植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 343-351.DOI: 10.17521/cjpe.2015.0033
所属专题: 青藏高原植物生态学:群落生态学
收稿日期:
2014-07-07
接受日期:
2015-01-28
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
刘旻霞
作者简介:
# 共同第一作者
基金资助:
CHEN Shi-Wei, LIU Min-Xia*(), JIA Yun, AN Qi, AN Yan-Fei
Received:
2014-07-07
Accepted:
2015-01-28
Online:
2015-04-01
Published:
2015-04-21
Contact:
Min-Xia LIU
About author:
# Co-first authors
摘要:
为了解甘南亚高山草甸围封地恢复演替动态, 探究围封恢复进程中植物光合生理特征的变化规律及其影响因子, 对围封试验地内5个典型群落样地进行样方调查, 测定了各群落优势种及3个共有种的光合参数和叶性状参数, 并测定了群落表层土壤(0-20 cm)的水分含量及全氮含量。结果显示: 该围封地内形成一个以草本植物→半灌木→灌木的演替序列, 群落表层土壤含水量及全氮含量随着演替的进行逐渐增加; 在演替的时间尺度上, 各演替阶段优势种光合生理特征间存在明显差异, 随着演替的进行, 群落优势种的净光合速率(Aarea)、光合水分利用效率(WUE)、相对叶绿素含量(SPAD)呈降低趋势, 其叶片氮含量(Nmass)、光合氮利用效率(PNUE)、比叶面积(SLA)随演替变化没有严格一致的规律, 而更多地表现为不同植物功能型之间的差异; 从演替前期到后期, 同种植物的Aarea、SPAD值逐渐降低, 非豆科植物披碱草(Elymus dahuricus)、老鹳草(Geranium wilfordii)的PNUE、WUE随演替进行呈降低趋势, 其Nmass、SLA随演替进行却呈增加趋势, 然而豆科植物紫苜蓿(Medicago sativa)由于具有固氮能力, 受养分限制不明显, 这些光合生理特征值没有随演替发生明显的变化。这些结果表明, 在恢复演替过程中, 该围封地由一个物质获得能力强的群落向物质保持能力强的群落过渡, 土壤水分含量及全氮含量是推动这种过渡发生的主要因子。掌握围封地群落演替过程中的光合生理动态对于亚高寒退化草甸恢复具有一定的理论指导意义。
陈世伟, 刘旻霞, 贾芸, 安琪, 安嫣菲. 甘南亚高山草甸围封地群落演替及植物光合生理特征. 植物生态学报, 2015, 39(4): 343-351. DOI: 10.17521/cjpe.2015.0033
CHEN Shi-Wei,LIU Min-Xia,JIA Yun,AN Qi,AN Yan-Fei. Community succession and photosynthetic physiological characteristics of pasture plants in a sub-alpine meadow in Gannan, China. Chinese Journal of Plant Ecology, 2015, 39(4): 343-351. DOI: 10.17521/cjpe.2015.0033
群落 Comm-unity | 优势种及主要物种重要值 Important value of dominant and main species | 丰富度 Richness | Shannon指数 Shannon indices |
---|---|---|---|
A | 刺儿菜 Cirsium setosum (0.251) | 20 | 3.55 |
紫苜蓿 Medicago sativa (0.093) | |||
披碱草 Elymus dahuricus (0.054) | |||
B | 披碱草 Elymus dahuricus (0.429) | 18 | 2.79 |
刺儿菜 Cirsium setosum (0.069) | |||
二裂委陵菜 Potentilla bifurca (0.060) | |||
紫苜蓿 Medicago sativa (0.055) | |||
C | 紫苜蓿 Medicago sativa (0.148) | 32 | 4.00 |
甘青蒿 Artemisia tangutica (0.068) | |||
老鹳草 Geranium wilfordii (0.047) | |||
披碱草 Elymus dahuricus (0.060) | |||
少花米口袋 Gueldenstaedtia verna (0.017) | |||
D | 沙蒿 Artemisia desertorum (0.140) | 36 | 4.01 |
羊茅 Festuca ovina (0.109) | |||
圆穗蓼 Polygonum macrophyllum (0.083) | |||
紫苜蓿 Medicago sativa (0.071) | |||
披碱草 Elymus dahuricus (0.056) | |||
E | 金露梅 Potentilla fruticosa (0.433) | 40 | 4.15 |
蕨麻 Potentilla anserina (0.060) | |||
披碱草 Elymus dahuricus (0.047) | |||
紫苜蓿 Medicago sativa (0.011) |
表1 五个不同群落样地特征
Table 1 Characters of five different community plots
群落 Comm-unity | 优势种及主要物种重要值 Important value of dominant and main species | 丰富度 Richness | Shannon指数 Shannon indices |
---|---|---|---|
A | 刺儿菜 Cirsium setosum (0.251) | 20 | 3.55 |
紫苜蓿 Medicago sativa (0.093) | |||
披碱草 Elymus dahuricus (0.054) | |||
B | 披碱草 Elymus dahuricus (0.429) | 18 | 2.79 |
刺儿菜 Cirsium setosum (0.069) | |||
二裂委陵菜 Potentilla bifurca (0.060) | |||
紫苜蓿 Medicago sativa (0.055) | |||
C | 紫苜蓿 Medicago sativa (0.148) | 32 | 4.00 |
甘青蒿 Artemisia tangutica (0.068) | |||
老鹳草 Geranium wilfordii (0.047) | |||
披碱草 Elymus dahuricus (0.060) | |||
少花米口袋 Gueldenstaedtia verna (0.017) | |||
D | 沙蒿 Artemisia desertorum (0.140) | 36 | 4.01 |
羊茅 Festuca ovina (0.109) | |||
圆穗蓼 Polygonum macrophyllum (0.083) | |||
紫苜蓿 Medicago sativa (0.071) | |||
披碱草 Elymus dahuricus (0.056) | |||
E | 金露梅 Potentilla fruticosa (0.433) | 40 | 4.15 |
蕨麻 Potentilla anserina (0.060) | |||
披碱草 Elymus dahuricus (0.047) | |||
紫苜蓿 Medicago sativa (0.011) |
物种 Species | Aarea (μmol CO2 m-1·s-1) | SPAD | Nmass (mg·g-1) | SLA (cm2·g-1) |
---|---|---|---|---|
刺儿菜 Cirsium setosum | 15.25 ± 2.71c | 47.99 ± 2.36e | 18.14 ± 1.97bcd | 150.19 ± 5.48a |
披碱草 Elymus dahuricus | 17.41 ± 0.64c | 39.69 ± 0.20cd | 11.52 ± 3.18a | 180.40 ± 4.88ab |
紫苜蓿 Medicago sativa | 16.51 ± 2.95c | 50.96 ± 1.99e | 23.04 ± 1.77de | 241.35 ± 35.07c |
少花米口袋 Gueldenstaedtia verna | 14.20 ± 1.48bc | 43.02 ± 1.97d | 26.23 ± 3.62e | 200.12 ± 10.21bc |
甘青蒿 Artemisia tangutica | 13.52 ± 0.72bc | 30.75 ± 0.49b | 19.48 ± 2.66cd | 242.24 ± 15.87c |
老鹳草 Geranium wilfordii | 16.06 ± 2.52c | 24.75 ± 1.72a | 15.43 ± 0.42abc | 165.20 ± 17.33ab |
圆穗蓼 Polygonum macrophyllum | 10.40 ± 4.21b | 35.90 ± 5.62c | 13.19 ± 2.77ab | 194.10 ± 27.70ab |
沙蒿 Artemisia desertorum | 13.30 ± 1.55bc | 35.48 ± 2.65c | 16.61 ± 3.09abc | 207.30 ± 31.33bc |
金露梅 Potentilla fruticosa | 4.29 ± 0.92a | 27.10 ± 1.25ab | 18.82 ± 1.72cd | 203.66 ± 37.09bc |
表2 不同演替阶段优势种基于面积的CO2同化速率(Aarea)、叶绿素含量(SPAD)、基于质量的叶片氮含量(Nmass)及比叶面积(SLA) (平均值±标准偏差)
Table 2 Area-based leaf CO2 assimilation rate (Aarea), chlorophyll content (SPAD), foliar nitrogen content based on mass (Nmass) and specific leaf area (SLA) of dominant species at different succession stages (mean ± SD)
物种 Species | Aarea (μmol CO2 m-1·s-1) | SPAD | Nmass (mg·g-1) | SLA (cm2·g-1) |
---|---|---|---|---|
刺儿菜 Cirsium setosum | 15.25 ± 2.71c | 47.99 ± 2.36e | 18.14 ± 1.97bcd | 150.19 ± 5.48a |
披碱草 Elymus dahuricus | 17.41 ± 0.64c | 39.69 ± 0.20cd | 11.52 ± 3.18a | 180.40 ± 4.88ab |
紫苜蓿 Medicago sativa | 16.51 ± 2.95c | 50.96 ± 1.99e | 23.04 ± 1.77de | 241.35 ± 35.07c |
少花米口袋 Gueldenstaedtia verna | 14.20 ± 1.48bc | 43.02 ± 1.97d | 26.23 ± 3.62e | 200.12 ± 10.21bc |
甘青蒿 Artemisia tangutica | 13.52 ± 0.72bc | 30.75 ± 0.49b | 19.48 ± 2.66cd | 242.24 ± 15.87c |
老鹳草 Geranium wilfordii | 16.06 ± 2.52c | 24.75 ± 1.72a | 15.43 ± 0.42abc | 165.20 ± 17.33ab |
圆穗蓼 Polygonum macrophyllum | 10.40 ± 4.21b | 35.90 ± 5.62c | 13.19 ± 2.77ab | 194.10 ± 27.70ab |
沙蒿 Artemisia desertorum | 13.30 ± 1.55bc | 35.48 ± 2.65c | 16.61 ± 3.09abc | 207.30 ± 31.33bc |
金露梅 Potentilla fruticosa | 4.29 ± 0.92a | 27.10 ± 1.25ab | 18.82 ± 1.72cd | 203.66 ± 37.09bc |
图1 不同优势种资源利用效率(平均值±标准偏差)。CE,刺儿菜; GQ, 甘青蒿; JL, 金露梅; LG, 老鹳草; MD, 少花米口袋; MX, 紫苜蓿; PJ, 披碱草; QH, 圆穗蓼; SH, 沙蒿。不同小写字母表示同一测定指标差异显著(p < 0.05)。
Fig. 1 Resource-use efficiency of different dominant species (mean ± SD). CE, Cirsium setosum; GQ, Artemisia tangutica; JL, Potentilla fruticosa; LG, Geranium wilfordii; MD, Gueldenstaedtia verna; MX, Medicago sativa; PJ, Elymus dahuricus; QH, Polygonum macrophyllum; SH, Artemisia desertorum. PNUE, photosynthetic nitrogen-use efficiency; WUE, water-use efficiency. Different letters in the same column are significantly different (p < 0.05).
光合生理特征指标 Photosynthetic physiological characteristics | 基于面积的CO2同化速率 Aarea | 基质质量的 叶片氮含量 Nmass | 光合氮利用效率 PNUE | 叶绿素含量 SPAD | 气孔导度 Gs | 水分利用效率 WUE | 比叶面积 SLA |
---|---|---|---|---|---|---|---|
基于面积的CO2同化速率Aarea | 1 | ||||||
基于质量的叶片氮含量 Nmass | 0.151 | 1 | |||||
光合氮利用效率 PNUE | 0.725*** | -0.436** | 1 | ||||
叶绿素含量 SPAD | 0.469** | 0.311 | 0.103 | 1 | |||
气孔导度 Gs | 0.319* | 0.060 | 0.398* | 0.140 | 1 | ||
水分利用效率 WUE | 0.712*** | -0.136 | 0.369* | 0.293 | -0.314* | 1 | |
比叶面积 SLA | -0.215 | 0.511** | -0.105 | 0.133 | 0.092 | -0.353* | 1 |
表3 光合生理特征之间相关系数矩阵下半区
Table 3 The lowerpart of coefficient matrix among photosynthetic characteristics
光合生理特征指标 Photosynthetic physiological characteristics | 基于面积的CO2同化速率 Aarea | 基质质量的 叶片氮含量 Nmass | 光合氮利用效率 PNUE | 叶绿素含量 SPAD | 气孔导度 Gs | 水分利用效率 WUE | 比叶面积 SLA |
---|---|---|---|---|---|---|---|
基于面积的CO2同化速率Aarea | 1 | ||||||
基于质量的叶片氮含量 Nmass | 0.151 | 1 | |||||
光合氮利用效率 PNUE | 0.725*** | -0.436** | 1 | ||||
叶绿素含量 SPAD | 0.469** | 0.311 | 0.103 | 1 | |||
气孔导度 Gs | 0.319* | 0.060 | 0.398* | 0.140 | 1 | ||
水分利用效率 WUE | 0.712*** | -0.136 | 0.369* | 0.293 | -0.314* | 1 | |
比叶面积 SLA | -0.215 | 0.511** | -0.105 | 0.133 | 0.092 | -0.353* | 1 |
图2 9种植物光合生理特征主成分分析。CE,刺儿菜; GQ, 甘青蒿; JL, 金露梅; LG, 老鹳草; MD, 少花米口袋; MX, 紫苜蓿; PJ, 披碱草; QH, 圆穗蓼; SH, 沙蒿。
Fig. 2 Principal components (PC) analysis of photosynthetic physiological characteristics of nine different species. CE, Cirsium setosum; GQ, Artemisia tangutica; JL, Potentilla fruticosa; LG, Geranium wilfordii; MD, Gueldenstaedtia verna; MX, Medicago sativa; PJ, Elymus dahuricus; QH, Polygonum macrophyllum; SH, Artemisia desertorum.
图3 5个群落共有种光合生理特征的主成分分析。■, 老鹳草; ○, 紫苜蓿; △, 披碱草; A, 刺儿菜-甘青蒿群落; B, 披碱草-刺儿菜群落; C, 紫苜蓿-甘青蒿群落; D, 沙蒿-羊茅群落; E, 金露梅群落。
Fig. 3 Principal components (PC) analysis of photosynthetic physiological characteristics of common species in five communities. ■, Geranium wilfordii; ○, Medicago sativa; △, Elymus dahuricus; A, Cirsium setosum-Artemisia tangutica community; B, Elymus dahuricus-Cirsium setosum community; C, Medicago sativa-Artemisia tangutica community; D, Artemisia desertorum-Festuca ovina community; E, Potentilla fruticosa community.
图4 五个群落样地土壤水分与全氮含量(平均值±标准偏差)。A, 刺儿菜-甘青蒿群落; B, 披碱草-刺儿菜群落; C, 紫苜蓿-甘青蒿群落; D, 沙蒿-羊茅群落; E, 金露梅群落。不同大写字母表示土壤水分含量间的差异显著; 不同小写字母表示土壤全氮含量间差异显著(p < 0.05)。
Fig. 4 Soil water content and total nitrogen content (TN) of five different community plots (mean ± SD). A, Cirsium setosum-Artemisia tangutica community; B, Elymus dahuricus- Cirsium setosum community; C, Medicago sativa-Artemisia tangutica community; D, Artemisia desertorum-Festuca ovina community; E, Potentilla fruticosa community. Different capital letters indicate significant differences among soil water contents; different small letters indicate significant differences among soil total nitrogen contents (p < 0.05).
[1] | An H, Shangguan ZP (2007). Photosynthetic characteristics of dominant plant species at different succession stages of vegetation on Loess Plateau.Chinese Journal of Applied Ecology, 18, 1175-1180.(in Chinese with English abstract) |
[安慧, 上官周平 (2007). 黄土高原植被不同演替阶段优势种的光合生理特性. 应用生态学报, 18, 1175-1180.] | |
[2] | An H, Shangguan ZP (2008). Specific leaf area, leaf nitrogen content, and photosynthetic acclimation of Trifolium repens L. seedlings grown at different irradiances and nitrogen concentrations.Photosynthetica, 46, 143-147. |
[3] | Anten NPR, Miyazawa K, Hikosaka K, Nagashima H, Hirose T (1998a). Leaf nitrogen distribution in relation to leaf age and photon flux density in dominant and subordinate plants in dense stands of a dicotyledonous herb.Oecologia, 113, 314-324. |
[4] | Anten NPR, Werger MJA, Medina E (1998b). Nitrogen distribution and leaf area indices in relation to photosynthetic nitrogen use efficiency in savanna grasses.Plant Ecology, 138, 63-75. |
[5] | Bassow SL, Bazzaz FA (1997). Intra-and inter-specific variation in canopy photosynthesis in a mixed deciduous forest.Oecologia, 109, 507-515. |
[6] | Bazzaz FA (1979). The physiological ecology of plant succession.Annual Review of Ecology and Systematics, 10, 351-371. |
[7] | Castellanos AE, Martinez MJ, Llano JM, Halvorson WL, Espiricueta M, Espejel I (2005). Successional trends in Sonoran Desert abandoned agricultural fields in northern Mexico.Journal of Arid Environments, 60, 437-455. |
[8] | Cui XY, Du ZC, Wang YF (2000). Photosynthetic characteristics of a semi-arid sandy grassland community in inner mongolia.Acta Phytoecologica Sinica, 24, 541-546.(in Chinese with English abstract) |
[崔骁勇, 杜占池, 王艳芬 (2000). 内蒙古半干旱草原区沙地植物群落光合特征的动态研究. 植物生态学报, 24, 541-546.] | |
[9] | Ding SY, Song YC (1999). The comparation of photosynthesis physi-ecology of evergreen broad-leaved forest of Tiantong national forest park in Zhejiang Province, China.Acta Ecologica Sinica, 19, 318-323.(in Chinese with English abstract) |
[丁圣彦, 宋永昌 (1999). 浙江天童常绿阔叶林演替系列优势种光合生理生态的比较. 生态学报, 19, 318-323.] | |
[10] | Ellsworth DS, Reich PB (1996). Photosynthesis and leaf nitrogen in five Amazonian tree species during early secondary succession.Ecology, 77, 581-594. |
[11] | Evans JR (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants.Oecologia, 78, 9-19. |
[12] | Funk JL, Vitousek PM (2007). Resource-use efficiency and plant invasion in low-resource systems.Nature, 446, 1079-1081. |
[13] | Givnish TJ (1988). Adaptation to sun and shade: A whole-plant perspective.Australian Journal of Plant Physiology, 15, 63-92. |
[14] | Hikosaka K, Hirose T (2000). Photosynthetic nitrogen-use efficiency in evergreen broad-leaved woody species coexisting in a warm-temperate forest.Tree Physiology, 20, 1249-1254. |
[15] | Huang ZQ, Xu ZH, Blumfield TJ, Bubb K (2008). Effects of mulching on growth, foliar photosynthetic nitrogen and water use efficiency of hardwood plantations in subtropical Australia.Forest Ecology and Management, 255, 3447-3454. |
[16] | Jiang GM, He WM (1999). Species-and habitat-variability of photosynthesis, transpiration and water use efficiency of different plant species in Maowusu Sand Area.Acta Botanica Sinica, 41, 114-1124. |
[17] | Lambers H, Chapin III FS, Pons TL (2008). Plant Physiological Ecology. 2nd edn. Springer, New York. |
[18] | Li QK, Ma KP (2002). Advances in plant succession ecophysiology.Acta Phytoecologica Sinica, 26(S1), 9-19.(in Chinese with English abstract) |
[李庆康, 马克平 (2002). 植物群落演替过程中植物生理生态学特性及其主要环境因子的变化. 植物生态学报, 26(S1), 9-19.] | |
[19] | Li YL, Cui JY, Su YZ (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats.Acta Ecologica Sinica, 25, 304-311.(in Chinese with English abstract) |
[李玉霖, 崔建垣, 苏永中 (2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.] | |
[20] | Liu FD, Yang WJ, Wang ZS, Xu Z, Liu H, Zhang M, Liu YH, An SQ, Sun SC (2010). Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species.Acta Oecologica, 36, 149-159. |
[21] | Mahajan S, Narendra T (2005). Cold, salinity and drought stresses: An overview.Archives of Biochemistry and Biophysis, 444, 139-158. |
[22] | Manetas Y, Grammatikopoulos G, Kyparissis A (1998). The use of the portable, non-destructive, SPAD-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content.Journal of Plant Physiology, 153, 513-516. |
[23] | Niu SL, Jiang GM, Gao LM, Li YG, Liu MZ (2003). Comparison of gas exchange traits of different plant species in Hunshandak sand area.Acta Phytoecologica Sinica, 27, 318-324. |
[24] | Novriyanti E, Watanabe M, Makoto K, Takeda T, Hashidoko Y, Koike T (2012). Photosynthetic nitrogen and water use efficiency of acacia and eucalypt seedlings as afforestation species.Photosynthetica, 50, 273-281. |
[25] | Ran F, Zhang XL, Zhang YB, Korpelainen H, Li CY (2013). Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. et Wils. seedlings as revealed by reciprocal transplantations.Trees, 27, 1405-1416. |
[26] | Shangguan ZP, Shao MG, Dyckmans J (2000). Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat.Journal of Plant Physiology, 156, 46-51. |
[27] | Sun HQ, Zhou H, Wang P (1999). Progress on grassland degenerated succession.Grassland of China, 21(1), 51-56.(in Chinese with English abstract) |
[孙海群, 周禾, 王培 (1999). 草地退化演替研究进展. 中国草地, 21(1), 51-56.] | |
[28] | Wang GH (2002). Plant traits and soil chemical variables during a secondary vegetation succession in abandoned fields on the loess plateau.Acta Botanica Sinica, 44, 990-998. |
[29] | Wright LJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships.New Phytologist, 166, 485-496. |
[30] | Wu GL, Du GZ (2007). Discussion on ecological construction and sustainable development of degraded alpine grassland ecosystem of the Qinghai-Tibetan Plateau.Chinese Journal of Nature, 29, 159-164.(in Chinese) |
[武高林, 杜国祯 (2007). 青藏高原退化高寒草地生态系统恢复和可持续发展探讨. 自然杂志, 29, 159-164.] | |
[31] | Yan CR, Han XG, Chen LZ (2001). Water use efficiency of six woody species in relation to micro-environmental factors of different habitats.Acta Ecologica Sinica, 21, 1952-1956.(in Chinese with English abstract) |
[严昌荣, 韩兴国, 陈灵芝 (2001). 六种木本植物水分利用效率和其小生境关系研究. 生态学报, 21, 1952-1956.] | |
[32] | Yu GR, Wang QF (2010). Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use. Science Press, Beijing. 152.(in Chinese) |
[于贵瑞, 王秋凤 (2010). 植物光合、蒸腾与水分利用的生理生态学. 科学出版社, 北京. 152.] | |
[33] | Zhang DY, Wang G, Zhao SL (1988). A quantitative study of the vegetation succession on the abandoned arable lands of the subalpine meadows in Gannan Prefecture of Gansu Province I. Analysis of community comosition.Acta Phytoecological et Geobotanica Sinica, 12, 283-291.(in Chinese with English abstract) |
[张大勇, 王刚, 赵松岭 (1988). 亚高山草甸弃耕地植物群落演替的数量研究I. 群落组成分析. 植物生态学与地植物学学报, 12, 283-291.] | |
[34] | Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N (2010). The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China.Acta Agrestia Sinica, 18, 503-509.(in Chinese with English abstract) |
[张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 (2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草地学报, 18, 503-509.] | |
[35] | Zhou HK, Zhao XQ, Zhao L, Li YN, Wang SP, Xu SX, Zhou L (2008). Restoration capability of alpine meadow ecosystem on Qinghai-Tibetan Plateau.Chinese Journal of Ecology, 27, 697-704.(in Chinese with English abstract) |
[周华坤, 赵新全, 赵亮, 李英年, 汪诗平, 徐世晓, 周立 (2008). 青藏高原高寒草甸生态系统的恢复能力. 生态学杂志, 27, 697-704.] |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[4] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[7] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[8] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[9] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[10] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[11] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[12] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[13] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[14] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[15] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19