植物生态学报 ›› 2015, Vol. 39 ›› Issue (4): 407-415.DOI: 10.17521/cjpe.2015.0040
吴秀丽1, 欧庸彬1, 原改换1, 陈永富1, 王阳1, 姚银安1,2,*()
收稿日期:
2014-10-27
接受日期:
2015-03-17
出版日期:
2015-04-01
发布日期:
2015-04-21
通讯作者:
姚银安
作者简介:
*作者简介:E-mail:
基金资助:
WU Xiu-Li1, OU Yong-Bin1, YUAN Gai-Huan1, CHEN Yong-Fu1, WANG Yang1, YAO Yin-An1,2,*()
Received:
2014-10-27
Accepted:
2015-03-17
Online:
2015-04-01
Published:
2015-04-21
Contact:
Yin-An YAO
About author:
# Co-first authors
摘要:
近年来国外学者发现杨树(Populus spp.)对硼表现出很强的富集能力和极强的耐受能力, 但其耐硼胁迫的生理机制和种间差异仍不清楚。该研究通过两年的硼梯度控制试验, 探讨了硼胁迫对欧洲黑杨杂交种俄罗斯杨(Populus russkii)和银白杨变种新疆杨(P. bolleca)的生长和生理指标的影响。结果表明, 新疆杨的耐高硼能力高于俄罗斯杨, 其高硼伤害阈值(EC10)为35 mg·kg-1, 俄罗斯杨为19 mg·kg-1。两种杨树的过氧化氢酶(CAT)和愈创木酚过氧化物酶(Gu-POD)活性随硼浓度升高而升高, 超过EC10后显著下降。尽管两种杨树的叶绿素含量和光化学效率在硼胁迫下降低, 但抗硼胁迫能力较强的新疆杨仍然保持了较高的叶绿素a/b值和热耗散能力(非光化学淬灭升高), 因此有效地保护了该树种的光合能力。两种杨树的可溶性糖含量随硼胁迫加重而适应性升高, 以维持其抗渗透能力, 但其叶片可溶性蛋白含量仅在中低强度的硼胁迫条件下有所升高。该研究明确了两个富集硼的杨树种对高硼胁迫的生理响应及其种间差异。
吴秀丽, 欧庸彬, 原改换, 陈永富, 王阳, 姚银安. 两种杨树对高硼胁迫的生理响应. 植物生态学报, 2015, 39(4): 407-415. DOI: 10.17521/cjpe.2015.0040
WU Xiu-Li,OU Yong-Bin,YUAN Gai-Huan,CHEN Yong-Fu,WANG Yang,YAO Yin-An. Physiological responses of two poplar species to high boron stress. Chinese Journal of Plant Ecology, 2015, 39(4): 407-415. DOI: 10.17521/cjpe.2015.0040
杨树种 Poplar species | 浓度 Concentration (mg·kg-1) | 株高 Plant height (cm) | 地上部鲜质量 Aboveground fresh mass (g) | 地下部鲜质量 Underground fresh mass (g) | EC10 (mg·kg-1) |
---|---|---|---|---|---|
俄罗斯杨 Populus russkii | CK | 97.5 ± 4.9a | 143.5 ± 5.9a | 95.3 ± 4.2a | 19.5 |
10 | 94.5 ± 3.3ab | 131.8 ± 5.9b | 91.2 ± 4.3ab | ||
20 | 93.5 ± 2.6ab | 129.4 ± 7.0bc | 87.3 ± 3.4b | ||
30 | 90.8 ± 3.8bc | 127.1 ± 5.3bc | 80.3 ± 0.9c | ||
40 | 85.5 ± 3.8cd | 119.8 ± 1.9cd | 68.1 ± 5.2d | ||
50 | 80.0 ± 3.7d | 112.4 ± 4.5d | 60.5 ± 3.0e | ||
新疆杨 Populus bolleca | CK | 108.3 ± 0.9a | 125.9 ± 7.4b | 158.5 ± 3.9a | 35.4 |
10 | 109.3 ± 3.2a | 138.8 ± 3.4a | 156.4 ± 6.6a | ||
20 | 105.3 ± 2.5a | 117.2 ± 4.5c | 141.3 ± 3.5b | ||
30 | 98.0 ± 2.9b | 116.0 ± 3.8c | 137.3 ± 4.3b | ||
40 | 92.0 ± 5.2c | 114.9 ± 4.2c | 135.8 ± 4.3b | ||
50 | 88.5 ± 2.6c | 101.1 ± 4.0d | 115.8 ± 4.5c |
表1 不同浓度硼处理对两种杨树株高、地上部鲜质量和地下部鲜质量的影响(平均值±标准误差, n = 5)
Table 1 Effect of different concentrations of boron on plant height and fresh mass of two poplar species (mean ± SE, n = 5)
杨树种 Poplar species | 浓度 Concentration (mg·kg-1) | 株高 Plant height (cm) | 地上部鲜质量 Aboveground fresh mass (g) | 地下部鲜质量 Underground fresh mass (g) | EC10 (mg·kg-1) |
---|---|---|---|---|---|
俄罗斯杨 Populus russkii | CK | 97.5 ± 4.9a | 143.5 ± 5.9a | 95.3 ± 4.2a | 19.5 |
10 | 94.5 ± 3.3ab | 131.8 ± 5.9b | 91.2 ± 4.3ab | ||
20 | 93.5 ± 2.6ab | 129.4 ± 7.0bc | 87.3 ± 3.4b | ||
30 | 90.8 ± 3.8bc | 127.1 ± 5.3bc | 80.3 ± 0.9c | ||
40 | 85.5 ± 3.8cd | 119.8 ± 1.9cd | 68.1 ± 5.2d | ||
50 | 80.0 ± 3.7d | 112.4 ± 4.5d | 60.5 ± 3.0e | ||
新疆杨 Populus bolleca | CK | 108.3 ± 0.9a | 125.9 ± 7.4b | 158.5 ± 3.9a | 35.4 |
10 | 109.3 ± 3.2a | 138.8 ± 3.4a | 156.4 ± 6.6a | ||
20 | 105.3 ± 2.5a | 117.2 ± 4.5c | 141.3 ± 3.5b | ||
30 | 98.0 ± 2.9b | 116.0 ± 3.8c | 137.3 ± 4.3b | ||
40 | 92.0 ± 5.2c | 114.9 ± 4.2c | 135.8 ± 4.3b | ||
50 | 88.5 ± 2.6c | 101.1 ± 4.0d | 115.8 ± 4.5c |
指标 Indicator | 杨树种 Poplar species | 硼处理 Boron treatment | 杨树种×硼处理 Poplar species × boron treatment |
---|---|---|---|
株高 Height | 97.887*** | 37.568*** | 1.600NS |
地上部鲜质量 Aboveground fresh mass | 24.684*** | 27.477*** | 4.255** |
地下部鲜质量 Underground fresh mass | 1839.731*** | 69.783*** | 2.740* |
叶绿素a Chl a | 16.434*** | 160.187*** | 14.542*** |
叶绿素b Chl b | 48.117*** | 99.303*** | 14.330*** |
总叶绿素 Chl a+b | 2.566NS | 196.331*** | 19.477*** |
叶绿素a/b Chl a/b | 171.615*** | 8.297*** | 2.817* |
过氧化氢酶 CAT | 3.360NS | 63.215*** | 15.106*** |
过氧化物酶 Gu-POD | 1.382NS | 94.742*** | 4.206** |
可溶性蛋白 SP | 3.751NS | 51.696*** | 1.952NS |
可溶性糖 SC | 518.683*** | 41.706*** | 0.802NS |
表2 各指标交互效应的F值方差分析(杨树种、硼处理、杨树种×硼处理互作效应)
Table 2 Statistical significance of the F values (ANOVA) for the effects of poplar species, boron treatments and poplar species × boron treatments
指标 Indicator | 杨树种 Poplar species | 硼处理 Boron treatment | 杨树种×硼处理 Poplar species × boron treatment |
---|---|---|---|
株高 Height | 97.887*** | 37.568*** | 1.600NS |
地上部鲜质量 Aboveground fresh mass | 24.684*** | 27.477*** | 4.255** |
地下部鲜质量 Underground fresh mass | 1839.731*** | 69.783*** | 2.740* |
叶绿素a Chl a | 16.434*** | 160.187*** | 14.542*** |
叶绿素b Chl b | 48.117*** | 99.303*** | 14.330*** |
总叶绿素 Chl a+b | 2.566NS | 196.331*** | 19.477*** |
叶绿素a/b Chl a/b | 171.615*** | 8.297*** | 2.817* |
过氧化氢酶 CAT | 3.360NS | 63.215*** | 15.106*** |
过氧化物酶 Gu-POD | 1.382NS | 94.742*** | 4.206** |
可溶性蛋白 SP | 3.751NS | 51.696*** | 1.952NS |
可溶性糖 SC | 518.683*** | 41.706*** | 0.802NS |
图1 硼胁迫对俄罗斯杨和新疆杨最小荧光(Fo)、暗适应后最大荧光(Fm)、暗适应后PSII的最大量子产量(Fv/Fm)、非调节性能量耗散的量子产量(Y(NO))的影响。
Fig. 1 Effect of different concentrations of boron on minimal chlorophyll fluorescence (Fo) , maximal chlorophyll fluorescence (Fm) , maximum quantum yield of PSII photochemistry (Fv/Fm) and quantum yield of non-regulated energy dissipation (Y(NO)) in Populus russkii and P. bolleca.
图2 不同浓度硼处理下俄罗斯杨(Pr)和新疆杨(Pb)叶绿素荧光的快速光响应曲线。PAR, 光合有效辐射; ETR, 电子传递速率; Y(II), PSII光化学能量转化的有效量子产量; NPQ, 非光化学猝灭系数; qP,光化学猝灭系数。
Fig. 2 Rapid-light-curve of Populus russkii (Pr) and P. bolleca (Pb) under different concentrations of boron. PAR, photosynthetic active radiation; ETR, photosynthetic electron transport rate; Y(II), effective quantum yield of photochemical energy; NPQ, no-photochemical quenching; qP, photochemical quenching.
图3 不同浓度硼处理对俄罗斯杨和新疆杨叶片绿素含量的影响(平均值±标准误差, n = 5)。不同小写字母表示处理间差异显著(p < 0.05) (Duncan多重比较), 正体表示俄罗斯杨, 斜体表示新疆杨。
Fig. 3 Effect of different boron concentration on chlorophyll (Chl) contents in Populus russkii and P. bolleca (mean ± SE, n = 5). Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test), standardized form represents P. russkii, inclined form represents P. bolleca.
图4 不同浓度硼处理对俄罗斯杨和新疆杨叶片过氧化氢酶(CAT)和愈创木酚过氧化物酶(Gu-POD)活性的影响量(平均值±标准误差, n = 3)。不同小写字母表示处理间差异显著(p < 0.05) (Duncan多重比较), 正体表示俄罗斯杨, 斜体表示新疆杨。
Fig. 4 Effect of different boron concentration on CAT and Gu-POD activity in leaves of Populus russkii and P. bolleca (mean ± SE, n = 3). Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test), standardized form represents P. russkii, inclined form represents P. bolleca.
图5 不同浓度硼处理对俄罗斯杨和新疆杨叶片可溶性蛋白(SP)和可溶性糖(SC)含量的影响(平均值±标准误差, n = 3)。不同小写字母表示处理间差异显著(p < 0.05) (Duncan多重比较), 正体表示俄罗斯杨, 斜体表示新疆杨。
Fig. 5 Effect of different boron concentration on contents of soluble protein (SP) and soluble carbohydrate (SC) in Populus russkii and P. bolleca (mean ± SE, n = 3). Different lower-case letters indicate significant difference (p < 0.05) (Duncan’s multiple range test), standardized form represents P. russkii, inclined form represents P. bolleca.
[1] | Arriaga D (2012). Microelement Localization in Leaves in Populus spp. and Tolerance Mechanism to Boron-salt Toxicity. PhD dissertation, University of Texas, EI Paso. 5-6. |
[2] | Bañeulos GS, Shannon MC, Ajwa HA, Draper JH, Jordahl J, Licht J (1999). Phytoextraction and accumulation of boron and selenium by poplar (Populus) hybrid clones.International Journal of Phytoremediation, 1(1), 81-96. |
[3] | Blevins DG, Lukaszewski KM (1998). Boron in plant structure and function.Annual Review of Plant Biology, 49, 481-500. |
[4] | Bowler C, van Montagu M, Inze D (1992). Superoxide dismutase and stress tolerance.Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83-116. |
[5] | Chen SY (1989). Membrane lipid peroxide and plant adversity stress.Chinese Bulletin of Botany, 6, 211-217.(in Chinese with English abstract) |
[陈少裕 (1989). 膜脂过氧化与植物逆境胁迫. 植物学通报, 6, 211-217.] | |
[6] | Dong GF, Chen YZ, Jiang GM (1999). Plant xanthophylls cycle and radiationless energy dissipation.Plant Physiology Communications, 35, 141-144.(in Chinese with English abstract) |
[董高峰, 陈贻竹, 蒋高明 (1999). 植物叶黄素循环与非辐射能量耗散. 植物生理学通讯, 35, 141-144.] | |
[7] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophy II fluorescence.Biohimica et Biophysica Acta, 990, 87-92. |
[8] | Heuer B (1994). Osmoregulatory role of proline in water and salt stressed plants. In: Pessarakli M ed. Handbook of Plant and Crop Stress. Marcel Dekker, New York. 363-381. |
[9] | Hu H, Brown PH (1994). Localization of boron in cell walls of squash and tobacco and its association with pectin evidence for a structural role of boron in the cell wall.Plant Physiology, 105, 681-689. |
[10] | Knörzer OC, Burner J, Boger P (1996). Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress.Physiologia Plantarun, 97, 388-396. |
[11] | Li DQ, Zou Q, Cheng BS (1991). The progress of plant osmotic adjustment.Journal of Shandong Agricultural University, 22, 86-90.(in Chinese with English abstract) |
[李德全, 邹琦, 程炳嵩 (1991). 植物渗透调节研究进展. 山东农业大学学报, 22, 86-90.] | |
[12] | Li YH, Huang XY (2006). Effects of metal on photosynthesis in plants.Import Inquiry, (6), 23-25.(in Chinese with English abstract) |
[李裕红, 黄小瑜 (2006). 重金属污染对植物光合作用的影响. 引进与咨询, (6), 23-25.] | |
[13] | Liu CG, He XJ (2012). Boron toxicity in plants and phytoremediation of boron-laden soils.Journal of Agro-Environment Science, 31, 230-236.(in Chinese with English abstract) |
[刘春光, 何小娇 (2012). 过量硼对植物的毒害及高硼土壤植物修复研究进展. 农业环境科学学报, 31, 230-236.] | |
[14] | Liu H, Shu XX, Zhao Y, Wang SM (1997). Effect of salt stress on growth and carbohydrate contents inPuccinellia tenuiflora. Pratacultural Science, 14, 18-20.(in Chinese with English abstract) |
[刘华, 舒孝喜, 赵银, 王锁民 (1997). 盐胁迫对碱茅生长及碳水化合物含量的影响. 草业科学, 14, 18-20.] | |
[15] | Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001). Oxidative stress and antioxidant activity as the basis of senescence in maize leaves.Plant Science, 161, 765-771. |
[16] | Read SM, Northcote DH (1981). Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein.Analytical Biochemistry, 116, 53-64. |
[17] | Rees R, Robinson BH, Menon M, Lehmann E, Günthardt- Goerg MS, Schulin R (2011). Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).Environmental Science and Technology, 45, 10538-10543. |
[18] | Rees R, Robinson BH, Rog CJ, Papritz A, Schulin R (2013). Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.Science of the Total Environment, 447, 515-524. |
[19] | Robinson BH, Green S, Mills T, Clothier B, Velde M, Laplane R, Fung L, Deurer M, Hurst S, Thayalakumaran T, Dijssel C (2003). Phytoremediation: Using plants as biopumps to improve degraded environments.Australian Journal of Soil Research, 41, 599-611. |
[20] | Schnurbusch T, Hayes J, Sutton T (2010). Boron toxicity tolerance in wheat and barley: Australian perspectives.Breeding Science, 60, 297-304. |
[21] | Stiles AR, Bautista D, Atalay E, Babaoğlu M, Terry N (2010). Mechanisms of boron tolerance and accumulation in plants: A physiological comparison of the extremely boron tolerant plant species, Puccinellia distans, with the moderately boron-tolerantGypsophila arrostil. Environmental Science and Technology, 44, 7089-7095. |
[22] | Tanaka M, Fujiwara T (2008). Physiological roles and transport mechanisms of boron: Perspectives from plants.Pflügers Archiv European Journal of Physiology, 456, 671-677. |
[23] | Wang CL, Xin XR, Wu GP, Si Y, Wei XS (2003). Analyses of boron distribution and pollution in soil and some crops in Kuandian.Environmental Monitoring in China, 19(5), 4-7.(in Chinese with English abstract) |
[王春利, 邢小茹, 吴国平, 司杨, 魏复盛 (2003). 宽甸土壤及部分农作物中硼的分布及污染分析. 中国环境监测, 19(5), 4-7.] | |
[24] | Wang XK (2006). The Experiment Principle and Technique on Plant Physiology and Biochemistry. Higher Education Press, Beijing. 134-136.(in Chinese with English abstract) |
[王学奎 (2006). 植物生理生化试验原理和技术. 高等教育出版社, 北京. 134-136.] | |
[25] | Xiao Q, Zheng HL, Chen Y (2005). Effect of salinity on the growth and proline soluble sugar and protein contents ofSpartina alterniflora. Chinese Journal of Ecology, 24, 373-376.(in Chinese with English abstract) |
[肖强, 郑海雷, 陈瑶 (2005). 盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响. 生态学杂志, 24, 373-376.] | |
[26] | Yau SK, Ryan J (2008). Boron toxicity tolerance in crops: A viable alternative to soil amelioration.Crop Science, 48, 854-865. |
[27] | Zhang Y, Xue LG, Gao TP, Jin L, An NZ (2005). The research progress of desert plants seed germination.Journal of Desert Research, 25, 106-112.(in Chinese with English abstract) |
[张勇, 薛林贵, 高天鹏, 晋玲安黎哲 (2005). 荒漠植物种子萌发研究进展. 中国沙漠, 25, 106-112.] | |
[28] | Zu YL, Lin KH (2000). The role of boron plant body and the influence on crop yield and quality.Journal of Yunnan Agricultural University, 15, 353-363.(in Chinese with English abstract) |
[祖艳群, 林克惠 (2000). 硼在植物体中的作用及对作物产量和品质的影响. 云南农业大学学报, 15, 353-363.] |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[3] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[4] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[5] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[6] | 周慧敏, 李品, 冯兆忠, 张殷波. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 2019, 43(4): 296-304. |
[7] | 朱婉芮, 汪其同, 刘梦玲, 王华田, 王延平, 张光灿, 李传荣. 酚酸和氮素交互作用下欧美杨107细根形态特征[J]. 植物生态学报, 2015, 39(12): 1198-1208. |
[8] | 刘婷,唐明. 丛枝菌根真菌对杨树生长、气孔和木质部微观结构的影响[J]. 植物生态学报, 2014, 38(9): 1001-1007. |
[9] | 王华田, 杨阳, 王延平, 姜岳忠, 王宗芹. 外源酚酸对欧美杨‘I-107’水培幼苗硝态氮吸收利用的影响[J]. 植物生态学报, 2011, 35(2): 214-222. |
[10] | 刘晨峰, 张志强, 孙阁, 查同刚, 朱金兆, 申李华, 陈军, 方显瑞, 陈吉泉. 基于涡度相关法和树干液流法评价杨树人工林 生态系统蒸发散及其环境响应[J]. 植物生态学报, 2009, 33(4): 706-718. |
[11] | 杨建伟, 梁宗锁, 韩蕊莲. 不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J]. 植物生态学报, 2004, 28(5): 630-636. |
[12] | 冯玉龙, 张亚杰, 朱春全. 调控活性氧代谢对渗透胁迫时杨树光合作用光抑制的影响[J]. 植物生态学报, 2001, 25(4): 451-459. |
[13] | 刘世荣. 沙棘对中国亚湿润干旱区的杨树人工林生长与生产力的影响(英文)[J]. 植物生态学报, 2000, 24(2): 169-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19