植物生态学报 ›› 2006, Vol. 30 ›› Issue (4): 545-552.DOI: 10.17521/cjpe.2006.0072
所属专题: 碳储量
安尼瓦尔·买买提1,2(), 杨元合1, 郭兆迪1, 方精云1
收稿日期:
2005-06-01
出版日期:
2006-06-01
发布日期:
2006-07-30
作者简介:
E-mail:aniwar@water.pku.edu.cn
基金资助:
MOHAMMAT Anwar1,2(), YANG Yuan-He1, GUO Zhao-Di1, FANG Jing-Yun1
Received:
2005-06-01
Online:
2006-06-01
Published:
2006-07-30
摘要:
对新疆天山中段巴音布鲁克高山草地(高山草原和高山草甸)的生物量和土壤有机碳进行了测定。结果表明积分和分层两种估算方法得到的土壤有机碳含量没有显著差异,但积分算法的优势在于能推算不同深度的土壤有机碳含量,便于与以往的研究进行比较;高山草甸的生物量和土壤有机碳含量均大于高山草原;其地上生物量分别为71.4和94.9 g C·m-2,地下生物量分别为1 033.5和1 285.2 g C·m-2; 1 m深度的土壤有机碳含量分别为25.7和38.8 kg·m-2;地上生物量呈现较为明显的垂直分布格局,即随着海拔的增加,地上生物量先呈增加趋势,但当海拔超过一定界限后生物量突然下降;土壤含水率是导致南坡(阳坡)土壤有机碳含量空间分异的重要因素,但北坡(阴坡) 土壤有机碳含量还可能与地形、土壤质地等其它因素有关;两种高山草地(高山草原和高山草甸)的根系集中分布在40 cm以内,0~20 cm根系分别占其总量的76%和80%;土壤有机碳集中分布在60 cm以内,0~20 cm土壤有机碳分别占其总量的55%和49%;高山草原根系分布比高山草甸深,但较低的地下/地上比使得其有机碳分布比高山草甸浅。
安尼瓦尔·买买提, 杨元合, 郭兆迪, 方精云. 新疆天山中段巴音布鲁克高山草地碳含量及其垂直分布. 植物生态学报, 2006, 30(4): 545-552. DOI: 10.17521/cjpe.2006.0072
MOHAMMAT Anwar, YANG Yuan-He, GUO Zhao-Di, FANG Jing-Yun. CARBON CONTENTS AND ITS VERTICAL DISTRIBUTION IN ALPINE GRASSLANDS IN BAYINBULAK, MIDDLE STRETCH OF THE TIANSHAN MOUTAINS OF XINJIANG. Chinese Journal of Plant Ecology, 2006, 30(4): 545-552. DOI: 10.17521/cjpe.2006.0072
图1 分层和积分计算的土壤有机碳含量 横轴为分层方法计算的有机碳含量,纵轴为积分方法计算的有机碳含量
Fig.1 Soil organic carbon content calculated by two methods Horizontal axis: organic carbon content calculated by layered method, vertical axis: organic carbon content calculated by integral method
样地号 Plot No. | 海拔(m) Altitude | 坡向 Aspect | 群落类型 Community type | 生物量 Biomass (g C·m-2) | 土壤有机碳含量 (kg·m-2) Soil organic carbon content | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
地上 Shoot | 地下 Root | 0~30 cm | 0~60 cm | 0~100 cm | |||||||
P1 | 2 470 | 无No | 亚高山草原4) | 58.1 | 871.3 | 13.5 | 19.2 | 22.1 | |||
P2 | 2 570 | 阳坡1) | 亚高山草原4) | 60.4 | 1 006.6 | 12.3 | 15.0 | 15.7 | |||
P3 | 2 670 | 阳坡1) | 亚高山草原4) | 65.6 | 1 020.7 | 9.7 | 11.4 | 11.8 | |||
P4 | 2 770 | 阳坡1) | 亚高山草原4) | 70.3 | 893.2 | 12.0 | 15.7 | 16.7 | |||
P5 | 2 870 | 阳坡1) | 亚高山草原4) | 74.2 | 777.4 | 9.8 | 12.1 | ||||
P6 | 2 970 | 阳坡1) | 亚高山草甸化草原5) | 81.7 | 1 737.6 | 29.0 | 37.0 | 39.5 | |||
P7 | 3 070 | 阳坡1) | 亚高山草甸6) | 89.4 | 1 369.6 | 27.1 | 40.3 | 50.2 | |||
P8 | 3 170 | 阳坡1) | 亚高山草甸6) | 99.7 | 1 060.2 | 26.3 | 35.3 | 37.7 | |||
P9 | 3 270 | 阳坡1) | 亚高山草甸6) | 107.1 | 1 172.8 | 21.8 | 32.1 | 39.4 | |||
P10 | 3 370 | 阳坡1) | 亚高山草甸6) | 81.6 | 1 265.4 | 16.5 | 26.7 | ||||
P11 | 3 470 | 阳坡1) | 亚高山草甸6) | 75.6 | 1 009.5 | 15.8 | 20.0 | 21.3 | |||
P12 | 2 570 | 阴坡2) | 亚高山草甸化草原5) | 89.7 | 928.0 | 25.4 | 38.3 | 48.4 | |||
P13 | 2 670 | 阴坡2) | 亚高山草原化草甸7) | 97.3 | 1 274.2 | 19.7 | 28.3 | ||||
P14 | 2 770 | 半阴坡3) | 亚高山草原化草甸7) | 94.8 | 752.6 | 30.6 | 35.1 | 36.1 | |||
P15 | 2 870 | 半阴坡3) | 高山草甸8) | 105.5 | 1 273.5 | 24.2 | 37.0 | 47.5 | |||
P16 | 2 970 | 半阴坡3) | 高山草甸8) | 118.4 | 1 531.1 | 19.1 | 25.4 | 27.7 | |||
P17 | 3 070 | 半阴坡3) | 高山草甸8) | 123.9 | 1 724.6 | 19.9 | 32.7 | ||||
P18 | 3 170 | 阴坡2) | 亚高山草甸6) | 49.5 | 1 289.9 | 27.1 | 39.2 | 45.6 | |||
P19 | 3 270 | 阴坡2) | 亚高山草甸6) | 47.2 | 876.5 | 22.8 | 34.6 | 44.0 | |||
P20 | 2 460 | 无No | 高山沼泽草甸9) | 143.4 | 2 107.1 | 17.7 | 28.2 |
表1 巴音布鲁克高山草地生物量和土壤有机碳含量
Table 1 Biomass and soil organic carbon content of alpine grassland in Bayinbulak
样地号 Plot No. | 海拔(m) Altitude | 坡向 Aspect | 群落类型 Community type | 生物量 Biomass (g C·m-2) | 土壤有机碳含量 (kg·m-2) Soil organic carbon content | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
地上 Shoot | 地下 Root | 0~30 cm | 0~60 cm | 0~100 cm | |||||||
P1 | 2 470 | 无No | 亚高山草原4) | 58.1 | 871.3 | 13.5 | 19.2 | 22.1 | |||
P2 | 2 570 | 阳坡1) | 亚高山草原4) | 60.4 | 1 006.6 | 12.3 | 15.0 | 15.7 | |||
P3 | 2 670 | 阳坡1) | 亚高山草原4) | 65.6 | 1 020.7 | 9.7 | 11.4 | 11.8 | |||
P4 | 2 770 | 阳坡1) | 亚高山草原4) | 70.3 | 893.2 | 12.0 | 15.7 | 16.7 | |||
P5 | 2 870 | 阳坡1) | 亚高山草原4) | 74.2 | 777.4 | 9.8 | 12.1 | ||||
P6 | 2 970 | 阳坡1) | 亚高山草甸化草原5) | 81.7 | 1 737.6 | 29.0 | 37.0 | 39.5 | |||
P7 | 3 070 | 阳坡1) | 亚高山草甸6) | 89.4 | 1 369.6 | 27.1 | 40.3 | 50.2 | |||
P8 | 3 170 | 阳坡1) | 亚高山草甸6) | 99.7 | 1 060.2 | 26.3 | 35.3 | 37.7 | |||
P9 | 3 270 | 阳坡1) | 亚高山草甸6) | 107.1 | 1 172.8 | 21.8 | 32.1 | 39.4 | |||
P10 | 3 370 | 阳坡1) | 亚高山草甸6) | 81.6 | 1 265.4 | 16.5 | 26.7 | ||||
P11 | 3 470 | 阳坡1) | 亚高山草甸6) | 75.6 | 1 009.5 | 15.8 | 20.0 | 21.3 | |||
P12 | 2 570 | 阴坡2) | 亚高山草甸化草原5) | 89.7 | 928.0 | 25.4 | 38.3 | 48.4 | |||
P13 | 2 670 | 阴坡2) | 亚高山草原化草甸7) | 97.3 | 1 274.2 | 19.7 | 28.3 | ||||
P14 | 2 770 | 半阴坡3) | 亚高山草原化草甸7) | 94.8 | 752.6 | 30.6 | 35.1 | 36.1 | |||
P15 | 2 870 | 半阴坡3) | 高山草甸8) | 105.5 | 1 273.5 | 24.2 | 37.0 | 47.5 | |||
P16 | 2 970 | 半阴坡3) | 高山草甸8) | 118.4 | 1 531.1 | 19.1 | 25.4 | 27.7 | |||
P17 | 3 070 | 半阴坡3) | 高山草甸8) | 123.9 | 1 724.6 | 19.9 | 32.7 | ||||
P18 | 3 170 | 阴坡2) | 亚高山草甸6) | 49.5 | 1 289.9 | 27.1 | 39.2 | 45.6 | |||
P19 | 3 270 | 阴坡2) | 亚高山草甸6) | 47.2 | 876.5 | 22.8 | 34.6 | 44.0 | |||
P20 | 2 460 | 无No | 高山沼泽草甸9) | 143.4 | 2 107.1 | 17.7 | 28.2 |
[1] | Bao SD( 鲍士旦), Jiang RF( 江荣风), Yang CG( 杨超光), Xu GH( 徐国华), Han XR( 韩晓日) (2000). Soil and Agricultural Chemistry Analysis (土壤农化分析). China Agriculture Press, Beijing. (in Chinese) |
[2] | Batjes NH (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151-163. |
[3] | Erdawlat ( 叶尔道来提), Merey ( 麦来), Adil ( 阿得勒) (1989). Analysis on environmental condition and suitable utilization of grassland in Bayinbulak. Arid Zone Research (干旱区研究), 6(Suppl.), 5-21. (in Chinese) |
[4] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon density in China between 1949 and 1998. Science, 292, 2320-2322.
URL PMID |
[5] | Fang JY, Liu GH, Xu SL (1996). Soil carbon pool in China and its global significance. Journal of Environmental Sciences, 8, 249-254. |
[6] | Garnett MH, Ineson P, Stevenson AC, Howard DC (2001). Terrestrial organic carbon density in a British moorland. Global Change Biology, 7, 375-388. |
[7] |
Goodale CL, Davidson EA (2002). Uncertain sinks in the shrubs. Nature, 418, 593-594.
URL PMID |
[8] | He JS, Wang ZQ, Fang JY (2004). Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin, 49, 1891-1899. |
[9] |
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389-411.
URL PMID |
[10] | Jin F ( 金峰), Yang H ( 杨浩), Cai ZC ( 蔡祖聪), Zhao QG ( 赵其国) (2001). Calculation of density and reserve of organic carbon in soils. Acta Pedologica Sinica (土壤学报), 8, 522-528. (in Chinese with English abstract) |
[11] | Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436. |
[12] | Kern JS (1994). Spatial patterns of soil organic carbon in the contiguous United States. Soil Science Society of America Journal, 59, 1134-1141. |
[13] | Li KR, Wang SQ, Cao MK (2003). Vegetation and soil carbon density in China. Science in China, Series D, 33, 72-80. |
[14] | Li WH ( 李文华), Zhou XM ( 周兴民) (1998). Ecosystems of Qinghai-Xizang(Tibetan) Plateau and Approach for Their Sustainable Management (青藏高原生态系统及优化利用模式). Guangdong Science & Technology Press, Guangzhou. (in Chinese) |
[15] | Li YN ( 李英年), Zhao XQ ( 赵新全), Wang QX ( 王勤学), Gu S ( 古松), Du MY ( 杜明远), Tomomichi K ( 加藤知道), Wang QL ( 王启兰), Zhao L ( 赵亮) (2003). The comparison of community biomass and environmental condition of five vegetation types in alpine meadow of Haibei, Qinghai Province. Journal of Mountain Science (山地学报), 21, 257-264. (in Chinese with English abstract) |
[16] | Li Z, Zhao QG (2001). Organic carbon content and distribution in soils under different land uses in tropical and subtropical China. Plant and Soil, 231, 175-185. |
[17] | Luo TX, Li WH, Zhu HZ (2002). Estimated biomass and productivity of natural vegetation on the Tibetan Plateau. Ecological Applications, 12, 980-997. |
[18] |
Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001). A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Sciences of the United States of America, 98, 14784-14789.
URL PMID |
[19] | Ni J (2004). Forage yield-based carbon density in grasslands of China. Climatic Change, 67, 237-246. |
[20] |
Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292, 2316-2320.
DOI URL PMID |
[21] | Piao SL ( 朴世龙), Fang JY ( 方精云), He JS ( 贺金生), Xiao Y ( 肖玉) (2004). Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica (植物生态学报), 28, 491-498. (in Chinese with English abstract) |
[22] | Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982). Soil carbon pools and world life zones. Nature, 298, 156-159. |
[23] | Schenk HJ, Jackson RB (2002). The biogeography of roots. Ecological Monographs, 72, 311-328. |
[24] |
Trumbore SE, Grandinski JB (2003). The secret lives of roots. Science, 302, 1344-1345.
URL PMID |
[25] |
Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865.
DOI URL PMID |
[26] | Wang K ( 王恺), Ma JZ( 马建章), Zhang GL( 张观礼), Liu YK( 刘玉凯), Song CS( 宋朝枢) (2003). National Nature Reserve in China(中国国家级自然保护区). Anhui Science & Technology Press, Hefei. (in Chinese) |
[27] |
Wang SQ ( 王绍强), Liu JY ( 刘纪远), Yu GR ( 于贵瑞) (2003). Error analysis of estimating terrestrial soil organic carbon density in China. Chinese Journal of Applied Ecology (应用生态学报), 14, 797-802. (in Chinese with English abstract)
URL PMID |
[28] | Wang SQ ( 王绍强), Zhou CH ( 周成虎) (1999). Estimating soil carbon reservoir of terrestrial ecosystem in China. Geographical Research (地理研究), 18, 349-356. (in Chinese with English abstract) |
[29] | Wang SQ ( 王绍强), Zhou CH ( 周成虎), Li KR ( 李克让), Zhu SL ( 朱松丽), Huang FH ( 黄方红) (2000). Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica (地理学报), 55, 533-544. (in Chinese with English abstract) |
[30] |
Wang SQ, Huang M, Shao XM, Mickler RA, Li KR, Ji JJ (2004). Vertical distribution of soil organic carbon in China. Environmental Management, 33(Suppl.), doi: 10.1007/s00267-003-9130-5.
DOI URL PMID |
[31] | Wang SQ, Tian HQ, Liu JY, Pan SF (2003). Pattern and change of soil organic carbon density in China: 1960s-1980s. Tellus, 55B, 416-427. |
[32] | Wu HB, Guo ZT, Peng CH (2003). Distribution and storage of soil organic carbon in China. Global Biogeochemical Cycles, 17, doi: 10.1029/2001GB001844. |
[33] | Zhou GS, Wang YH, Jiang YL, Yang ZY (2002). Estimating biomass and net primary production from forest inventory data: a case study of China's Larix forests. Forest Ecology and Management, 169, 149-157. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[9] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[10] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[13] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19