 
	植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 362-370.DOI: 10.17521/cjpe.2015.0035
所属专题: 植物功能性状
收稿日期:2014-12-05
									
				
									
				
											接受日期:2015-03-17
									
				
											出版日期:2015-04-01
									
				
											发布日期:2015-04-21
									
			通讯作者:
					赵成章
							作者简介:# 共同第一作者
基金资助:
        
               		SHI Yuan-Chun, ZHAO Cheng-Zhang*( ), SONG Qing-Hua, DU Jing, CHEN Jing, WANG Ji-Wei
), SONG Qing-Hua, DU Jing, CHEN Jing, WANG Ji-Wei
			  
			
			
			
                
        
    
Received:2014-12-05
									
				
									
				
											Accepted:2015-03-17
									
				
											Online:2015-04-01
									
								
											Published:2015-04-21
									
							Contact:
					Cheng-Zhang ZHAO   
							About author:# Co-first authors
摘要:
枝叶生长关系是植物在环境胁迫条件下提高空间资源利用能力的一种策略, 弄清枝叶生长关系对理解植物应对环境异质性的表型可塑性具有重要意义。该文利用ArcGIS建立研究区域的数字高程模型, 研究了兰州市北山不同坡向人工林刺槐(Robinia pseudoacacia)小枝茎截面积-总叶面积和出叶强度-单叶面积的生长关系。结果表明: 随着坡向由北坡向东坡、南坡和西坡转变, 刺槐林群落的郁闭度、高度和土壤含水量呈现先减小后增大的趋势, 刺槐小枝茎截面积、总叶面积和单叶面积呈现先减小后增大的趋势, 出叶强度呈现先增大后减小的趋势; 北坡、东坡、南坡和西坡4个坡向的刺槐小枝的茎截面积和总叶面积均呈显著的正相关关系(p < 0.05), 并存在显著大于1的共同斜率, 刺槐的出叶强度与单叶面积均呈显著的负相关关系(p < 0.05), 并存在接近于-1的共同斜率; 随着坡向由北坡向东坡、南坡和西坡转变, 茎截面积-总叶面积和出叶强度-单叶面积两组关系的回归方程截距呈现先减小后增大的趋势。刺槐枝叶在不同坡向上的异速生长关系反映了植物功能性状对生长环境的响应和适应, 以及植物构型构建的投资权衡机制。
史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 2015, 39(4): 362-370. DOI: 10.17521/cjpe.2015.0035
SHI Yuan-Chun,ZHAO Cheng-Zhang,SONG Qing-Hua,DU Jing,CHEN Jing,WANG Ji-Wei. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 2015, 39(4): 362-370. DOI: 10.17521/cjpe.2015.0035
| 坡向 Aspect | 群落特征 Community characteristics | 土壤水分 Soil moisture (%) | |
|---|---|---|---|
| 郁闭度 Crown density (%) | 高度 Height (cm) | ||
| 北坡 North slope | 87.151 ± 4.910a | 398.547 ± 23.352a | 8.779 ± 0.297a | 
| 东坡 East slope | 79.094 ± 4.012b | 341.025 ± 13.221b | 7.914 ± 0.380b | 
| 南坡 South slope | 67.383 ± 2.715c | 301.722 ± 15.144c | 6.837 ± 0.517c | 
| 西坡 West slope | 78.779 ± 5.294b | 339.448 ± 11.989b | 7.848 ± 0.411b | 
表1 不同坡向样带的主要特征(平均值±标准误差)
Table 1 Main characteristics of the transects in different slope aspects (mean ± SE)
| 坡向 Aspect | 群落特征 Community characteristics | 土壤水分 Soil moisture (%) | |
|---|---|---|---|
| 郁闭度 Crown density (%) | 高度 Height (cm) | ||
| 北坡 North slope | 87.151 ± 4.910a | 398.547 ± 23.352a | 8.779 ± 0.297a | 
| 东坡 East slope | 79.094 ± 4.012b | 341.025 ± 13.221b | 7.914 ± 0.380b | 
| 南坡 South slope | 67.383 ± 2.715c | 301.722 ± 15.144c | 6.837 ± 0.517c | 
| 西坡 West slope | 78.779 ± 5.294b | 339.448 ± 11.989b | 7.848 ± 0.411b | 
| 坡向 Aspect | 茎截面积 Cross-sectional area of twigs (mm2) | 总叶面积 Total leaf area (cm2) | 出叶强度 Leafing intensity (No.·mm-3) | 单叶面积 Individual leaf area (mm2) | 
|---|---|---|---|---|
| 北坡 North slope | 12.892 ± 0.128a | 37.695 ± 1.743a | 0.014 ± 0.002c | 539.848 ± 26.372a | 
| 东坡 East slope | 12.496 ± 0.224b | 33.314 ± 1.609b | 0.018 ± 0.001b | 478.526 ± 24.131b | 
| 南坡 South slope | 11.613 ± 0.283c | 25.064 ± 1.878c | 0.021 ± 0.001a | 374.171 ± 21.387c | 
| 西坡 West slope | 12.245 ± 0.335b | 32.129 ± 1.831b | 0.017 ± 0.001b | 472.809 ± 22.813b | 
表2 不同坡向刺槐枝与叶性状(平均值±标准误差)
Table 2 Twig and leaf traits of Robinia pseudoacacia in different slope aspects (mean ± SE)
| 坡向 Aspect | 茎截面积 Cross-sectional area of twigs (mm2) | 总叶面积 Total leaf area (cm2) | 出叶强度 Leafing intensity (No.·mm-3) | 单叶面积 Individual leaf area (mm2) | 
|---|---|---|---|---|
| 北坡 North slope | 12.892 ± 0.128a | 37.695 ± 1.743a | 0.014 ± 0.002c | 539.848 ± 26.372a | 
| 东坡 East slope | 12.496 ± 0.224b | 33.314 ± 1.609b | 0.018 ± 0.001b | 478.526 ± 24.131b | 
| 南坡 South slope | 11.613 ± 0.283c | 25.064 ± 1.878c | 0.021 ± 0.001a | 374.171 ± 21.387c | 
| 西坡 West slope | 12.245 ± 0.335b | 32.129 ± 1.831b | 0.017 ± 0.001b | 472.809 ± 22.813b | 
 
																													图1 刺槐茎截面积与总叶面积的关系。A, 北坡; B, 东坡; C, 南坡; D, 西坡。
Fig. 1 Relationship between the cross-sectional area of twigs and total leaf area in Robinia pseudoacacia. A, north slope; B, east slope; C, south slope; D, west slope.
 
																													图2 刺槐出叶强度与单叶面积的关系。A, 北坡; B, 东坡; C, 南坡; D, 西坡。
Fig. 2 Relationship between leafing intensity and individual leaf area in Robinia pseudoacacia. A, north slope; B, east slope; C, south slope; D, west slope.
| [1] | Ackerly DD, Preston KA (2003). Hydraulic architecture and the evolution of shoot allometry in contrasting climates.American Journal of Botany, 90, 1502-1512. | 
| [2] | Ai ZM, Chen YM, Cao Y (2014). Storage and allocation of carbon and nitrogen in Robinia pseudoacacia plantation at different ages in the loess hilly region, China.Chinese Journal of Applied Ecology, 25, 333-341.(in Chinese with English abstract) | 
| [艾泽民, 陈云明, 曹扬 (2014). 黄土丘陵区不同林龄刺槐人工林碳、氮储量及分配格局. 应用生态学报, 25, 333-341.] | |
| [3] | Bazzaz FA (1996). Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Cambridge University Press, Cambridge, UK. | 
| [4] | Bell AD (1993). Plant Form: An Illustrated Guide to Flowering Plant Morphology. Oxford University Press, New York. | 
| [5] | Bernard-Verdier M, Navas ML, Vellend M (2012). Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland.Journal of Ecology, 100, 1422-1433. | 
| [6] | Bonser SP, Aarssen LW (1996). Meristem allocation: A new classification theory for adaptive strategies in herbaceous plants.Oikos, 77, 347-352. | 
| [7] | Brouat C, Gibernau M, Amsellem L, McKey D (1998). Corner’s rules revisited: Ontogenetic and interspecific patterns in leaf-stem allometry.New Phytologist, 139, 459-470. | 
| [8] | Callaway RM, Delucia EH, Schlesinger WH (1994). Biomass allocation of montane and desert ponderosa pine: An analog for response to climate change.Ecology, 75, 1474-1481. | 
| [9] | Cantón Y, del Barrio G, Solé Benet A (2004). Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain.Catena, 55, 341-365. | 
| [10] | Chen Y, Xu X, Zhang DR, Wei Y (2006). Correlations between vegetation distribution and topographical factors in the northwest of Longmen Mountain, Sichuan Province.Chinese Journal of Ecology, 25, 1052-1055.(in Chinese with English abstract) | 
| [陈瑶, 胥晓, 张德然, 魏勇 (2006). 四川龙门山西北部植被分布与地形因子的相关性. 生态学杂志, 25, 1052-1055.] | |
| [11] | Corner EJH (1949). The durian theory or the origin of the modern tree.Annals of Botany, 13, 367-414. | 
| [12] | Enquist BJ, Niklas KJ (2001). Invariant scaling relations across tree-dominated communities.Nature, 410, 655-660. | 
| [13] | Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants.Science, 295, 1517-1520. | 
| [14] | Enquist BJ, West GB, Charnov EL, Brown JH (1999). Allometric scaling of production and life-history variation in vascular plants.Nature, 401, 907-911. | 
| [15] | Falster DS, Warton DI, Wright IJ (2006). User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2.0. . Cited 2014-11-20. | 
| [16] | Givnish TJ (1978). Ecological aspects of plant morphology: Leaf form in relation to environment.Acta Biotheoretica, 27, 83-142. | 
| [17] | Givnish TJ (1979). On the adaptive significance of leaf form. In: Solbrig OT, Jain S, Johnson GB eds. Topics in Plant Population Biology. Columbia University Press, New York. 375-407. | 
| [18] | Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.New Phytologist, 106(Suppl.), 131-160. | 
| [19] | Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves.The American Naturalist, 110, 743-778. | 
| [20] | Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra JP (2010). Ecophysiological and bioclimatic foundations for a global plant functional classification.Journal of Vegetation Science, 21, 300-317. | 
| [21] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK. | 
| [22] | Hou ZJ, Zhao CZ, Li Y, Zhang Q, Ma XL (2014). Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland.Chinese Journal of Plant Ecology, 38, 281-288.(in Chinese with English abstract) | 
| [侯兆疆, 赵成章, 李钰, 张茜, 马小丽 (2014). 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系. 植物生态学报, 38, 281-288.] | |
| [23] | Li J, Wang XC, Shao MA, Zhao YJ, Li XF (2010). Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau.Chinese Journal of Plant Ecology, 34, 330-339.(in Chinese with English abstract) | 
| [李军, 王学春, 邵明安, 赵玉娟, 李小芳 (2010). 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟. 植物生态学报, 34, 330-339.] | |
| [24] | Li Y, Zhao CZ, Dong XG, Hou ZJ, Ma XL, Zhang Q (2013). Responses of Stellera chamaejasme twig and leaf traits to slope aspect in alpine grassland of Northwest China.Chinese Journal of Ecology, 32, 3145-3151.(in Chinese with English abstract) | 
| [李钰, 赵成章, 董小刚, 侯兆疆, 马小丽, 张茜 (2013). 高寒草地狼毒枝-叶性状对坡向的响应. 生态学杂志, 32, 3145-3151.] | |
| [25] | Li YN, Yang DM, Sun SC, Gao XM (2008). Effects of twig size on biomass allocation within twigs and on lamina area supporting efficiency in Rhododendron: Allometric scaling analyses.Journal of Plant Ecology, 32, 1175-1183.(in Chinese with English abstract) | 
| [李亚男, 杨冬梅, 孙书存, 高贤明 (2008). 杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响: 异速生长分析. 植物生态学报, 32, 1175-1183.] | |
| [26] | McCulloh KA, Sperry JS (2005). Patterns in hydraulic architecture and their implications for transport efficiency.Tree Physiology, 25, 257-267. | 
| [27] | McDonald PG, Fonseca CR, McCoverton J (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades?Functional Ecology, 17, 50-57. | 
| [28] | Niklas KJ (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function. University of Chicago Press, Chicago. | 
| [29] | Normand F, Bissery C, Damour G, Lauri PÉ (2008). Hydraulic and mechanical stem properties affect leaf-stem allometry in mango cultivars.New Phytologist, 178, 590-602. | 
| [30] | Olson ME, Aguirre-Hernández R, Rosell JA (2009). Universal foliage-stem scaling across environments and species in dicot trees: Plasticity, biomechanics and Corner’s rules.Ecology Letters, 12, 210-219. | 
| [31] | Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment.The Journal of Ecology, 60, 505-537. | 
| [32] | Pitman EJG (1939). A note on normal correlation.Biometrika, 31, 9-12. | 
| [33] | Shan CJ, Liang ZS, Hao WF, Liu SM (2004). Relationship between growth of locust and soil water in the different habitats on the Loess Plateau.Journal of Northwest Forestry University, 19(2), 9-14.(in Chinese with English abstract) | 
| [单长卷, 梁宗锁, 郝文芳, 刘淑明 (2004). 黄土高原不同立地条件下刺槐生长与水分关系研究. 西北林学院学报, 19(2), 9-14.] | |
| [34] | Shen JP, Zhang WH (2014). Characteristics of carbon storage and sequestration of Robinia pseudoacacia forest land converted by farmland in the Hilly Loess Plateau Region.Acta Ecologica Sinica, 34, 2746-2754.(in Chinese with English abstract) | 
| [申家朋, 张文辉 (2014). 黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律. 生态学报, 34, 2746-2754.] | |
| [35] | Shi QR, Xu MS, Zhao YT, Zhou LL, Zhang QQ, Ma WJ, Zhao Q, Yan ER (2014). Testing of corner’s rules across woody plants in Tiantong region, Zhejiang Province: Effects of micro-topography.Chinese Journal of Plant Ecology, 38, 665-674.(in Chinese with English abstract) | 
| [史青茹, 许洺山, 赵延涛, 周刘丽, 张晴晴, 马文济, 赵绮, 阎恩荣 (2014). 浙江天童木本植物Corner法则的检验: 微地形的影响. 植物生态学报, 38, 665-674.] | |
| [36] | Silvertown J (2004). Plant coexistence and the niche.Trends in Ecology and Evolution, 19, 605-611. | 
| [37] | Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship.Annals of Botany, 97, 97-107. | 
| [38] | Tang GA, Li FY, Liu XJ (2010). Tutorial of Digital Elevation Model. Science Press, Beijing. 149.(in Chinese) | 
| [汤国安, 李发源, 刘学军 (2010). 数字高程模型教程. 科学出版社, 北京. 149.] | |
| [39] | Vandermeer JH (1972). Niche theory.Annual Review of Ecology and Systematics, 3, 107-132. | 
| [40] | Wang L, Feng JX, Wang SX, Jia CR, Wan XC (2013). The interaction of drought and slope aspect on growth of Quercus variabilis and Platycladus orientalis.Acta Ecologica Sinica, 33, 2425-2433.(in Chinese with English abstract) | 
| [王林, 冯锦霞, 王双霞, 贾长荣, 万贤崇 (2013). 干旱和坡向互作对栓皮栎和侧柏生长的影响. 生态学报, 33, 2425-2433.] | |
| [41] | Wang YP, Gao HH, Liu YS, Mu P, Yu XP, An LZ, Zhang F (2013). Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress: A review.Chinese Journal of Applied Ecology, 24, 2049-2055.(in Chinese with English abstract) | 
| [王玉萍, 高会会, 刘悦善, 慕平, 鱼小军, 安黎哲, 张峰 (2013). 高山植物光合机构耐受胁迫的适应机制. 应用生态学报, 24, 2049-2055.] | |
| [42] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models.Biometrical Journal, 44, 161-174. | 
| [43] | Warton DI, Wright IJ, Falster DS (2006). Bivariate line fitting methods for allometry.Biological Reviews, 81, 259-291. | 
| [44] | Wei LL, Zhang XQ, Hou ZH, Xu DY, Yu XB (2005). Effects of water stress on photosynthesis and carbon allocation in Cunninghamia lancealata seedlings.Acta Phytoecologica Sinica, 29, 394-402.(in Chinese with English abstract) | 
| [韦莉莉, 张小全, 侯振宏, 徐德应, 余雪标 (2005). 杉木苗木光合作用及其产物分配对水分胁迫的响应. 植物生态学报, 29, 394-402.] | |
| [45] | West GB, Brown JH, Enquist BJ (1997). A general model for the origin of allometric scaling laws in biology.Science, 276, 122-126. | 
| [46] | West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems.Nature, 400, 664-667. | 
| [47] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: Some leading dimensions of variation between species.Annual Review of Ecology and Systematics, 33, 125-159. | 
| [48] | Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species.Oecologia, 135, 621-628. | 
| [49] | Xu Y, Yang XD, Xie YM, Xu YL, Chang SX, Yan ER (2012). Twig size-number trade-off among woody plants in Tiantong region, Zhejiang Province of China.Chinese Journal of Plant Ecology, 36, 1268-1276.(in Chinese with English abstract) | 
| [许月, 杨晓东, 谢一鸣, 徐艺露, Chang SX, 阎恩荣 (2012). 浙江天童木本植物小枝的“大小-数量”权衡. 植物生态学报, 36, 1268-1276.] | |
| [50] | Yang DM, Li GY, Sun SC (2008). The generality of leaf size versus number trade-off in temperate woody species.Annals of Botany, 102, 623-629. | 
| [51] | Yang DM, Zhan F, Zhang HW (2012a). Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China.Chinese Journal of Plant Ecology, 36, 281-291.(in Chinese with English abstract) | 
| [杨冬梅, 占峰, 张宏伟 (2012a). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系, 植物生态学报, 36, 281-291.] | |
| [52] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin L M (2012b). Leaf and twig functional traits of woody plants and their relationships with environmental change: A review.Chinese Journal of Ecology, 31, 702-713.(in Chinese with English abstract) | 
| [杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012b). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
| [53] | Yin J, Qiu GY, He F, He KN, Tian JH, Zhang WQ, Xiong YJ, Zhao SH, Liu JX (2008). Leaf area characteristics of plantation stands in semi-arid loess hill-gully region of China. Journal of Plant Ecology (Chinese Version), 32, 440-447.(in Chinese with English abstract) | 
| [尹婧, 邱国玉, 何凡, 贺康宁, 田晶会, 张卫强, 熊育久, 赵少华, 刘建新 (2008). 半干旱黄土丘陵区人工林叶面积特征. 植物生态学报, 32, 440-447.] | |
| [54] | Yin XQ (2004). Biogeography. Higher Education Press, Beijing. 26-28.(in Chinese) | 
| [殷秀琴 (2004). 生物地理学. 高等教育出版社, 北京. 26-28.] | |
| [55] | Yu ZH, Chen YM, Du S (2009). Sap flow dynamics in the leaf-flushing period of a Robinia pseudoacacia plantation in semi-arid region of loess plateau.Scientia Silvae Sinicae, 45(4), 53-59.(in Chinese with English abstract) | 
| [于占辉, 陈云明, 杜盛 (2009). 黄土高原半干旱区人工林刺槐展叶期树干液流动态分析. 林业科学, 45(4), 53-59.] | |
| [56] | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits.Acta Phytoecologica Sinica, 28, 844-852.(in Chinese with English abstract) | 
| [张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.] | 
| [1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. | 
| [2] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. | 
| [3] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. | 
| [4] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. | 
| [5] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. | 
| [6] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. | 
| [7] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. | 
| [8] | 李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报, 2018, 42(10): 1009-1021. | 
| [9] | 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫. 基于功能性状及系统发育的亚高寒草甸群落构建[J]. 植物生态学报, 2017, 41(11): 1157-1167. | 
| [10] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. | 
| [11] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 高寒草地甘肃臭草根系分形结构的坡向差异性[J]. 植物生态学报, 2015, 39(8): 816-824. | 
| [12] | 宋清华, 赵成章, 史元春, 杜晶, 王继伟, 陈静. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系[J]. 植物生态学报, 2015, 39(6): 577-585. | 
| [13] | 吴旭, 陈云明, 唐亚坤. 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J]. 植物生态学报, 2015, 39(12): 1176-1187. | 
| [14] | 郑慧玲, 赵成章, 徐婷, 段贝贝, 韩玲, 冯威. 红砂根系分叉数和分支角度权衡关系的坡向差异[J]. 植物生态学报, 2015, 39(11): 1062-1070. | 
| [15] | 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚. 祁连山高寒草地甘肃臭草叶性状与坡向间的关系[J]. 植物生态学报, 2015, 39(1): 23-31. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
	
	Copyright © 2022 版权所有 《植物生态学报》编辑部  
地址: 北京香山南辛村20号, 邮编: 100093 
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn 
 备案号: 京ICP备16067583号-19