植物生态学报 ›› 2005, Vol. 29 ›› Issue (5): 851-862.DOI: 10.17521/cjpe.2005.0113
所属专题: 稳定同位素生态学; 生态系统碳水能量通量
收稿日期:
2004-07-05
接受日期:
2004-12-21
出版日期:
2005-08-30
发布日期:
2005-08-30
通讯作者:
林光辉
基金资助:
SUN Wei1, LIN Guang-Hui1,2,*(), CHEN Shi-Ping1, HUANG Jian-Hui1
Received:
2004-07-05
Accepted:
2004-12-21
Online:
2005-08-30
Published:
2005-08-30
Contact:
LIN Guang-Hui
About author:
* E-mail: ghlin@ibcas.ac.cn/glin@globalecology.stanford.edu摘要:
稳定性同位素技术和Keeling曲线法是现代生态学研究的重要手段和方法之一。稳定性同位素能够整合生态系统复杂的生物学、生态学和生物地球化学过程在时间和空间尺度上对环境变化的响应。Keeling曲线法是以生物过程前后物质平衡理论为基础,将CO2或H2O的同位素组成(δD、δ13C或δ18O)与其对应浓度测量结合起来,将生态系统净碳通量区分为光合固定和呼吸释放通量,或将整个生态系统水分蒸散区分为植物蒸腾和土壤蒸发。在全球尺度上,稳定性同位素技术、Keeling曲线法与全球尺度陆地生态系统模型相结合,还可区分陆地生态系统和海洋生态系统对全球碳通量的贡献以及不同植被类型(C3或C4)在全球CO2同化量中所占的比例。然而,生态系统的异质性使得稳定性同位素技术和Keeling曲线法从冠层尺度外推到生态系统、区域或全球尺度时存在有一定程度的不确定性。此外,取样时间、地点的选取也会影响最终的研究结果。尽管如此,随着分析手段的不断精确和研究方法的日趋完善,稳定性同位素技术和Keeling曲线法与其它测量方法(如微气象法)的有机结合将成为未来陆地生态系统碳/水交换研究的重要手段和方法之一。
孙伟, 林光辉, 陈世苹, 黄建辉. 稳定性同位素技术与Keeling曲线法在陆地生态系统碳/水交换研究中的应用. 植物生态学报, 2005, 29(5): 851-862. DOI: 10.17521/cjpe.2005.0113
SUN Wei, LIN Guang-Hui, CHEN Shi-Ping, HUANG Jian-Hui. APPLICATIONS OF STABLE ISOTOPE TECHNIQUES AND KEELING PLOT APPROACH TO CARBON AND WATER EXCHANGE STUDIES OF TERRESTRIAL ECOSYSTEMS. Chinese Journal of Plant Ecology, 2005, 29(5): 851-862. DOI: 10.17521/cjpe.2005.0113
[1] | Allison GB, Leaney FW (1982). Estimation of isotopic parameters, using constant-feed pans. Journal of Hydrology, 55,151-161. |
[2] | Baldocchi DD, Hicks BB, Meyers TP (1988). Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, 69,1331-1340. |
[3] | Baldocchi DD, Valentini R, Running S, Oechel W, Dahlman R (1996). Strategies for measuring and modeling carbon dioxide and water vapor fluxes over terrestrial ecosystems. Global Change Biology, 2,159-168. |
[4] | Barnes CJ, Allison GB (1988). Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. Journal of Hydrology, 100,143-176. |
[5] | Bird ML, Chivas AR, Head J (1996). A latitudinal gradient in carbon turnover times in forest soils. Nature, 381,143-146. |
[6] | Bowling DR, Baldocchi DD, Monson RK (1999a). Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Global Biogeochemical Cycles, 13,903-922. |
[7] | Bowling DR, Delany AC, Turnipseed AA, Baldocchi DD, Monson RK (1999b). Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. Journal of Geophysical Research, 104,9121-9133. |
[8] | Bowling DR, Tans PP, Monson RK (2001). Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Global Change Biology, 7,127-145. |
[9] |
Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002). 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia, 131,113-124.
DOI URL PMID |
[10] | Bowling DR, McDowell NG, Welker JM, Bond BJ, Law BE, Ehleringer JR (2003a). Oxygen isotope content of CO2 in nocturnal ecosystem respiration: 1. Observations in forests along a precipitation transect in Oregon, USA. Global Biogeochemical Cycles, 17(4), 31,1-14. |
[11] | Bowling DR, McDowell NG, Welker JM, Bond BJ, Law BE, Ehleringer JR (2003b). Oxygen isotope content of CO2 in nocturnal ecosystem respiration: 2. Short-term dynamics of foliar and soil component fluxes in an old-growth ponderosa pine forest. Global Biogeochemical Cycles, 17(4), 34,1-12. |
[12] | Bowling DR, Sargent SD, Tanner BD, Ehleringer JR (2003c). Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem-atmosphere CO2 exchange. Agricultural and Forest Meteorology, 118,1-19. |
[13] | Brunel JP, Simpson HJ, Herczef AL, Whitehead R, Walker GR (1992). Stable isotope composition of water vapour as an indicator of transpiration fluxes from rice crops. Water Resource Research, 28,1407-1416. |
[14] |
Buchmann N, Cuehl JM, Barigah TS, Ehleringer JR (1997a). Interseasonal comparison of CO2 concentrations, isotopic composition and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia, 110,120-131.
URL PMID |
[15] |
Buchmann N, Kao WY, Ehleringer JR (1997b). Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Uath, United States. Oecologia, 110,109-119.
DOI URL PMID |
[16] | Buchmann N, Brooks JR, Flanagan LB, Ehleringer JR (1998). Carbon isotope discrimination of terrestrial ecosystems. In: Griffiths Hed. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. BIOS Scientific Publisher, Oxford, England,203-221. |
[17] | Buchmann N, Ehleringer JR (1998). CO2 concentration profiles and carbon and oxygen isotopes in C3 and C4 crop canopies. Agricultural and Forest Meteorology, 89,49-58. |
[18] | Buchmann N, Kaplan JO (2001). Carbon isotope discrimination of terrestrial ecosystems—How well do observed and modeled results match? In: Schulze ED, Heimann M, Harrison SP, Holland E, Lloyd J, Prentice I, Schimel Deds. Global Biogeochemical Cycles in the Climate System. Academic Press, San Diego, California,253-268. |
[19] |
Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995). A large northern hemisphere terrestrial CO2 sink indicated by the 13C/ 12C ratio of atmospheric CO2. Science, 269,1098-1102.
DOI URL PMID |
[20] | Ciais P, Tans PP, Denning AS, Francey RJ, Trolier M, Meijer AJ, White WC, Berry JA, Randall DA, Collatz GJ, Sellers PJ, Monfray P, Heiman M (1997). A three-dimensional synthesis study of 18O in atmospheric CO2. 1. Surface fluxes. Journal of Geophysical Research, 102,5873-5883. |
[21] | Chen SP(陈世苹), Bai YF(白永飞), Han XG(韩兴国) (2002). Applications of stable carbon isotope techniques to ecological research. Acta Phytoecologica Sinica (植物生态学报), 26,549-560. (in Chinese with English abstract) |
[22] | Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Massarie KA, Zhang N (1994). Evidence for interannual variability of the carbon cycle for the National Oceanic and Atmospheric Administration/Climate Monitoring Diagnostic Laboratory Global Air Sampling Network. Journal of Geophysical Research, 99,22831-22855. |
[23] | Craig H, Gordon LI (1965). Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi Eed. Proceedings of the Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures. Laboratory of Geology and Nuclear Science, Pisa, Italy,9-130. |
[24] |
Dawson TE, Pate JS (1996). Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia, 107,13-20.
DOI URL PMID |
[25] | Dawson TE, Ehleringer JR (1993). Gender-specific physiology, carbon isotope discrimination and habitat distribution in boxelder. Acer negundo. Ecology, 74,798-815. |
[26] | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33,507-599. |
[27] | Duranceau M, Ghashghaie J, Badeck F, Deleens E, Cornic G (1999). δ 13C of CO2 respired in the dark in relation to δ 13C of leaf carbonhydrates in Phaseolus vulgaris L. under progressive drought. Plant, Cell and Environment, 22,515-523. |
[28] | Ehleringer JR (1993). Carbon and water relation in desert plants, an isotope perspective. In: Ehleringer JR, Hall AE, Farquhar GDeds. Stable Isotope and Plant Carbon-Water Relation, Academic Press, San Diego,155-172. |
[29] | Ehleringer JR, Buchmann N, Flanagan LB (2000). Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications, 10,412-422. |
[30] | Ehleringer JR, Bowling DR, Flanagan LB, Fessenden J, Helliker B, Martinelli LA, Ometto JP. 2002. Stable isotope and carbon cycle processes in forests and grasslands. Plant Biology, 4,181-189. |
[31] | Enting IG, Trudinger CM, Francey RJ (1995). A synthesis inversion of the concentration and δ 13C of atmospheric CO2. Tellus B, 47,35-52. |
[32] | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33,317-345. |
[33] | Farquhar GD, Ehleringer JR, Henry KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40,503-537. |
[34] | Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993). Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature, 363,439-443. |
[35] | Ferretti DF, Pendall E, Morgan JA, Nelson JA, LeCain D, Mosier AR (2003). Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: seasonal variations and ecosystem implications of elevated atmospheric CO2. Plant and Soil, 254,291-303. |
[36] |
Fessenden JE, Ehleringer JR (2002). Age-related variations in 13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest. Tree Physiology, 22,159-167.
URL PMID |
[37] |
Flanagan LB, Varney GT (1995). Influence of vegetation and soil CO2 exchange on the concentration and stable oxygen isotope ratio of atmospheric CO2 within a Pinus resinosa canopy. Oecologia, 101,37-44.
URL PMID |
[38] | Flanagan LB, Brooks J, Vamey GT, Berry SC, Ehleringer JR (1996). Carbon isotopic discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystem. Global Biogeochemical Cycles, 10,629-640. |
[39] | Flanagan LB, Brooks JR, Varney GT, Ehleringer JR (1997). Discrimination against concentration and stable oxygen isotope ratio of atmospheric CO2 in boreal forest ecosystems. Global Biogeochemical Cycles, 11,83-98. |
[40] |
Flanagan LB, Ehleringer JR (1998). Ecosystem-atmosphere CO2 exchange: interpreting signals of change using stable isotope ratios. Trends in Ecology and Evolution, 13,10-14.
DOI URL PMID |
[41] | Flanagan LB, Kubien DS, Ehleringer JR (1999). Spatial and temporal variation in the carbon and oxygen stable isotope ratio of respired CO2 in a boreal forest ecosystem. Tellus B, 51,367-384. |
[42] | Francey RJ, Tans PP (1987). Latitudinal variation in O18 of atmospheric CO2. Nature, 327,495-497. |
[43] | Francey RJ, Tans PP, Allison CE, Enting IG, White JWC, Trolier M (1995). Changes in oceanic and terrestrial uptake since 1982. Nature, 373,326-330. |
[44] | Fung I, Field CB, Berry JA, Thompson MV, Rndrson TJ, Malmstorm CM, Vitousek PM, Collatz GJ, Sellers PJ, Randall DA, Denning AS, Badeck F, John J (1997). Carbon 13 exchange between the atmosphere and biosphere. Global Biogeochemical Cycles, 11,507-533. |
[45] | Gat JR (1996). Oxygen and hydrogen stable isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24,225-262. |
[46] | Ghashghaie J, Duranceau M, Badeck FW, Cornic G, Adeline MT, Deleens E (2001). δ 13C of CO2 respired in the dark in relation to δ 13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant, Cell and Environment, 24,505-515. |
[47] | Gillon JS, Yakir D (2000). Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18O during photosynthesis. Plant, Cell and Environment, 23,903-915. |
[48] |
Gillon JS, Yakir D (2001). Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science, 291,2584-2587.
URL PMID |
[49] | Griffiths H (1992). Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants: commissioned review. Plant, Cell and Environment, 15,1051-1062. |
[50] | Harwood KG, Gillon JS, Griffiths H, Broadmeadow MSJ (1998). Diurnal variation of δ 13CO2, δC18O16O and evaporative site enrichment of δH218O in Piper aduncum under field conditions in Trinidad. Plant, Cell and Environment, 21,269-283. |
[51] |
Harwood KG, Gillon JS, Roberts A, Griffiths H (1999). Determinants of isotopic coupling of CO2 and water vapour within a Quercus petraea forest canopy. Oecologia, 119,109-119.
DOI URL PMID |
[52] | Kaplan JO, Prentice IC, Buchmann N (2002). The stable carbon isotope composition of the terrestrial biosphere: modeling at scales from the leaf to the globe. Global Biogeochemical Cycles, 16(4), 8,1-11. |
[53] | Keeling CD (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13,322-334. |
[54] | Keeling CD (1961). The concentration and isotopic of carbon dioxide in rural marine air. Geochimica et Cosmochimica Acta, 24,277-298. |
[55] | Kuc T, Zimnoch M (1998). Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon, 40,417-423. |
[56] |
Lin GH, Ehleringer JR (1997). Carbon isotopic fractionation does not occur during dark respiration in C3 and C4 plants. Plant Physiology, 114,391-394.
DOI URL PMID |
[57] | Lin GH, Ehleringer JR, Rygiewicz PT, Johnson MG, Tingey DT (1999). Elevated CO2 and temperature impacts on different components of soil CO2 efflux in Douglas-fir terracosms. Global Change Biology, 5,157-168. |
[58] |
Lloyd J, Farquhar GD (1994). 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia, 99,201-215.
DOI URL PMID |
[59] | Lloyd J, Krujit B, Hollinger DY, Grace J, Francey RJ, Wong SC, Kelliher FM, Miranda AC, Farquhar GD, Gash JHC, Vygodakaya NN, Wright IR, Miranda HS, Schulze ED (1996). Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between a rain forest in Amazonia and a boreal forest in Siberia. Australian Journal of Plant Physiology, 23,371-399. |
[60] | Lloyd J, Francey RJ, Mollicone D, Raupach MR, Sogachev A, Arneth A, Byers JN, Kelliher FM, Rebmann C, Valentini R, Wong SC, Bauer G, Schulze ED (2001). Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochemical Cycles, 15,267-284. |
[61] | Mathieu R, Bariac T (1996). An isotopic study (2H and 18O) of water movements in clayey soils under a semi-arid climate. Water Resource Research, 32,779-789. |
[62] | McDowell NG, Bowling DR, Bond BJ, Irvine J, Las BE, Anthoni P, Ehleringer JR (2004). Response of the carbon isotopic content of ecosystem, leaf, and soil respiration to meteorological and physiological driving factors in a Pinus ponderosa ecosystem. Global Biogeochemical Cycles, 18, GB1013,1-12. |
[63] | Miller JB, Yakir D, White JWC, Tans PP (1999). Measurement of 18O/16O in the soil-atmosphere CO2 flux. Global Biogeochemical Cycles, 13,761-774. |
[64] | Moreira M, Sternberg L, Martinelli L, Reynaldo L, Barbosa E, Bonates L, Nepstad D (1997). Contribution of transpiration to forest ambient vapour based on isotopic measurement. Global Change Biology, 3,439-450. |
[65] | Nakazawa T, Sugawara S, Inoue G, Machida T, Makshyutov S, Mukai H (1997). Aircraft measurements of the concentrations of CO2, CH4, N2Oand CO and carbon and oxygen isotopic ratios of CO2 in the troposphere over Russia. Journal of Geophysical Research, 102,3843-3859. |
[66] | O'Leary MH (1981). Carbon isotope fractionation in plants. Phytochemistry, 20,553-567. |
[67] | Ometto JPHB, Flanagan LB, Martinelli LA, Moreira MZ, Higuchi N, Ehleringer JR (2002). Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochemical Cycles, 16(4), 56,1-10. |
[68] | Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003a). The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17(1), 22,1-14. |
[69] | Pataki DE, Bowling DR, Ehleringer JR (2003b). Seasonal cycle of carbon dioxide and its isotope composition in an urban atmosphere: Anthropogenic and biogenic effects. Journal of Geophysical Research, 108(D23), 8,1-8. |
[70] | Quay P, King S, Wilbur D, Wofsy S, Richey J (1989). 13C/12C of atmospheric CO2 in the Amazon basin: forest and river sources. Journal of Geophysical Research, 94,18327-18336. |
[71] | Rochette P, Flanagan LB (1997). Quatifying rhizosphere respiration in a corn crop under field conditions. Soil Science Society of American Journal, 61,466-474. |
[72] | Rochette P, Flanagan LB, Gregorich EG (1999). Sepatating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Science Society of American Journal, 63,1207-1213. |
[73] | Schauer AJ, Lai CT, Bowling DR, Ehleringer JR (2003). An automated sampler for collection of atmospheric trace gas samples for stable isotope analyses. Agricultural and Forest Meteorology, 118,113-124. |
[74] | Scott RL, Watts C, Garatuza J, Edwards E, Goodrich DC, Williams DG, Shuttleworth WJ (2003). The understory and overstory partitioning of energy and water fluxes in a semi-arid woodland ecosystem. Agricultural and Forest Meteorology, 114,127-139. |
[75] |
Staddon PL (2004). Carbon isotope in functional soil ecology. Trends in Ecology and Evolution, 19,148-154.
URL PMID |
[76] | Sternberg LL, Mulkey SS, Wright JS (1989). Ecological interpretation of leaf carbon isotope ratios: influence of respired carbon dioxide. Ecology, 70,1317-1324. |
[77] | Sternberg LL (1989). A model to estimate carbon dioxide recycling in forests using 13C/12C ratios and concentrations of ambient carbon dioxide. Agricultural and Forest Meteorology, 48,163-173. |
[78] | Takahashi HA, Konohira E, Hiyama T, Minami M, Nakamura T, Yoshida N (2002). Diurnal variation of CO2 concentration, δ14C and δ13C in an urban forest: estimate of the anthropogenic and biogenic CO2 contributions. Tellus B, 54,97-109. |
[79] | Tans PP (1998). Oxygen isotopic equilibrium between carbon dioxide and water in soils. Tellus B, 50,162-178. |
[80] | Troiler M, White JWC, Tans PP, Masarie KA, Germery PA (1996). Monitoring the isotopic composition of atmospheric CO2: measurements from the NOAA Global Air Sampling Network. Journal of Geophysical Research, 101,25897-25916. |
[81] | Wang JZ, Lin GH, Huang JH, Han XG (2004). Applications of stable isotopes to study anima1-plant relationships in terrestrial ecosystems. Chinese Science Bulletin, 49,2339-2347. |
[82] | Wang XF, Yakir D (1995). Temporal and spatial variations in the oxygen-18 content of leaf water in different plant species. Plant, Cell and Environment, 18,1377-1385. |
[83] | Wang XF, Yakir D (2000). Using stable isotopes of water in evaporation studies. Hydrological Processes, 14,1407-1421. |
[84] | Williams DG, Cable W, Hultine K, Hoedjes JCB, Yepez EA, Simonneaux V, Er-Raki S, Boulet G, de Bruin HAR, Chehbouni A, Hartogensis OK, Timouk F (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance technique. Agricultural and Forest Meteorology, 125,241-258. |
[85] | Yakir D, Wang XF (1996). Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurement. Nature, 380,515-517. |
[86] |
Yakir D, Sternberg LL (2000). The use of stable isotopes to study ecosystem gas exchange. Oecologia, 123,297-311.
DOI URL PMID |
[87] | Yepez EA, Williams DG, Scott RL, Lin GH (2003). Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology, 119,53-68. |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[3] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[4] | 冯兆忠, 袁相洋, 李品, 尚博, 平琴, 胡廷剑, 刘硕. 地表臭氧浓度升高对陆地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 526-542. |
[5] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[6] | 冯兆忠, 徐彦森, 尚博. FACE实验技术和方法回顾及其在全球变化研究中的应用[J]. 植物生态学报, 2020, 44(4): 340-349. |
[7] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[8] | 朱彪, 陈迎. 陆地生态系统野外增温控制实验的技术与方法[J]. 植物生态学报, 2020, 44(4): 330-339. |
[9] | 黄玫, 王娜, 王昭生, 巩贺. 磷影响陆地生态系统碳循环过程及模型表达方法[J]. 植物生态学报, 2019, 43(6): 471-479. |
[10] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[11] | 戴岳,郑新军,唐立松,李彦. 古尔班通古特沙漠南缘梭梭水分利用动态[J]. 植物生态学报, 2014, 38(11): 1214-1225. |
[12] | 任书杰, 于贵瑞. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J]. 植物生态学报, 2011, 35(2): 119-124. |
[13] | 孙敬松, 周广胜. 散射辐射测量及其对陆地生态系统生产力影响的研究进展[J]. 植物生态学报, 2010, 34(4): 452-461. |
[14] | 周广胜, 袁文平, 周莉, 郑元润. 东北地区陆地生态系统生产力及其人口承载力分析[J]. 植物生态学报, 2008, 32(1): 65-72. |
[15] | 陈广生, 田汉勤. 土地利用/覆盖变化对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007, 31(2): 189-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19