their hosts in tropical forests of Sri Lanka. Journal of Plant Ecology, 11, 815-826.
[58] Světlíková P, Blažek P, Mühlsteinová R, Těšitel J ( 2016). Tracing nitrogen flow in a root-hemiparasitic association by foliar stable-isotope labelling. Plant Ecology and Evolution, 149, 39-44.
[59] Tennakoon KU, Chak WH, Bolin JF ( 2011). Nutritional and isotopic relationships of selected Bornean tropical mistletoe-‌host associations in Brunei Darussalam. Functional Plant Biology, 38, 505-513.
[60] Těšitel J, Těšitelová T, Fisher JP, Lepš J, Cameron DD ( 2015). Integrating ecology and physiology of root-hemiparasitic interaction: Interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytologist, 205, 350-360.
[61] Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY ( 2018). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 5, 728-739.
[62] Tian HQ, Chen GS, Zhang C, Melillo JM, Hall CAS ( 2010). Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 22, 327-346.
[63] Vitousek PM ( 1998). Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems, 1, 401-407.
[64] Wang T, Yang YH, Ma WH ( 2008). Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 44, 945-952.
[ 汪涛, 杨元合, 马文红 ( 2008). 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 44, 945-952.]
[65] Wang XN, Zhang L ( 2017). Species diversity and distribution of mistletoes and hosts in four different habitats in Xishuangbanna, Southwest China. Chinese Journal of Plant Ecology, 39, 701-711.
[ 王煊妮, 张玲 ( 2017). 西双版纳4种生境下的桑寄生与寄主植物多样性及分布特点. 植物生态学报, 39, 701-711.]
[66] Watson DM ( 2010). Parasitic plants as facilitators: More dryad than dracula? Journal of Ecology, 97, 1151-1159.
[67] Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
[68] Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M ( 2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496.
[69] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The world- wide leaf economics spectrum. Nature, 428, 821-827.
[70] Yan ZB, Li XP, Tian D, Han WX, Hou XH, Shen HS, Guo YL, Fang JY ( 2018). Nutrient addition affects scaling relationship of leaf nitrogen to phosphorus in Arabidopsis thaliana. Functional Ecology, 32, 2689-2698.
[71] Yang M, Wang CQ, Yuan DG, Li QQ, Zeng J, Luo Q, Lan XM, Tang J ( 2015). C, N, P stoichiometry traits of different flue-cured tobacco organs at different growth stages. Chinese Journal of Eco-Agriculture, 23, 686-693.
[ 杨梅, 王昌全, 袁大刚, 李启权, 曾建, 罗茜, 兰兴梅, 唐杰 ( 2015). 不同生长期烤烟各器官C、N、P生态化学计量学特征. 中国生态农业学报, 23, 686-693.]
[72] You CX ( 1983). Classification of Vegetation in Xujiaba Region in Ailao Mts. Research of Forest Ecosystems on Ailao Mountains Yunnan. Yunnan Science and Technology Press, Kunming.
[ 游承侠 ( 1983). 哀牢山徐家坝地区的植被分类. 云南哀牢山森林生态系统研究. 云南科技出版社, 昆明.]
[73] Young SS, Herwitz SR ( 1995). Floristic diversity and co-occurrences in a subtropical broad-leaved forest and two contrasting regrowth stands in central-west Yunnan Province, China. Vegetatio, 119, 1-13.
[74] Zeng DH, Chen GS ( 2005). Ecological stoichiometry: A science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019.
[ 曾德慧, 陈广生 ( 2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
[75] Zeng DP, Jiang LL, Zeng CS, Wang WQ, Wang C ( 2013). Reviews on the ecological stoichiometry characteristics and its applications. Acta Ecologica Sinica, 33, 5484-5492.
[ 曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯 ( 2013). 生态化学计量学特征及其应用研究进展. 生态学报, 33, 5484-5492.]
[76] Zeng ZX, Wang KL, Liu XL, Zeng FP, Song TQ, Peng WX, Zhang H, Du H ( 2015). Stoichiometric characteristics of plants, litter and soils in karst plant communities of Northwest Guangxi. Chinese Journal of Plant Ecology, 39, 682-693.
[ 曾昭霞, 王克林, 刘孝利, 曾馥平, 宋同清, 彭晚霞, 张浩, 杜虎 ( 2015). 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 39, 682-693.]
[77] Zhang K, He MZ, Li XR, Tan HJ, Gao YH, Li G, Han GJ, Wu YY ( 2014). Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert. Acta Ecologica Sinica, 34, 6538-6547.
[ 张珂, 何明珠, 李新荣, 谭会娟, 高艳红, 李刚, 韩国君, 吴杨杨 ( 2014). 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征. 生态学报, 34, 6538-6547.]
[78] Zhao YP, Cao Y, Chen YM, Peng SZ ( 2007). Ecological stoichiometry in a forest in the hilly-gully of Loess Plateau. Acta Ecologica Sinica, 37, 5451-5460.
[ 赵一娉, 曹扬, 陈云明, 彭守璋 ( 2017). 黄土丘陵沟壑区森林生态系统生态化学计量特征. 生态学报, 37, 5451-5460.]
[79] Zhou HH, Liu XL, Qian HB, Wang SQ, Zhou C ( 2013). Comparative study on toxicities of Taxillus sutchuenensis from different host plants. Chinese Journal of Experimental Traditional Medical Formulae, 19, 274-277.
[ 周汉华, 刘晓龙, 钱海兵, 王世清, 周超 ( 2013). 不同寄主上的桑寄生药材毒性的比较研究. 中国实验方剂学杂志, 19, 274-277.]
[80] Zhu H, Yan LC ( 2009). List of Seed Plants in the Ailao Mts.of Yunnan Province, China. Yunnan Science and Technology Press, Kunming.
[ 朱华, 闫丽春 ( 2009). 云南哀牢山种子植物. 云南科技出版社, 昆明.]
[1] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 277-288.
[2] JING Hong-Xia,SUN Ning-Xiao,Muhammad UMAIR,LIU Chun-Jiang,DU Hong-Mei. Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China [J]. Chin J Plant Ecol, 2020, 44(1): 56-69.
[3] LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696.
[4] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[5] ZHANG Yi-Ping, HAI Xu-Ying, XU Jun-Liang, WU Wen-Xia, CAO Peng-He, AN Wen-Jing. Seasonal dynamics of non-structural carbohydrate content in branch of Quercus variabilis growing in east Qinling Mountain range [J]. Chin J Plant Ecol, 2019, 43(6): 521-531.
[6] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[7] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[8] YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351.
[9] ZHOU Hui-Min, LI Pin, FENG Zhao-Zhong, ZHANG Yin-Bo. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling [J]. Chin J Plant Ecol, 2019, 43(4): 296-304.
[10] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[11] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[12] Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei. Leaf functional traits of Acer mono in Wudalianchi Volcano, China [J]. Biodiv Sci, 2019, 27(3): 286-296.
[13] Zhang Xia,Jing Xiang,Zhou Guangcai,Bao Ying. Phylogeny and Tissue-specific Expression of the GBSS Genes in Oryza officinalis [J]. Chin Bull Bot, 2019, 54(3): 343-349.
[14] ZHANG Zhen-Zhen, ZHAO Ping, ZHANG Jin-Xiu, SI Yao. Conduits anatomical structure and leaf traits of diffuse- and ring-porous stems in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2019, 43(2): 131-138.
[15] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[7] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[8] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[9] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[10] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .