Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (8): 672-684.doi: 10.17521/cjpe.2019.0068

• Research Articles • Previous Articles     Next Articles

How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land

WANG Ming-Ming1,2,LIU Xin-Ping1,3,*(),HE Yu-Hui4,ZHANG Tong-Hui1,3,WEI Jing5,Chelmge 1,2,SUN Shan-Shan1,2   

  1. 1Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China
    4Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China
    5Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518000, China
  • Received:2019-03-26 Revised:2019-07-23 Online:2020-01-03 Published:2019-08-20
  • Contact: LIU Xin-Ping E-mail:liuxinping@lzb.ac.cn
  • Supported by:
    National Key R&D Program of China(2017YFC0506706);National Key R&D Program of China(2016YFC0500907);National Natural Science Foundation of China(41801076);Nei Mongol Autonomous Region Science and Technology Major Project(Y749BJ1001);Science and Technology Poverty Alleviation Program of Chinese Academy of Sciences

Abstract:

Aims Enclosure is one of the important measures for vegetation restoration of degraded sandy land. Understanding the plant community change of different initial types in long-term state of enclosing is vital for us to understand the vegetation restoration process or re-vegetation in sandy land. This paper aims to analyze the changes of plant communities and its comparative responses to long-term enclosure (2005-2017) of mobile dunes (enclosed in 2005), fixed dunes (enclosed in 1985) and sandy grassland (enclosed in 1997), in relation to soil seed bank, soil nutrient and precipitation and air temperature.
Methods The species composition, height, coverage and above-ground biomass were measured by quadrats in every year during 2005-2017. The soil organic carbon, soil nutrient and soil seed bank were measured by soil cores from the above quadrats in 2008 and 2017. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to explore the relationship between plant community species composition and soil seed bank soil nutrients and soil moisture.
Important findings The results showed that the vegetation coverage and community species richness of mobile dune was significantly increased, but the community biomass had no obvious trend. The biomass of fixed dune community, shrubs, semi-shrubs and the perennial legume functional group dominances decreased significantly, but the dominance of the annual and perennial forbs increased significantly. The annual forbs were the dominant functional group, and community species richness and perennial grass dominances decreased significantly. The soil seed bank had no remarkable change in the three enclosed sandy land communities during 2008-2017, while the seed richness significantly increased in mobile dunes, and that of the fixed dunes and grassland presented downward trends. The soil available nitrogen and available phosphorus were increased significantly. Regression analysis showed the annual variation of plant community biomass was significantly affected by air temperature and precipitation, but there was a little effect on the inter-annual variation of plant community biomass and species richness. Detrended correspondence analysis (DCA) displayed that there was a high similarity between soil seed bank and plant community, and typical correlation analysis (CCA) results showed that grassland community species composition was closely related to soil nutrients. However, fixed dune community species composition was mainly related to soil moisture. In summary, the fixed dune plant community enclosed for 33 years and the sandy grassland plant community enclosed for 21 years present degraded trends, while the mobile dune plant community enclosed for 11 years is slowly recovering, thus, long-term enclosure is not always conducive to the restoration of degraded sandy land vegetation. We suggested that the influence of degradation degree of vegetation, soil nutrients and moisture, soil seed bank and precipitation should be synthetically considered when we set the duration of enclosure for restoration.

Key words: sandy land, enclosure, vegetation restoration, community features, influencing factors

Fig. 1

Geographical location of the Horqin Sandy Land (HSL) and spatial distribution of the sample plots."

Fig. 2

Interannual changes of plant community features in different enclosure types of sandy lands in the Horqin Sandy Land (mean ± SD). FD, fixed dune; MD, mobile dune; SG, sandy grassland. C, Simpson index; H, Shannon-Wiener index; k, regression line slope; p, statistical significance (p < 0.05 indicates the change trend is significant). Only the k, R2 and p values with higher confidence levels are listed in the figure."

Table 1

Species composition and dominance of plant community in different enclosure types of sandy lands in 2005 and 2017"

物种
Species
生活型
Biotype
2005 2017
MD FD SG MD FD SG
沙蓬 Agriophyllum squarrosum AF 26.91 0 0 9.60 0 0
苦苣菜 Sonchus oleraceus AF 10.22 0 0 2.10 0 0
旋覆花 Inula japonica PF 9.26 0 0 8.75 0 0
狗尾草 Setaria viridis AG 8.65 2.81 1.52 7.45 3.72 6.72
蒺藜 Tribulus terrestris AF 5.24 1.00 0 15.77 0 0.92
地梢瓜 Cynanchum thesioides PF 5.48 0.98 0.84 1.47 2.18 1.88
大果虫实 Corispermum macrocarpum AF 5.32 1.49 0 3.30 2.12 0
差不嘎蒿 Artemisia halodendron SH 3.57 11.88 0 5.99 3.20 0
雾冰藜 Bassia dasyphylla AF 2.69 1.43 0 2.20 1.52 0
马唐 Digitaria sanguinalis AG 2.45 3.43 0.92 5.95 2.80 0
白草 Pennisetum flaccidum PG 0 1.92 4.27 0 0 10.55
猪毛菜 Salsola collina AF 0 0.85 0.85 2.52 7.50 2.17
花苜蓿 Medicago ruthenica PL 0 11.11 4.41 0 10.50 0
糙隐子草 Cleistogenes squarrosa PG 0 0 3.58 0 0 3.77
大籽蒿 Artemisia sieversiana AF 0 0 2.92 0 0 0
地锦 Euphorbia humifusa AF 0 13.27 0 0.94 1.99 0.85
二裂委陵菜 Potentilla bifurca AF 0 0 0.71 0 0 0
九顶草 Enneapogon desvauxii AG 0 0 0 0 0 1.90
兴安乌胡枝子 Lespedeza davurica SH/PL 0 1.39 2.74 0 2.24 2.83
虎尾草 Chloris virgata AG 0 0 1.19 0 0 0
画眉草 Eragrostis pilosa AG 0 3.41 0 1.72 9.99 0
黄蒿 Artemisia scoparia AF 0 0 22.09 0 6.53 6.11
灰绿藜 Chenopodium glaucum AF 0 2.46 0.69 0 0 0
鸡眼草 Kummerowia striata AL 0 0 1.54 0 0 0
尖头叶藜 Chenopodium acuminatum AF 0 0 0 3.54 4.01 4.94
芦苇 Phragmites australis PG 0 0 9.56 0 0 6.36
少花米口袋 Gueldenstaedtia verna PL 0 0 1.58 0 0 0
三芒草 Aristida adscensionis AG 0 3.07 4.37 0 0 0
砂蓝刺头 Echinops gmelinii AF 0 1.42 0 0 8.62 0
牻牛儿苗 Erodium stephanianum AF 0 0 1.67 0 0 12.76
中华苦荬菜 Ixeris chinensis AF 0 2.17 0 0 0 0
小叶锦鸡儿 Caragana microphylla SH/PL 0 2.46 0 0 0 0
独行菜 Lepidium apetalum AG 0 0 0 0 0 5.00
总计 Total - 10 18 18 14 14 13

Fig. 3

Interannual variation of the important value of plant community functional groups in different enclosure types of sandy lands in Horqin Sandy Land. FD, fixed dune; MD, mobile dune; SG, sandy grassland. AF, annual forbs; AG; annual grasses; PF, perennial forbs; PG, perennial grasses; PH, perennial grass layer; PL, perennial legumes; SH, shrubs or subshrubs. k, regression line slope. Only the test parameter values that reach the level of significance (p < 0.05) are listed in this figure."

Table 2

Pearson’s correlation coefficient between important values of community functional groups in different types enclosed sandy land in Horqin Sandy Land"

沙地 Sandy land 功能群 Functional group R p 沙地 Sandy land 功能群 Functional group R p
MD AF vs AG -0.28 0.35 FD PL vs SH 0.33 0.28
MD AF vs SH -0.21 0.49 SG AF vs AG -0.72 <0.01
MD AG vs SH -0.11 0.72 SG AF vs PF -0.23 0.44
FD AF vs AG -0.28 0.36 SG AF vs PG -0.81 <0.01
FD AF vs PF -0.13 0.67 SG AF vs PL -0.17 0.58
FD AF vs PL -0.65 <0.05 SG AG vs PF 0.37 0.21
FD AF vs SH -0.71 <0.01 SG AG vs PG 0.22 0.47
FD AG vs PF -0.20 0.51 SG AG vs PL -0.14 0.64
FD AG vs PL -0.03 0.93 SG PF vs PG 0.14 0.64
FD AG vs SH -0.17 0.57 SG PF vs PL -0.04 0.90
FD PF vs PL -0.14 0.65 SG PG vs PL 0.53 0.14
FD PF vs SH -0.18 0.57 SG

Table 3

Multiple comparisons of soil nutrients, soil moisture, soil organic matter and soil seed density, seed richness in different enclosure types of sandy lands in the Horqin Sandy Land in 2008 and 2017 (mean ± SD)"

土壤因子 Soil factor MD FD SG
2008年 2017年 2008年 2017年 2008年 2017年
SOM (g·kg-1) 0.53 ± 0.08a 0.42 ± 0.05b 1.13 ± 0.39a 1.05 ± 0.36a 5.64 ± 2.18a 4.05 ± 0.51a
TN (g·kg-1) 0.03 ± 0.05a 0.024 ± 0.01a 0.068 ± 0.02a 0.072 ± 0.06a 0.34 ± 0.11a 0.35 ± 0.07a
AN (mg·kg-1) 5.35 ± 1.25b 8.80 ± 2.52a 6.35 ± 3.20b 11.28 + 3.60a 22.51 ± 2.98b 29.87 ± 4.89a
AP (mg·kg-1) 4.14 ± 0.65b 9.88 ± 0.17a 3.88 ± 0.92b 9.87 ± 0.07a 3.22 ± 1.32b 9.43 ± 0.11a
AK (mg·kg-1) 54.67 ± 7.08a 43.05 ± 4.60b 64.58 ± 9.80a 65.61 ± 11.30a 116.42 ± 23.30a 112.47 ± 20.20a
SSD (粒·m-2) 492.0 ± 204.40a 670.0 ± 268.6a 2 669 ± 1 108a 1 860 ± 687a 3 344 ± 1 378a 4 072 ± 1 639a
SSR 4.0 ± 1.20b 5 ± 1.30a 10 ± 0.50a 8 ± 1.33b 12 ± 2.10a 9 ± 1.24b
SM (%) 2.43 ± 0.32b 2.00 ± 0.07c 3.72 ± 0.10a

Table 4

Relationships between plant community biomass and species richness with climatic factors in different habitats in different types enclosed sandy land in Horqin Sandy Land"

气候因子
Climate factor
沙地
Sandy land
生物量 Biomass (g·m-2) 物种丰富度 Spices richness
方程 Equation R2 p 方程 Equation R2 p
年降水量
Annual precipitation (mm)
MD y = -0.1x + 17.08 0.3 0.98 y = -0.35lg x + 13.34 0.03 0.26
FD y = 0.09x + 55.96 0.22 0.45 y = 14.78lg x - 19.67 0.15 0.10
SG y = 0.21x + 75.11 0.45 0.13 y = 0.19lg x + 13.50 0.08 0.79
生长季降水量
Growing season
precipitation (mm)
MD y = 0.03x + 8.39 0.13 0.66 y = -0.35lg x + 13.35 0.03 0.27
FD y = 0.09x + 58.26 0.21 0.48 y = 14.53lg x - 18.32 0.15 0.11
SG y = 0.17x + 93.17 0.32 0.28 y = 0.19lg x + 13.5 0.08 0.79
年平均气温
Annual average air
temperature (℃)
MD y = 1.2x2 - 22.64x + 117.04 0.24 0.23 y = -0.35x + 13.34 0.03 0.26
FD y = 2.42x2 - 39.89x + 234.26 0.42 0.06 y = -0.09x + 16.00 0.09 0.84
SG y = 2.65x2 - 44.46x + 306.24 0.19 0.35 y = 0.19x + 1.5 0.08 0.79

Fig. 4

Relationships among plant community biomass, and growing season precipitation, growing season accumulated temperature in different enclosure types of sandy land in the Horqin Sandy Land. FD, fixed dune; MD, mobile dune; SG, sandy grassland."

Fig. 5

Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) among plant community species, soil seed bank and soil nutrients. A, the DCA analysis of community species and soil seed bank. B, the CCA analysis of community species and soil nutrients. C, the CCA analysis of soil seed bank species and soil nutrients. FD, fixed dune; MD, mobile dune; SG, sandy grassland. AK, available potassium; AN, available nitrogen; AP, available phosphorus; SM, soil moisture; SOM, soil organic matter; TN, total nitrogen. Veg, vegtation."

[1] Bai Y, Han X, Wu J, Chen Z, Li L (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
[2] Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89, 2140-2153.
[3] Chang CM, Niu JM, Wang H, Zhang Q, Dong JJ, Kang SR, Han F, Na RS (2016). Dynamic change of soil moisture and its response to rainfall in a Stipa klemenzii steppe. Arid Zone Research, 33, 260-265.
[ 常昌明, 牛建明, 王海, 张庆, 董建军, 康萨如拉, 韩芳, 那日苏 (2016). 小针茅荒漠草原土壤水分动态及其对降雨的响应. 干旱区研究, 33, 260-265.]
[4] Cheng JM, Zou HY, Akio H (1995). The rational utilization of grassland and successional course of grassland vegetation in the Loess Plateau. Acta Prataculturae Sinica, 4(4), 17-22.
[ 程积民, 邹后远, 本江昭夫 (1995). 黄土高原草地合理利用与草地植被演替过程的实验研究. 草业学报, 4(4), 17-22.]
[5] Duan LM (2011). Dynamic Interrelation of Hydrology, Soil and Vegetation in the Horqin Sandy Land with Sand-Meadow Land Features. PhD dissertation, Inner Mongolia Agricultural University, Hohhot.
[ 段利民 (2011). 科尔沁沙地沙丘-草甸相间地区水文-土壤-植被动态响应关系研究. 博士学位论文, 内蒙古农业大学, 呼和浩特.]
[6] Gao K, Zhu TX, Han GD (2013). Impact of enclosure duration on plant functional and species diversity in Inner Mongolian grassland. Acta Prataculturae Sinica, 22(6), 39-45.
[ 高凯, 朱铁霞, 韩国栋 (2013). 围封年限对内蒙古羊草-针茅典型草原植物功能群及其多样性的影响. 草业学报, 22(6), 39-45.]
[7] Gao TM, Zhang RQ, Yue ZW (2015). Influence of enclosure on vegetation productivity and biodiversity on Xilamuren Grassland, Inner Mogolia. 2015 4th International Conference on Energy and Environmental Protection: 654-657. . Cited: 2019-03-20
[8] Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change. New Phytologist, 214, 41-47.
[9] Liu R, Cieraad E, Li Y, Ma J (2016). Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem. Ecosystems, 19, 601-614.
[10] Liu XM, Zhao HL, Zhao AF (1999). Wind-Sand Environment and Vegetation in Horqin Sandy Land. Science Press, Beijing. 191-221.
[ 刘新民, 赵哈林, 赵爱芬 (1999). 科尔沁沙地风沙环境与植被. 科学出版社, 北京. 191-221.]
[11] Liu YL, Lei HM (2015). Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sensing, 7, 10243-10268.
[12] Lu RK (1999). Analytical Method of Soil Agricultural Chemistry. China Agriculture Science and Technique Press, Beijing.
[ 鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[13] Lü P, Zuo XA, Yue XY, Zhang J, Zhao SL, Cheng QP (2018). Temporal changes of vegetation characteristics during the long-term grazing exclusion in Horqin Sandy Land. Chinese Journal of Ecology, 37, 2880-2888.
[ 吕朋, 左小安, 岳喜元, 张晶, 赵生龙, 程清平 (2018). 科尔沁沙地封育过程中植被特征的动态变化. 生态学杂志, 37, 2880-2888.]
[14] Miao RH, Jiang DM, Wang YC (2013). Change and mechanism of vegetation in the fenced sandy grassland in Horqin Sandy Land. Arid Zone Research, 30, 264-270.
[ 苗仁辉, 蒋德明, 王永翠 (2013). 科尔沁沙质草地封育过程中的植被变化及其机制. 干旱区研究, 30, 264-270.]
[15] Niu CY, Alamusa, Liu Y, Guo YH, Tian YH, Wang JL, Zhang W (2015). The characteristics of sand-fixation plantations roots and soil moisture Horqin Sandy Land. Journal of Arid Land Resources and Environment, 29(10), 106-111.
[ 牛存洋, 阿拉木萨, 刘亚, 郭宇航, 田英华, 王甲立, 张巍 (2015). 科尔沁沙地固沙植物根系与土壤水分特征研究. 干旱区资源与环境, 29(10), 106-111.]
[16] Plassmann K, Brown N, Jones MLM, Edwards-Jones G (2009). Can soil seed banks contribute to the restoration of dune slacks under conservation management? Applied Vegetation Science, 12, 199-210.
[17] Rong YP, Zhao ML, Han GD (2004). Principle and Technology of Grassland Resource Sustainable Utilization. Chemical Industry Press, Beijing.
[ 戎郁萍, 赵萌莉, 韩国栋 (2004). 草地资源可持续利用原理与技术. 化学工业出版社, 北京.]
[18] Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012). Legacies of precipitation fluctuations on primary production: Theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3135-3144.
[19] Shan GL, Xu Z, Ning F, Jiao Y (2009). Influence of seasonal on exclosure on plant and soil characteristics in typical steppe. Acta Prataculturae Sinica, 18, 3-10.
[ 单贵莲, 徐柱, 宁发, 焦燕 (2009). 围封年限对典型草原植被与土壤特征的影响. 草业学报, 18, 3-10.]
[20] Su YZ, Zhang TH, Li YL, Wang F (2005). Changes in soil properties after establishment of Artemisia halodendron and Caragana microphylla on shifting sand dunes in semiarid Horqin Sandy Land, Northern China. Environmental Management, 36, 272-281.
[21] Wairore JN, Mureithi SM, Wasonga OV, Nyberg G (2016). Benefits derived from rehabilitating a degraded semi-arid rangeland in private enclosures in West Pokot County, Kenya. Land Degradation & Development, 27, 532-541.
[22] Wang W, Liu ZL, Hao DY, Liang CZ (1996). Research on the restoring succession of the degenerated grassland in Inner Mongolia Ⅰ. Basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica, 20, 449-459.
[ 王炜, 刘钟龄, 郝敦元, 梁存柱 (1996). 内蒙古草原退化群落恢复演替的研究——I. 退化草原的基本特征与恢复演替动力. 植物生态学报, 20, 449-459.]
[23] Wang Y, Chu L, Daryanto S, Lü L, Ala MS, Wang L (2019). Sand dune stabilization changes the vegetation characteristics and soil seed bank and their correlations with environmental factors. Science of the Total Environment, 648, 500-507.
[24] Wilcox KR, Blair JM, Smith MD, Knapp AK (2016). Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions? Ecology, 97, 561-568.
[25] Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill Jr J, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, LeCain D, Liang J, Garcia-Palacios P, Peñuelas J, Pockman WT, Smith MD, Sun S, White SR, Yahdjian L, Zhu K, Luo Y (2017). Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology, 23, 4376-4385.
[26] Yan YC, Tang HP, Xin XP, Wang X (2009). Advances in research on the effects of exclosure on grasslands, Acta Ecologica Sinica, 29, 5039-5046.
[ 闫玉春, 唐海萍, 辛晓平, 王旭 (2009). 围封对草地的影响研究进展. 生态学报, 29, 5039-5046.]
[27] Yassir I, van der Kamp J, Buurman P (2010). Secondary succession after fire in Imperata grasslands of East Kalimantan, Indonesia. Agriculture, Ecosystems & Environment, 137, 172-182.
[28] Zhang H, Fu QK, Li FR, Shirato Y (2003). Features of soil-plant system changes in different restorative stages of degraded sandy grasslands. Bulletin of Soil and Water Conservation, 23(6), 1-6.
[ 张华, 伏乾科, 李锋瑞, Shirato Y (2003). 退化沙质草地自然恢复过程中土壤-植物系统的变化特征. 水土保持通报, 23(6), 1-6.]
[29] Zhang JP, Li YQ, Zhao XY, Zhang TH, She QN, Liu M, Wei SL (2017). Effects of exclosure on soil physicochemical properties and carbon sequestration potential recovery of desertified grassland. Journal of Desert Research, 37, 491-499.
[ 张建鹏, 李玉强, 赵学勇, 张铜会, 佘倩楠, 刘敏, 魏水莲 (2017). 围封对沙漠化草地土壤理化性质和固碳潜力恢复的影响. 中国沙漠, 37, 491-499.]
[30] Zhang JY, Zhao HL, Zhang TH, Zhao XY (2004). Dynamics of species diversity of communities in restoration processes in Horqin Sandy Land. Acta Phytoecologica Sinica, 28, 86-92.
[ 张继义, 赵哈林, 张铜会, 赵学勇 (2004). 科尔沁沙地植被恢复系列上群落演替与物种多样性的恢复动态. 植物生态学报, 28, 86-92.]
[31] Zhao HL, Okuro T, Li YL, Zuo XA, Huang G, Zhou RL (2009). Changes of plant community in grazing and restoration processes in Horqin Sandy Land, Inner Mongolia. Journal of Desert Research, 29, 229-235.
[ 赵哈林, 大黑俊哉, 李玉霖, 左小安, 黄刚, 周瑞莲 (2009). 科尔沁沙质草地植物群落的放牧退化及其自然恢复过程. 中国沙漠, 29, 229-235.]
[32] Zhao HL, Su YZ, Zhou RL (2006). Restoration mechanism of degraded vegetation in sandy areas of northern China. Journal of Desert Research, 26, 323-328.
[ 赵哈林, 苏永中, 周瑞莲 (2006). 我国北方沙区退化植被的恢复机理. 中国沙漠, 26, 323-328.]
[33] Zhao HL, Zhao XY, Zhang TH, Wu W (2003). Desertification Process and Restoration Mechanism in Horqin Sandy Land. China Ocean Press, Beijing.
[ 赵哈林, 赵学勇, 张铜会, 吴薇 (2003). 科尔沁沙地沙漠化过程及其恢复机理. 海洋出版社, 北京.]
[34] Zhao LY, Li ZH, Zhao JH, Zhao HL, Zhao XY (2006). Comparison on the difference in soil seed bank between grazed and enclosed grasslands in Horqin Sandy Land. Journal of Plant Ecology (Chinese Version), 30, 617-623.
[ 赵丽娅, 李兆华, 赵锦慧, 赵哈林, 赵学勇 (2006). 科尔沁沙质草地放牧和围封条件下的土壤种子库. 植物生态学报, 30, 617-623.]
[35] Zhao LY, Zhang XY, Xiong BQ, Zhang J (2017). Influence of fencing and grazing on the soil and standing vegetation changes in Horqin sandy grassland. Ecology and Environmental Sciences, 26, 971-977.
[ 赵丽娅, 张晓雨, 熊炳桥, 张劲 (2017). 围封和放牧对科尔沁沙质草地植被和土壤的影响. 生态环境学报, 26, 971-977.]
[36] Zhao PP, Li GQ, Shao WS, Jin CQ (2018). Influence of herbivore exclusion on the soil seed bank and the aboveground vegetation characteristics of Agropyron mongolicum dominant desert steppe grassland. Acta Prataculturae Sinica, 27(1), 42-52.
[ 赵盼盼, 李国旗, 邵文山, 靳长青 (2018). 围封对荒漠草原区沙芦草群落土壤种子库及地上植被的影响. 草业学报, 27(1), 42-52.]
[37] Zuo XA, Wang SK, Zhao XY, Lian J (2014). Scale dependence of plant species richness and vegetation-environment relationship along a gradient of dune stabilization in Horqin Sandy Land, Northern China. Journal of Arid Land, 6, 334-342.
[38] Zuo XA, Yue XY, Lv P, Yu Q, Chen M, Zhang J, Luo YQ, Wang SK, Zhang J (2017). Contrasting effects of plant inter- and intraspecific variation on community trait responses to restoration of a sandy grassland ecosystem. Ecology and Evolution, 7, 1125-1134.
[39] Zuo XA, Zhao XY, Zhao HL, Li YQ, Guo YR, Zhao YP (2007). Changes of species diversity and productivity in relation to soil properties in sandy grassland in Horqin Sandy Land. Environmental Science, 28, 945-951.
[ 左小安, 赵学勇, 赵哈林, 李玉强, 郭轶瑞, 赵玉萍 (2007). 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系. 环境科学, 28, 945-951.]
[40] Zuo XA, Zhao XY, Zhao HL, Zhang TH, Li YL, Wang SK, Li WJ, Powers R (2012). Scale dependent effects of environmental factors on vegetation pattern and composition in Horqin Sandy Land, Northern China. Geoderma, 173-174, 1-9.
[1] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[2] ZHANG Zhi-Guo, WEI Hai-Xia. Variations of leaf construction cost and leaf traits within the species of Artemisia ordosica along a precipitation gradient in the Mau Us sandy land [J]. Chin J Plant Ecol, 2019, 43(11): 979-987.
[3] NING Zhi-Ying, LI Yu-Lin, YANG Hong-Ling, ZHANG Zi-Qian. Nitrogen and phosphorus stoichiometric homoeostasis in leaves of dominant sand-fixing shrubs in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2019, 43(1): 46-54.
[4] Xuemeng Hong,Xinyu Ge,Junlan Li. Butterfly diversity and its influencing factors in Saihanwula Nature Reserve [J]. Biodiv Sci, 2018, 26(6): 590-600.
[5] YU Xiao-Ya, LI Yu-Hui, YANG Guang-Rong. Fruit types and seed dispersal modes of plants in different communities in Shilin Geopark, Yunnan, China [J]. Chin J Plan Ecolo, 2018, 42(6): 663-671.
[6] GU Xiang,ZHANG Shi-Ji,LIU Zhao-Dan,LI Lei-Da,CHEN Jin-Lei,WANG Liu-Fang,FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plan Ecolo, 2018, 42(5): 595-608.
[7] YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(3): 327-336.
[8] GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon mineralization in the east of Hunan, China [J]. Chin J Plant Ecol, 2018, 42(12): 1211-1224.
[9] Xi LI, Fang WANG, Yang CAO, Shou-Zhang PENG, Yun-Ming CHEN. Soil carbon storage and its determinants in the forests of Shaanxi Province, China [J]. Chin J Plan Ecolo, 2017, 41(9): 953-963.
[10] Hao ZHANG, Mao-Kui Lyu, Jin-Sheng XIE. Effect of Dicranopteris dichotoma on spectroscopic characteristic of dissolved organic matter in red soil erosion area [J]. Chin J Plan Ecolo, 2017, 41(8): 862-871.
[11] Jian-Rong GUO, Xian-Chong WAN. Circadian rhythm of root pressure in popular and its driving factors [J]. Chin J Plan Ecolo, 2017, 41(3): 369-377.
[12] Jida Yang,Zhiming Zhang,Zehao Shen,Xiaokun Ou,Yupeng Geng,Mingyu Yang. Review of research on the vegetation and environment of dry-hot valleys in Yunnan [J]. Biodiv Sci, 2016, 24(4): 462-474.
[13] LIU Zhu, YANG Yu-Sheng, SI You-Tao, KANG Gen-Li, and ZHENG Huai-Zhou. Effects of vegetation restoration on content and spectroscopic characteristics of dissolved organic matter in eroded red soil [J]. Chin J Plan Ecolo, 2014, 38(11): 1174-1183.
[14] Guohong Wang, Xiaoping Wang, Weikang Zhang, He Li, Lianhai Du, Jigui Wu. A functional analysis of resistance of plant communities to disturbance: a case study of Beijing nature reserves [J]. Biodiv Sci, 2013, 21(2): 153-162.
[15] TANG Yi and LIU Zhi-Min. Advances, trends and challenges in seed bank research for sand dune ecosystems [J]. Chin J Plan Ecolo, 2012, 36(8): 891-898.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[2] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .
[3] Li Guo-zhen;Qin Ming-bo;Kang Ning-ling;Xie De-yu;Ye He-chun and Li Guo-feng. Tissue Culture and Chromosome Analysis of Arnebia euchroma[J]. Chin Bull Bot, 1992, 9(01): 37 -41 .
[4] Han Bi-wen. The Synthitic Activities of Roots and their Relation to the Above-grond Parts[J]. Chin Bull Bot, 1984, 2(23): 23 -25 .
[5] Guiling Wang;Zhiwei Qin;Xiuyan Zhou;Zhiyun Zhao. Genetic Analysis and SSR Markers of Tuberculate Trait in Cucumis sativus[J]. Chin Bull Bot, 2007, 24(02): 168 -172 .
[6] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens[J]. Chin Bull Bot, 2007, 24(02): 161 -167 .
[7] Hao Zhao;Zhao Xue-chen;Zheng Shu-jun and Qu Chun-ying. Winter Hardiness of Wheat Seedling at Differant Leaf-Age[J]. Chin Bull Bot, 1985, 3(05): 38 -40 .
[8] Chang Huey-ju;Guan Zhong-tian;Zhou Lin and Hsu Kuo-shih. Comparison of two natural cycad communities in China[J]. Chin Bull Bot, 1995, 12(专辑): 52 -58 .
[9] . Positional Information and Plant Development [J]. Chin Bull Bot, 2005, 22(03): 366 -374 .
[10] Deyong Ren, Guanghua He, Yinghua Ling, Xianchun Sang, Zhenglin Yang, Fangming Zhao. Analysis of Quantitative Trait Loci Additive and Epistasis Effects for Panicle Length with Single Segment Substitution Lines in Rice[J]. Chin Bull Bot, 2010, 45(06): 662 -669 .