植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 352-361.DOI: 10.17521/cjpe.2015.0034
收稿日期:
2014-11-13
接受日期:
2015-03-17
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
王传宽
作者简介:
# 共同第一作者
基金资助:
QUAN Xian-Kui, WANG Chuan-Kuan*()
Received:
2014-11-13
Accepted:
2015-03-17
Online:
2015-04-01
Published:
2015-04-21
Contact:
Chuan-Kuan WANG
About author:
# Co-first authors
摘要:
研究环境变化下的树木水分利用效率对探讨森林生态系统碳水耦联关系及其对气候变化的响应和适应对策具有重要意义。落叶松(Larix gmelinii)为我国北方森林的建群种之一。将水热条件不同的17个种源落叶松种植在帽儿山森林生态系统研究站的同质园内30年后, 测定其针叶水分利用效率(WUE)及其相关因子。结果表明: WUE、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、比叶面积(SLA)和叶片氮含量(NL)均存在显著的种源差异(p < 0.05)。WUE和Gs呈显著指数相关关系, 当Gs < 0.2时WUE随Gs的增大而明显增大, 而当Gs > 0.2时WUE趋于稳定。WUE和SLA及NL分别呈线性负相关和正相关关系, 且随种源原地的干燥度指数(AI)的增大其相关性明显增强。WUE和种源原地年平均气温、平均年降水量及AI分别呈线性负相关、负相关和正相关关系, 并且相关系数依次增大; Tr则仅和种源原地年平均气温呈线性正相关关系, 而Pn和种源原地AI呈线性正相关关系。不同种源落叶松由于对种源原地环境条件的适应而存在针叶结构和生理特征的显著差异, 并因此引起针叶水分利用效率的差异。
全先奎, 王传宽. 帽儿山17个种源落叶松针叶的水分利用效率比较. 植物生态学报, 2015, 39(4): 352-361. DOI: 10.17521/cjpe.2015.0034
QUAN Xian-Kui,WANG Chuan-Kuan. Comparison of foliar water use efficiency among 17 provenances of Larix gmelinii in the Mao’ershan area. Chinese Journal of Plant Ecology, 2015, 39(4): 352-361. DOI: 10.17521/cjpe.2015.0034
种源 Provenance | 代码 Code | 纬度Latitude (N) | 经度Longitude (E) | 年平均气温 MAT (℃) | 平均年降水量 MAP (mm) | 平均年蒸发量 MAE (mm) | 干燥度 AI | ≥10 ℃积温CT (℃) | 相对湿度 RH (%) |
---|---|---|---|---|---|---|---|---|---|
友好 Youhao | 1 | 47.80° | 128.83° | -1.05 | 622.0 | 955.8 | 1.54 | 2 147.2 | 78 |
乌伊岭 Wuyiling | 2 | 48.67° | 129.42° | -1.19 | 584.6 | 1 038.0 | 1.78 | 1 851.2 | 73 |
新林 Xinlin | 3 | 51.70° | 124.33° | -3.35 | 507.3 | 912.0 | 1.80 | 1 535.3 | 69 |
桦皮窑 Huapiyao | 4 | 50.70° | 126.72° | -1.50 | 539.0 | 1 100.0 | 2.04 | 1 900.0 | 68 |
三站 Sanzhan | 5 | 49.62° | 126.80° | -1.30 | 527.2 | 1 076.0 | 2.04 | 1 650.0 | 70 |
十八站 Shibazhan | 6 | 52.42° | 125.27° | -2.03 | 480.0 | 999.1 | 2.08 | 1 680.0 | 70 |
沾河 Zhanhe | 7 | 48.45° | 126.50° | 0.12 | 501.7 | 1 057.0 | 2.11 | 2 442.3 | 70 |
塔河 Tahe | 8 | 52.32° | 124.72° | -2.74 | 487.9 | 1 028.0 | 2.11 | 1 671.4 | 68 |
莫尔道嘎 Moerdaoga | 9 | 51.25° | 120.58° | -4.50 | 471.0 | 999.4 | 2.12 | 1 485.0 | 70 |
甘河 Ganhe | 10 | 50.58° | 123.22° | -2.50 | 470.0 | 1 059.0 | 2.25 | 1 616.8 | 68 |
根河 Genhe | 11 | 50.68° | 121.95° | -5.00 | 436.3 | 991.4 | 2.27 | 1 297.6 | 70 |
鹤北 Hebei | 12 | 47.55° | 130.42° | 1.85 | 530.0 | 1 235.0 | 2.33 | 2 456.0 | 74 |
满归 Mangui | 13 | 52.05° | 122.18° | -5.83 | 466.0 | 1 100.0 | 2.36 | 1 550.0 | 72 |
绰尔 Chuoer | 14 | 48.17° | 121.25° | -3.40 | 462.3 | 1 122.0 | 2.43 | 1 238.4 | 70 |
库都尔 Kuerdu | 15 | 49.78° | 121.88° | -4.00 | 500.0 | 1 280.0 | 2.56 | 1 739.5 | 67 |
阿尔山 Aershan | 16 | 47.17° | 119.95° | -3.30 | 425.1 | 1 100.0 | 2.59 | 1 354.3 | 70 |
中央站 Zhongyangzhan | 17 | 50.75° | 125.20° | -2.20 | 484.4 | 1 387.0 | 2.86 | 1 780.0 | 69 |
表1 落叶松17个种源原地的地理和气候条件
Table 1 The geographic and climatic conditions of the origins of the 17 provenances of Larix gmelinii
种源 Provenance | 代码 Code | 纬度Latitude (N) | 经度Longitude (E) | 年平均气温 MAT (℃) | 平均年降水量 MAP (mm) | 平均年蒸发量 MAE (mm) | 干燥度 AI | ≥10 ℃积温CT (℃) | 相对湿度 RH (%) |
---|---|---|---|---|---|---|---|---|---|
友好 Youhao | 1 | 47.80° | 128.83° | -1.05 | 622.0 | 955.8 | 1.54 | 2 147.2 | 78 |
乌伊岭 Wuyiling | 2 | 48.67° | 129.42° | -1.19 | 584.6 | 1 038.0 | 1.78 | 1 851.2 | 73 |
新林 Xinlin | 3 | 51.70° | 124.33° | -3.35 | 507.3 | 912.0 | 1.80 | 1 535.3 | 69 |
桦皮窑 Huapiyao | 4 | 50.70° | 126.72° | -1.50 | 539.0 | 1 100.0 | 2.04 | 1 900.0 | 68 |
三站 Sanzhan | 5 | 49.62° | 126.80° | -1.30 | 527.2 | 1 076.0 | 2.04 | 1 650.0 | 70 |
十八站 Shibazhan | 6 | 52.42° | 125.27° | -2.03 | 480.0 | 999.1 | 2.08 | 1 680.0 | 70 |
沾河 Zhanhe | 7 | 48.45° | 126.50° | 0.12 | 501.7 | 1 057.0 | 2.11 | 2 442.3 | 70 |
塔河 Tahe | 8 | 52.32° | 124.72° | -2.74 | 487.9 | 1 028.0 | 2.11 | 1 671.4 | 68 |
莫尔道嘎 Moerdaoga | 9 | 51.25° | 120.58° | -4.50 | 471.0 | 999.4 | 2.12 | 1 485.0 | 70 |
甘河 Ganhe | 10 | 50.58° | 123.22° | -2.50 | 470.0 | 1 059.0 | 2.25 | 1 616.8 | 68 |
根河 Genhe | 11 | 50.68° | 121.95° | -5.00 | 436.3 | 991.4 | 2.27 | 1 297.6 | 70 |
鹤北 Hebei | 12 | 47.55° | 130.42° | 1.85 | 530.0 | 1 235.0 | 2.33 | 2 456.0 | 74 |
满归 Mangui | 13 | 52.05° | 122.18° | -5.83 | 466.0 | 1 100.0 | 2.36 | 1 550.0 | 72 |
绰尔 Chuoer | 14 | 48.17° | 121.25° | -3.40 | 462.3 | 1 122.0 | 2.43 | 1 238.4 | 70 |
库都尔 Kuerdu | 15 | 49.78° | 121.88° | -4.00 | 500.0 | 1 280.0 | 2.56 | 1 739.5 | 67 |
阿尔山 Aershan | 16 | 47.17° | 119.95° | -3.30 | 425.1 | 1 100.0 | 2.59 | 1 354.3 | 70 |
中央站 Zhongyangzhan | 17 | 50.75° | 125.20° | -2.20 | 484.4 | 1 387.0 | 2.86 | 1 780.0 | 69 |
图1 落叶松针叶净光合速率(Pn)、蒸腾速率(Tr)、水分利用效率(WUE)、气孔导度(Gs)、比叶面积(SLA)和叶氮含量(NL)的种源比较(平均值±标准误差, n = 9)。不同字母表示种源间差异显著(p < 0.05)。种源代码同表1。
Fig. 1 Comparisons of foliar net photosynthetic rate (Pn), transpiration rate (Tr), water use efficiency (WUE), stomatal conductance (Gs), special leaf area (SLA), and leaf nitrogen concentration (NL) of Larix gmelinii trees originating from 17 provenances (mean ± SE, n = 9). Different letters indicate significant differences among provenances (p < 0.05). Provenance codes see Table 1.
图2 不同干燥度指数(AI)范围内落叶松针叶水分利用效率(WUE)和气孔导度(Gs)、比叶面积(SLA)、叶氮含量(NL)间关系。
Fig. 2 Relationships between foliar water use efficiency (WUE) and stomatal conductance (Gs), special leaf area (SLA), and leaf nitrogen concentration (NL) for the Larix gmelinii trees within different groups of the aridity index (AI).
图3 落叶松针叶净光合速率(Pn)、蒸腾速率(Tr)及水分利用效率(WUE)与种源原地年平均气温(MAT)、平均年降水量(MAP)及干燥度指数(AI)关系。
Fig. 3 Foliar water use efficiency (WUE), transpiration rate (Tr), and net photosynthetic rate (Pn) for 17 Larix gmelinii provenances in relation to mean annual temperature (MAT), mean annual precipitation (MAP) and aridity index (AI) of the origins.
[1] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg E, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management, 259, 660-684. |
[2] | Anderson JE, Kriedemann PE, Austin MP, Farquhar GD (2000). Eucalypts forming a canopy functional type in dry sclerophyll forests respond differentially to environment.Australian Journal of Botany, 48, 759-775. |
[3] | Arora VK (2002). The use of the aridity index to assess climate change effect on annual runoff.Journal of Hydrology, 265, 164-177. |
[4] | Bresson CC, Vitasse Y, Kremer A, Delzon S (2011). To what extent is altitudinal variation of functional traits driven by genetic adaptation in european oak and beech?Tree Physiology, 31, 1164-1174. |
[5] | Brooks JR, Flanagan JR, Buchmann N, Ehleringer JR (1997). Carbon isotope composition of boreal plants: Functional grouping of life forms.Oecologia, 110, 301-311. |
[6] | Damesin C, Rambal S, Joffre R (1997). Between-tree variations in leaf δ13C of Quercus pubescens and Quercus ilex among Mediterranean habitats with different water availability.Oecologia, 111, 26-35. |
[7] | de Miguel M, Sánchez-Gómez D, Cervera MT, Aranda I (2012). Functional and genetic characterization of gas exchange and intrinsic water use efficiency in a full-sib family of Pinus pinaster Ait. in response to drought.Tree Physiology, 32, 94-103. |
[8] | Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis.Annual Review of Plant Biology, 40, 503-537. |
[9] | Farquhar GD, Richards RA (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes.Australian Journal of Plant Physiology, 11, 539-552. |
[10] | Fernández M, Gil L, Pardos JA (1999). Response of Pinus pinaster Ait. provenances at early age to water supply. I. Water relation parameters.Annals of Forest Science, 56, 179-187. |
[11] | Frei ES, Scheepens JF, Armbruster GFJ, Stöcklin J (2012). Phenotypic differentiation in a common garden reflects the phylogeography of a widespread alpine plant.Journal of Ecology, 100, 297-308. |
[12] | Gagen M, Finsinger W, Wagner-Cremer F, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Young G, Kirchhefer A (2011). Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in boreal fennoscandia from subfossil leaves and tree ring δ13C ratios.Global Change Biology, 17, 1064-1072. |
[13] | Gago J, Douthe C, Florez-Sarasa I, Escalona JM, Galmes J, Fernie AR, Flexas J, Medrano H (2014). Opportunities for improving leaf water use efficiency under climate change conditions.Plant Science, 226, 108-119. |
[14] | Gao Y, Zhu XJ, Yu GR, He NP, Wang QF, Tian J (2014). Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 195-196, 32-37. |
[15] | Gimenez C, Mitchell VJ, Lawlor DW (1992). Regulation of photosynthetic rate of two sunflower hybrids under water stress.Plant Physiology, 98, 516-524. |
[16] | Gouveia AC, Freitas H (2009). Modulation of leaf attributes and water use efficiency in quercus suber along a rainfall gradient.Trees, 23, 267-275. |
[17] | Holtum JAM, Winter K (2005). Carbon isotope composition of canopy leaves in a tropical forest in panama throughout a seasonal cycle.Trees, 19, 545-551. |
[18] | Jiang YL, Zhou GS (2001). Carbon equilibrium in Larix gmelinii forest and impact of global change on it.Chinese Journal of Applied Ecology, 12, 481-484.(in Chinese with English abstract) |
[蒋延玲, 周广胜 (2001). 兴安落叶松林碳平衡和全球变化影响研究. 应用生态学报, 12, 481-484.] | |
[19] | Kenney AM, McKay JK, Richards JH, Juenger TE (2014). Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13C), and WUE plasticity to drought in Arabidopsis thaliana.Ecology and Evolution, 4, 4505-4521. |
[20] | Klein T, Di Matteo G, Rotenberg E, Cohen S, Yakir D (2013). Differential ecophysiological response of a major mediterranean pine species across a climatic gradient.Tree Physiology, 33, 26-36. |
[21] | Kloeppel BD, Gower ST, Treichel IW, Kharuk S (1998). Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: A global comparison.Oecologia, 114, 153-159. |
[22] | Kremer A, Ronce O, Robled-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change.Ecology Letters, 15, 378-392. |
[23] | Lamont BB, Groom PK, Cowling RM (2002). High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations.Functional Ecology, 16, 403-412. |
[24] | Li CY (2000). Population differences in water-use efficiency of Eucalyptus microtheca seedlings under different watering regimes.Physiologia Plantarum, 108, 134-139. |
[25] | Li F, Zhou GS, Cao MC (2006). Responses of Larix gmelinii geographical distribution to future climate change: A simulation study.Chinese Journal of Applied Ecology, 17, 2255-2260.(in Chinese with English abstract) |
[李峰, 周广胜, 曹铭昌 (2006). 兴安落叶松地理分布对气候变化响应的模拟. 应用生态学报, 17, 2255-2260.] | |
[26] | Liu XP, Fan YY, Long JX, Wei RF, Kjelgren R, Gong CM, Zhao J (2013). Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings.Journal of Environmental Sciences, 25, 585-595. |
[27] | Martin RE, Asner GP, Sack L (2007). Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden.Oecologia,151, 387-400. |
[28] | Meng M, Ni J, Zhang ZG (2004). Aridity index and its applications in geo-ecological study.Acta Phytoecologica Sinica, 28, 853-861.(in Chinese with English abstract) |
[孟猛, 倪健, 张治国 (2004). 地理生态学的干燥度指数及其应用评述. 植物生态学报, 28, 853-861.] | |
[29] | Monclus R, Villar M, Barbaroux C, Bastien C, Fichot R, Delmotte FM, Delay D, Petit JM, Bréchet C, Dreyer E, Brignolas F (2009). Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides × Populus trichocarpa F1 progeny.Tree Physiology, 29, 1329-1339. |
[30] | Morecroft MD, Woodward FI, Marris RH (1992). Altitudinal trends in leaf nutrient contents, leaf size and δ13C of Alchemilla alpina.Functional Ecology, 6, 730-740. |
[31] | Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS (2008). Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species.Oecologia, 154, 625-635. |
[32] | Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe.New Phytologist, 177, 209-219. |
[33] | Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2003). Nutrient conservation increases with latitude of origin in european Pinus sylvestris populations.Oecologia, 136, 220-235. |
[34] | Picotte JJ, Rosenthal DM, Rhode JM, Cruzan MB (2007). Plastic responses to temporal variation in moisture availability: Consequences for water use efficiency and plant performance.Oecologia, 153, 821-832. |
[35] | Qu CM, Han XG, Su B, Huang JH, Jiang GM (2011). The characteristics of foliar δ13C values of plants and plant water use efficiency indicated by δ13C values in two fragmented rain forests in Xishuangbanna, Yunnan.Acta Botanica Sinica, 43, 186-192.(in Chinese with English abstract) |
[渠春梅, 韩兴国, 苏波, 黄建辉, 蒋高明 (2001). 云南西双版纳片断化热带雨林植物叶片δ13C值的特点及其对水分利用效率的指示. 植物学报, 43, 186-192.] | |
[36] | Ramírez-Valiente JA, Valladares F, Huertas AD, Granados S, Aranda I (2011). Factors affecting cork oak growth under dry conditions: Local adaptation and contrasting additive genetic variance within populations.Tree Genetics & Genomes, 7, 285-295. |
[37] | Ran F, Zhang XL, Zhang YB, Korpelainen H, Li CY (2013). Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. et Wils. seedlings as revealed by reciprocal transplantations.Trees, 27, 1405-1416. |
[38] | Reich P, Oleksyn J, Tjoelker M (1996). Needle respiration and nitrogen concentration in scots pine populations from a broad latitudinal range: A common garden test with field-grown trees.Functional Ecology, 10, 768-776. |
[39] | Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998). Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate.Functional Ecology, 12, 395-405. |
[40] | Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Abou Jaoudé R, Klein T, Kuster TM, Martins M, Niedrist G, Riccardi M, Wohlfahrt G, de Angelis P, de Dato G, François L, Menze A, Pereira M (2013). A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability.Global Change Biology, 19, 75-89. |
[41] | Robson TM, Sánchez-Gómez D, Cano FJ, Aranda I (2012). Variation in functional leaf traits among beech provenances during a spanish summer reflects the differences in their origin.Tree Genetics & Genomes, 8, 1111-1121. |
[42] | Roussel M, Le Thiec D, Montpied P, Ningre N, Guehl JM, Brendel O (2009). Diversity of water use efficiency among Quercus robur genotypes: Contribution of related leaf traits.Annals of Forest Science, 66, 408. |
[43] | Savolainen O, Pyhäjärvi T, Knürr T (2007). Gene flow and local adaptation in trees.Annual Review of Ecology, Evolution, and Systematics, 38, 595-619. |
[44] | Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001). Tree and forest functioning in response to global warming.New Phytologist, 149, 369-399. |
[45] | Schulze ED, Turner NC, Nicolle D, Schumacher J (2006). Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia.Tree Physiology, 26, 479-492. |
[46] | Schulze ED, Williams RJ, Farquhar GD, Schulze W, Langridge J, Miller JN, Walker BH (1998). Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia.Australian Journal of Plant Physiology, 25, 413-425. |
[47] | Shaw RG, Etterson JR (2012). Rapid climate change and the rate of adaptation: Insight from experimental quantitative genetics.New Phytologist, 195, 752-765. |
[48] | Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR (2009). Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.).Plant, Cell & Environment, 32, 1821-1832. |
[49] | Sparks JP, Ehleringer JR (1997). Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects.Oecologia, 109, 362-367. |
[50] | Tjoelker MG, Oleksyn J, Reich PB, Żytkowiak R (2008). Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations.Global Change Biology, 14, 782-797. |
[51] | Wang C, Gower ST, Wang Y, Zhao H, Yan P, Bond-Lamberty BP (2001). The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in Northeastern China.Global Change Biology, 7, 719-730. |
[52] | Warren CR, Adams MA (2000). Water availability and branch length determine δ13C in foliage of Pinus pinaster.Tree Physiology, 20, 637-643. |
[53] | Warren CR, Tausz M, Adams MA (2005). Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden?Tree Physiology, 25, 1369-1378. |
[54] | Weih M, Karlsson PS (2001). Growth response of mountain birch to air and soil temperature: Is increasing leaf- nitrogen content an acclimation to lower air temperature?New Phytologist, 150, 147-155. |
[55] | Xiao JF, Sun G, Chen JQ, Chen H, Chen SP, Dong G, Gao SH, Guo HQ, Guo JX, Han SJ, Kato T, Li YL, Lin GH, Lu WZ, Ma MG, McNulty S, Shao CL, Wang XF, Xie X, Zhang XD, Zhang ZQ, Zhao B, Zhou GS, Zhou J (2013). Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural and Forest Meteorology, 182-183, 76-90. |
[56] | Xu GB, Liu XH, Qin DH, Chen T, An WL, Wang WZ, Wu GJ, Zeng XM, Ren JW (2013). Climate warming and increasing atmospheric CO2 have contributed to increased intrinsic water-use efficiency on the northeastern Tibetan Plateau since 1850.Trees, 27, 465-475. |
[57] | Yan JH, Zhang DQ, Liu JX, Zhou GY (2014). Interactions between CO2 enhancement and N addition on net primary productivity and water-use efficiency in a mesocosm with multiple subtropical tree species.Global Change Biology, 20, 2230-2239. |
[58] | Yang CP, Jiang J, Tang SS, Li JY, Wang HR (2002). The provenance test of 21-year old Larix gmelinii at Mao’er- shan area.Journal of Northeast Forestry University, 30, 1-5.(in Chinese with English abstract) |
[杨传平, 姜静, 唐盛松, 李景云, 王会仁 (2002). 帽儿山地区21年生兴安落叶松种源试验. 东北林业大学学报, 30, 1-5.] | |
[59] | Zhang XS (1993). A vegetation-climate classification system for global change studies in China.Quaternary Sciences, (2), 157-169.(in Chinese with English abstract) |
[张新时 (1993). 研究全球变化的植被-气候分类系统. 第四纪研究, (2), 157-169.] | |
[60] | Zhu Q, Jiang H, Peng CH, Liu JX, Wei XH, Fang XQ, Liu SR, Zhou GM, Yu SQ (2011). Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China.Ecological Modelling, 222, 2414-2429. |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[8] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[9] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[10] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[11] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[12] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[13] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[14] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[15] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19