植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 1001-1007.DOI: 10.3724/SP.J.1258.2014.00094
收稿日期:
2014-02-24
接受日期:
2014-06-18
出版日期:
2014-02-24
发布日期:
2014-09-22
通讯作者:
唐明
基金资助:
Received:
2014-02-24
Accepted:
2014-06-18
Online:
2014-02-24
Published:
2014-09-22
Contact:
TANG Ming
摘要:
植物气孔与木质部导管及纤维的功能直接关系着植物的水分利用, 进而影响植物的生长。为研究丛枝菌根真菌(AMF)对杨树抗旱性的影响, 采用温室盆栽的方法, 研究两种水分条件下, 接种根内球囊霉(Rhizophagus irregularis)对速生杨107 Populus × canadensis (P. nigra × P. deltoides) ‘Neva’气孔及木质部微观结构的影响。结果表明: AMF的侵染显著提高了杨树幼苗地上和地下部分生物量, 对叶片气孔长度、茎部导管细胞直径和纤维细胞长度也有促进作用。AMF对生物量和导管细胞直径的增加幅度表现出干旱条件下>正常水分条件下, 而对气孔长度的提高幅度表现出干旱条件下<正常水分条件下。正常水分条件下, AMF增加了杨树叶片的气孔密度, 减小了纤维细胞直径, 对相对水分饱和亏缺无影响; 干旱条件下, AMF增加了纤维细胞直径, 降低了相对水分饱和亏缺, 对气孔密度无影响。综上所述, 干旱条件下, AMF对导管水分传输能力的促进作用明显增加, 而对气孔蒸腾能力的促进作用有所减少, 从而更利于杨树在遭遇干旱时保持水分, 减少干旱对菌根杨树造成的水分亏缺, 提高菌根杨树对干旱的耐受性。
刘婷,唐明. 丛枝菌根真菌对杨树生长、气孔和木质部微观结构的影响. 植物生态学报, 2014, 38(9): 1001-1007. DOI: 10.3724/SP.J.1258.2014.00094
LIU Ting,TANG Ming. Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata and xylem in poplars. Chinese Journal of Plant Ecology, 2014, 38(9): 1001-1007. DOI: 10.3724/SP.J.1258.2014.00094
处理 Treatments | 侵染率 Colonization (%) | 干生物量 Dry biomass (g·pot-1) | ||
---|---|---|---|---|
地上部分 Aboveground | 地下部分 Belowground | |||
正常水分 Well watered | 未接种 No-inoculated | 0 | 4.90 ± 0.93b | 1.25 ± 0.16b |
接种 Inoculated | 86.2 | 6.71 ± 0.51a | 1.71 ± 0.15a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 0 | 4.79 ± 0.90b | 1.21 ± 0.20b |
接种 Inoculated | 87.3 | 6.76 ± 0.28a | 1.77 ± 0.16a | |
显著性 Significance | 接种 Inoculated | - | ** | ** |
干旱 Drought | - | ns | ns | |
接种×干旱 Inoculated × drought | - | ns | ns |
表1 丛枝菌根真菌对杨树幼苗侵染率和生物量的影响(平均值±标准偏差, n = 6)
Table 1 Effects of arbuscular mycorrhizal fungi on the colonization and biomass of poplar seedlings (mean ± SD, n = 6)
处理 Treatments | 侵染率 Colonization (%) | 干生物量 Dry biomass (g·pot-1) | ||
---|---|---|---|---|
地上部分 Aboveground | 地下部分 Belowground | |||
正常水分 Well watered | 未接种 No-inoculated | 0 | 4.90 ± 0.93b | 1.25 ± 0.16b |
接种 Inoculated | 86.2 | 6.71 ± 0.51a | 1.71 ± 0.15a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 0 | 4.79 ± 0.90b | 1.21 ± 0.20b |
接种 Inoculated | 87.3 | 6.76 ± 0.28a | 1.77 ± 0.16a | |
显著性 Significance | 接种 Inoculated | - | ** | ** |
干旱 Drought | - | ns | ns | |
接种×干旱 Inoculated × drought | - | ns | ns |
处理 Treatment | 上表皮气孔长度 Stomatal length in upper epidermis (μm) | 下表皮气孔长度 Stomatal length in lower epidermis (μm) | 上表皮气孔密度 Stomatal density in upper epidermis (ind.·mm-2) | 下表皮气孔密度 Stomatal density in lower epidermis (ind.·mm-2) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 26.91 ± 1.87b | 22.80 ± 2.80b | 79 ± 10b | 180 ± 19b |
接种 Inoculated | 30.43 ± 2.58a | 24.31 ± 1.60a | 88 ± 10a | 192 ± 16a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 25.96 ± 2.42b | 21.94 ± 2.46b | 86 ± 10a | 178 ± 12b |
接种 Inoculated | 29.07 ± 2.53a | 23.26 ± 2.76a | 86 ± 12a | 176 ± 18b | |
显著性 Significance | 接种 Inoculated | ** | ** | ns | ns |
干旱 Drought | ns | ns | ns | * | |
接种×干旱 Inoculated × drought | ns | ns | * | ns |
表2 丛枝菌根真菌对杨树气孔长度和气孔密度的影响(平均值±标准偏差, n = 80)
Table 2 Effects of arbuscular mycorrhizal fungi on the stomatal characteristics in poplar seedlings (mean ± SD, n = 80)
处理 Treatment | 上表皮气孔长度 Stomatal length in upper epidermis (μm) | 下表皮气孔长度 Stomatal length in lower epidermis (μm) | 上表皮气孔密度 Stomatal density in upper epidermis (ind.·mm-2) | 下表皮气孔密度 Stomatal density in lower epidermis (ind.·mm-2) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 26.91 ± 1.87b | 22.80 ± 2.80b | 79 ± 10b | 180 ± 19b |
接种 Inoculated | 30.43 ± 2.58a | 24.31 ± 1.60a | 88 ± 10a | 192 ± 16a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 25.96 ± 2.42b | 21.94 ± 2.46b | 86 ± 10a | 178 ± 12b |
接种 Inoculated | 29.07 ± 2.53a | 23.26 ± 2.76a | 86 ± 12a | 176 ± 18b | |
显著性 Significance | 接种 Inoculated | ** | ** | ns | ns |
干旱 Drought | ns | ns | ns | * | |
接种×干旱 Inoculated × drought | ns | ns | * | ns |
处理 Treatment | 导管细胞直径 Vessel diameter (μm) | 导管细胞长度 Vessel length (μm) | 纤维细胞直径 Fibre diameter (μm) | 纤维细胞长度 Fibre length (μm) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 44.59 ± 2.72b | 301.04 ± 17.87a | 11.32 ± 1.11a | 619.98 ± 19.54b |
接种 Inoculated | 49.00 ± 4.00a | 304.71 ± 18.77a | 10.53 ± 0.89c | 649.70 ± 22.81a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 44.00 ± 2.93b | 303.97 ± 19.16a | 10.49 ± 0.95c | 617.23 ± 21.65b |
接种 Inoculated | 49.33 ± 2.86a | 303.40 ± 17.97a | 11.02 ± 0.63b | 645.86 ± 20.43a | |
显著性 Significance | 接种 Inoculated | ** | ns | ns | ** |
干旱 Drought | ns | ns | ns | ns | |
接种×干旱 Inoculated × drought | ns | ns | ** | ns |
表3 丛枝菌根真菌对杨树茎部导管细胞、纤维细胞直径和长度的影响(平均值±标准偏差, n = 80)
Table 3 Effects of arbuscular mycorrhizal fungi on the stem vessel and fibre characteristics in poplar seedlings (mean ± SD, n = 80)
处理 Treatment | 导管细胞直径 Vessel diameter (μm) | 导管细胞长度 Vessel length (μm) | 纤维细胞直径 Fibre diameter (μm) | 纤维细胞长度 Fibre length (μm) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 44.59 ± 2.72b | 301.04 ± 17.87a | 11.32 ± 1.11a | 619.98 ± 19.54b |
接种 Inoculated | 49.00 ± 4.00a | 304.71 ± 18.77a | 10.53 ± 0.89c | 649.70 ± 22.81a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 44.00 ± 2.93b | 303.97 ± 19.16a | 10.49 ± 0.95c | 617.23 ± 21.65b |
接种 Inoculated | 49.33 ± 2.86a | 303.40 ± 17.97a | 11.02 ± 0.63b | 645.86 ± 20.43a | |
显著性 Significance | 接种 Inoculated | ** | ns | ns | ** |
干旱 Drought | ns | ns | ns | ns | |
接种×干旱 Inoculated × drought | ns | ns | ** | ns |
图1 接种丛枝菌根真菌(AMF)对杨树叶片水分饱和亏缺的影响(平均值±标准偏差)。不同字母表示差异显著(p < 0.05)。**, p < 0.01。
Fig. 1 Effects of arbuscular mycorrhizal fungi (AMF) on water deficit in poplar seedlings (mean ± SD). Different letters indicate significant difference (p < 0.05). **, p < 0.01.
[1] |
Ai J, Tschirner U (2010). Fiber length and pulping character- istics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. Bioresource Technology, 101, 215-221.
URL PMID |
[2] | Aref IM, Ahmed AI, Khan PR, El-Atta HA, Iqbal M (2013). Drought-induced adaptive changes in the seedling anatomy of Acacia ehrenbergiana and Acacia tortilis subsp. raddiana. Trees, 27, 959-971. |
[3] | Beniwal RS, Langenfeld-Heyser R, Polle A (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental & Experimental Botany, 69, 189-197. |
[4] |
Cao X, Jia JB, Li H, Li MC, Luo J, Liang ZS, Liu TX, Liu WG, Peng CH, Luo ZB (2012). Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biology, 14, 612-620.
DOI URL PMID |
[5] | de Souza TC, de Castro EM, Magalhães PC, de Oliveira Lino L, Alves ET, de Albuquerque PEP (2013). Morphophy- siology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiologiae Plantarum, 35, 3201-3211. |
[6] | Fichot R, Laurans F, Monclus R, Moreau A, Pilate G, Brignolas F (2009). Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides × Populus nigra hybrids. Tree Physiology, 29, 1537-1549. |
[7] | Gan CY, Yao RL, Xiang DY, Chen JB (2013). Responses of growth in Toona sinensis seedlings colonized by arbuscular mycorrhizal fungi to drought stress. Guangxi Forestry Science, 42(1), 20-24. (in Chinese with English abstract) |
[ 甘春雁, 姚瑞玲, 项东云, 陈健波 (2013). 丛枝菌根化香椿幼苗对干旱胁迫的生长响应. 广西林业科学, 42(1), 20-24.] | |
[8] | Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117, 106-114. |
[9] | Gong JR, Huang YM, Ge ZW, Duan QW, You X, An R, Zhang XS (2009). Ecological responses to soil water content in four hybrid Populus clones. Chinese Journal of Plant Ecology, 33, 387-396. (in Chinese with English abstract) |
[ 龚吉蕊, 黄永梅, 葛之葳, 段庆伟, 尤鑫, 安然, 张新时 (2009). 4种杂交杨对土壤水分变化的生态学响应. 植物生态学报, 33, 387-396.] | |
[10] | Gong MG, Tang M, Chen H, Zhang QM, Feng XX (2013). Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forests, 44, 399-408. |
[11] | Habibzadeh Y, Pirzad A, Zardashti MR, Jalilian J, Eini O (2013). Effects of arbuscular mycorrhizal fungi on seed and protein yield under water-deficit stress in mung bean. Agronomy Journal, 105, 79-84. |
[12] | Li YP, Sun HZ, Li HC (2009). The primary study on branch water saturation deficit and water-holding ability of transplanted Larix gmelinii. Forestry Science & Technology, 34(6), 11-13. (in Chinese with English abstract) |
[ 李夷平, 孙慧珍, 李海朝 (2009). 移栽兴安落叶松幼树水分饱和亏缺及保水力初步研究. 林业科技, 34(6), 11-13.] | |
[13] | Liu J, Xiao B, Wang LX, Li J, Pu GT, Gao T, Liu W (2013). Influence of AM on the growth of tea plant and tea quality under salt stress. Journal of Tea Science, 33(2), 140-146. (in Chinese with English abstract) |
[ 柳洁, 肖斌, 王丽霞, 李佼, 蒲国涛, 高婷, 刘雯 (2013). 盐胁迫下丛枝菌根(AM)对茶树生长及茶叶品质的影响. 茶叶科学, 33(2), 140-146.] | |
[14] | Luo ZB, Polle A (2009). Wood composition and energy content in a poplar short rotation plantation on fertilized agricul- tural land in a future CO2 atmosphere. Global Change Biology, 15, 38-47. |
[15] |
Marjanović Ž, Uwe N, Hampp R (2005). Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Annals of the New York Academy of Sciences, 1048, 496-499.
URL PMID |
[16] | Muthukumar T, Udaiyan K (2010). Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bioinoculants under tropical nursery conditions. New Forests, 40, 101-118. |
[17] | Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular- arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55, 158-161. |
[18] | Plant Physiological and Biochemical Teaching-Research Group of Northwest Agricultural University (1987). Experimental Guide for Plant Physiology. Shaanxi Science and Technology Press, Xi’an. (in Chinese) |
[ 西北农业大学植物生理生化教研组 (1987). 植物生理学实验指导. 陕西科学技术出版社, 西安.] | |
[19] | Quoreshi AM, Khasa DP (2008). Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass & Bioenergy, 32, 381-391. |
[20] |
Regier N, Streb S, Cocozza C, Schaub M, Cherubini P, Zeeman SC, Frey B (2009). Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant, Cell & Environment, 32, 1724-1736.
URL PMID |
[21] | Rooney DC, Prosser JI, Bending GD, Baggs EM, Killham K, Hodge A (2011). Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana c.v. Ghoy. Biomass & Bioenergy, 35, 4605-4612. |
[22] |
Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287-296.
DOI URL PMID |
[23] |
Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490-1500.
DOI URL PMID |
[24] | Tian S, Liu ZK, Tang M (2013). Effects of arbuscular mycor- rhizal fungi on growth and photosynthetic characteristics of Robinia pseudoacacia under different water conditions. Journal of Northwest Forestry University, 28(4), 111-115. (in Chinese with English abstract) |
[ 田帅, 刘振坤, 唐明 (2013). 不同水分条件下丛枝菌根真菌对刺槐生长和光合特性的影响. 西北林学院学报, 28(4), 111-115.] | |
[25] | Wang BX, Zeng YH, Wang DY, Zhao R, Xu X (2010). Responses of leaf stomata to environmental stresses in distribution and physiological characteristics. Agricultural Research in the Arid Areas, 28(2), 122-126. (in Chinese with English abstract) |
[ 王碧霞, 曾永海, 王大勇, 赵蓉, 胥晓 (2010). 叶片气孔分布及生理特征对环境胁迫的响应. 干旱地区农业研究, 28(2), 122-126.] | |
[26] | Weatherley PE (1950). Studies in the water relations of the cotton plant. 1. The field measurement of water deficits in leaves. New Phytologist, 49, 81-87. |
[27] | Wu DQ, Xu F, Guo WH, Wang RQ, Zhang ZG (2007). Inpact factors and model comparison of summer stomatal conductance of six common greening species in cities of Northern China. Acta Ecologica Sinica, 27, 4141-4148. (in Chinese with English abstract) |
[ 吴大千, 徐飞, 郭卫华, 王仁卿, 张治国 (2007). 中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较. 生态学报, 27, 4141-4148.] | |
[28] |
Xiao XW, Yang F, Zhang S, Korpelainen H, Li CY (2009). Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiologia Plantarum, 136, 150-168.
DOI URL PMID |
[29] |
Xu H, Cooke JEK, Zwiazek JJ (2013). Phylogenetic analysis of fungal aquaporins provides insight into their possible role in water transport of mycorrhizal associations. Botany, 91, 495-504.
DOI URL |
[30] | Yao J, Wang MS, Wang TM, Wang F, Ma Y, Qiu ZZ (2013). Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics in leaves of flue-cured tobacco. Chinese Tobacco Science, 34(4), 30-35. (in Chinese with English abstract) |
[ 姚娟, 王茂胜, 王通明, 王丰, 马莹, 邱忠智 (2013). 接种丛枝菌根真菌对烤烟叶片光合特性的影响. 中国烟草科学, 34(4), 30-35.] |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[5] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[6] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[7] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[8] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[9] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[10] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[11] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[12] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[13] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[14] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[15] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19