植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 1001-1007.DOI: 10.3724/SP.J.1258.2014.00094
收稿日期:
2014-02-24
接受日期:
2014-06-18
出版日期:
2014-02-24
发布日期:
2014-09-22
通讯作者:
唐明
基金资助:
Received:
2014-02-24
Accepted:
2014-06-18
Online:
2014-02-24
Published:
2014-09-22
Contact:
TANG Ming
摘要:
植物气孔与木质部导管及纤维的功能直接关系着植物的水分利用, 进而影响植物的生长。为研究丛枝菌根真菌(AMF)对杨树抗旱性的影响, 采用温室盆栽的方法, 研究两种水分条件下, 接种根内球囊霉(Rhizophagus irregularis)对速生杨107 Populus × canadensis (P. nigra × P. deltoides) ‘Neva’气孔及木质部微观结构的影响。结果表明: AMF的侵染显著提高了杨树幼苗地上和地下部分生物量, 对叶片气孔长度、茎部导管细胞直径和纤维细胞长度也有促进作用。AMF对生物量和导管细胞直径的增加幅度表现出干旱条件下>正常水分条件下, 而对气孔长度的提高幅度表现出干旱条件下<正常水分条件下。正常水分条件下, AMF增加了杨树叶片的气孔密度, 减小了纤维细胞直径, 对相对水分饱和亏缺无影响; 干旱条件下, AMF增加了纤维细胞直径, 降低了相对水分饱和亏缺, 对气孔密度无影响。综上所述, 干旱条件下, AMF对导管水分传输能力的促进作用明显增加, 而对气孔蒸腾能力的促进作用有所减少, 从而更利于杨树在遭遇干旱时保持水分, 减少干旱对菌根杨树造成的水分亏缺, 提高菌根杨树对干旱的耐受性。
刘婷,唐明. 丛枝菌根真菌对杨树生长、气孔和木质部微观结构的影响. 植物生态学报, 2014, 38(9): 1001-1007. DOI: 10.3724/SP.J.1258.2014.00094
LIU Ting,TANG Ming. Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata and xylem in poplars. Chinese Journal of Plant Ecology, 2014, 38(9): 1001-1007. DOI: 10.3724/SP.J.1258.2014.00094
处理 Treatments | 侵染率 Colonization (%) | 干生物量 Dry biomass (g·pot-1) | ||
---|---|---|---|---|
地上部分 Aboveground | 地下部分 Belowground | |||
正常水分 Well watered | 未接种 No-inoculated | 0 | 4.90 ± 0.93b | 1.25 ± 0.16b |
接种 Inoculated | 86.2 | 6.71 ± 0.51a | 1.71 ± 0.15a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 0 | 4.79 ± 0.90b | 1.21 ± 0.20b |
接种 Inoculated | 87.3 | 6.76 ± 0.28a | 1.77 ± 0.16a | |
显著性 Significance | 接种 Inoculated | - | ** | ** |
干旱 Drought | - | ns | ns | |
接种×干旱 Inoculated × drought | - | ns | ns |
表1 丛枝菌根真菌对杨树幼苗侵染率和生物量的影响(平均值±标准偏差, n = 6)
Table 1 Effects of arbuscular mycorrhizal fungi on the colonization and biomass of poplar seedlings (mean ± SD, n = 6)
处理 Treatments | 侵染率 Colonization (%) | 干生物量 Dry biomass (g·pot-1) | ||
---|---|---|---|---|
地上部分 Aboveground | 地下部分 Belowground | |||
正常水分 Well watered | 未接种 No-inoculated | 0 | 4.90 ± 0.93b | 1.25 ± 0.16b |
接种 Inoculated | 86.2 | 6.71 ± 0.51a | 1.71 ± 0.15a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 0 | 4.79 ± 0.90b | 1.21 ± 0.20b |
接种 Inoculated | 87.3 | 6.76 ± 0.28a | 1.77 ± 0.16a | |
显著性 Significance | 接种 Inoculated | - | ** | ** |
干旱 Drought | - | ns | ns | |
接种×干旱 Inoculated × drought | - | ns | ns |
处理 Treatment | 上表皮气孔长度 Stomatal length in upper epidermis (μm) | 下表皮气孔长度 Stomatal length in lower epidermis (μm) | 上表皮气孔密度 Stomatal density in upper epidermis (ind.·mm-2) | 下表皮气孔密度 Stomatal density in lower epidermis (ind.·mm-2) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 26.91 ± 1.87b | 22.80 ± 2.80b | 79 ± 10b | 180 ± 19b |
接种 Inoculated | 30.43 ± 2.58a | 24.31 ± 1.60a | 88 ± 10a | 192 ± 16a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 25.96 ± 2.42b | 21.94 ± 2.46b | 86 ± 10a | 178 ± 12b |
接种 Inoculated | 29.07 ± 2.53a | 23.26 ± 2.76a | 86 ± 12a | 176 ± 18b | |
显著性 Significance | 接种 Inoculated | ** | ** | ns | ns |
干旱 Drought | ns | ns | ns | * | |
接种×干旱 Inoculated × drought | ns | ns | * | ns |
表2 丛枝菌根真菌对杨树气孔长度和气孔密度的影响(平均值±标准偏差, n = 80)
Table 2 Effects of arbuscular mycorrhizal fungi on the stomatal characteristics in poplar seedlings (mean ± SD, n = 80)
处理 Treatment | 上表皮气孔长度 Stomatal length in upper epidermis (μm) | 下表皮气孔长度 Stomatal length in lower epidermis (μm) | 上表皮气孔密度 Stomatal density in upper epidermis (ind.·mm-2) | 下表皮气孔密度 Stomatal density in lower epidermis (ind.·mm-2) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 26.91 ± 1.87b | 22.80 ± 2.80b | 79 ± 10b | 180 ± 19b |
接种 Inoculated | 30.43 ± 2.58a | 24.31 ± 1.60a | 88 ± 10a | 192 ± 16a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 25.96 ± 2.42b | 21.94 ± 2.46b | 86 ± 10a | 178 ± 12b |
接种 Inoculated | 29.07 ± 2.53a | 23.26 ± 2.76a | 86 ± 12a | 176 ± 18b | |
显著性 Significance | 接种 Inoculated | ** | ** | ns | ns |
干旱 Drought | ns | ns | ns | * | |
接种×干旱 Inoculated × drought | ns | ns | * | ns |
处理 Treatment | 导管细胞直径 Vessel diameter (μm) | 导管细胞长度 Vessel length (μm) | 纤维细胞直径 Fibre diameter (μm) | 纤维细胞长度 Fibre length (μm) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 44.59 ± 2.72b | 301.04 ± 17.87a | 11.32 ± 1.11a | 619.98 ± 19.54b |
接种 Inoculated | 49.00 ± 4.00a | 304.71 ± 18.77a | 10.53 ± 0.89c | 649.70 ± 22.81a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 44.00 ± 2.93b | 303.97 ± 19.16a | 10.49 ± 0.95c | 617.23 ± 21.65b |
接种 Inoculated | 49.33 ± 2.86a | 303.40 ± 17.97a | 11.02 ± 0.63b | 645.86 ± 20.43a | |
显著性 Significance | 接种 Inoculated | ** | ns | ns | ** |
干旱 Drought | ns | ns | ns | ns | |
接种×干旱 Inoculated × drought | ns | ns | ** | ns |
表3 丛枝菌根真菌对杨树茎部导管细胞、纤维细胞直径和长度的影响(平均值±标准偏差, n = 80)
Table 3 Effects of arbuscular mycorrhizal fungi on the stem vessel and fibre characteristics in poplar seedlings (mean ± SD, n = 80)
处理 Treatment | 导管细胞直径 Vessel diameter (μm) | 导管细胞长度 Vessel length (μm) | 纤维细胞直径 Fibre diameter (μm) | 纤维细胞长度 Fibre length (μm) | |
---|---|---|---|---|---|
正常水分 Well watered | 未接种 No-inoculated | 44.59 ± 2.72b | 301.04 ± 17.87a | 11.32 ± 1.11a | 619.98 ± 19.54b |
接种 Inoculated | 49.00 ± 4.00a | 304.71 ± 18.77a | 10.53 ± 0.89c | 649.70 ± 22.81a | |
干旱胁迫 Drought stress | 未接种 No-inoculated | 44.00 ± 2.93b | 303.97 ± 19.16a | 10.49 ± 0.95c | 617.23 ± 21.65b |
接种 Inoculated | 49.33 ± 2.86a | 303.40 ± 17.97a | 11.02 ± 0.63b | 645.86 ± 20.43a | |
显著性 Significance | 接种 Inoculated | ** | ns | ns | ** |
干旱 Drought | ns | ns | ns | ns | |
接种×干旱 Inoculated × drought | ns | ns | ** | ns |
图1 接种丛枝菌根真菌(AMF)对杨树叶片水分饱和亏缺的影响(平均值±标准偏差)。不同字母表示差异显著(p < 0.05)。**, p < 0.01。
Fig. 1 Effects of arbuscular mycorrhizal fungi (AMF) on water deficit in poplar seedlings (mean ± SD). Different letters indicate significant difference (p < 0.05). **, p < 0.01.
[1] |
Ai J, Tschirner U (2010). Fiber length and pulping character- istics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. Bioresource Technology, 101, 215-221.
URL PMID |
[2] | Aref IM, Ahmed AI, Khan PR, El-Atta HA, Iqbal M (2013). Drought-induced adaptive changes in the seedling anatomy of Acacia ehrenbergiana and Acacia tortilis subsp. raddiana. Trees, 27, 959-971. |
[3] | Beniwal RS, Langenfeld-Heyser R, Polle A (2010). Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environmental & Experimental Botany, 69, 189-197. |
[4] |
Cao X, Jia JB, Li H, Li MC, Luo J, Liang ZS, Liu TX, Liu WG, Peng CH, Luo ZB (2012). Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biology, 14, 612-620.
DOI URL PMID |
[5] | de Souza TC, de Castro EM, Magalhães PC, de Oliveira Lino L, Alves ET, de Albuquerque PEP (2013). Morphophy- siology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiologiae Plantarum, 35, 3201-3211. |
[6] | Fichot R, Laurans F, Monclus R, Moreau A, Pilate G, Brignolas F (2009). Xylem anatomy correlates with gas exchange, water-use efficiency and growth performance under contrasting water regimes: evidence from Populus deltoides × Populus nigra hybrids. Tree Physiology, 29, 1537-1549. |
[7] | Gan CY, Yao RL, Xiang DY, Chen JB (2013). Responses of growth in Toona sinensis seedlings colonized by arbuscular mycorrhizal fungi to drought stress. Guangxi Forestry Science, 42(1), 20-24. (in Chinese with English abstract) |
[ 甘春雁, 姚瑞玲, 项东云, 陈健波 (2013). 丛枝菌根化香椿幼苗对干旱胁迫的生长响应. 广西林业科学, 42(1), 20-24.] | |
[8] | Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Management, 117, 106-114. |
[9] | Gong JR, Huang YM, Ge ZW, Duan QW, You X, An R, Zhang XS (2009). Ecological responses to soil water content in four hybrid Populus clones. Chinese Journal of Plant Ecology, 33, 387-396. (in Chinese with English abstract) |
[ 龚吉蕊, 黄永梅, 葛之葳, 段庆伟, 尤鑫, 安然, 张新时 (2009). 4种杂交杨对土壤水分变化的生态学响应. 植物生态学报, 33, 387-396.] | |
[10] | Gong MG, Tang M, Chen H, Zhang QM, Feng XX (2013). Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forests, 44, 399-408. |
[11] | Habibzadeh Y, Pirzad A, Zardashti MR, Jalilian J, Eini O (2013). Effects of arbuscular mycorrhizal fungi on seed and protein yield under water-deficit stress in mung bean. Agronomy Journal, 105, 79-84. |
[12] | Li YP, Sun HZ, Li HC (2009). The primary study on branch water saturation deficit and water-holding ability of transplanted Larix gmelinii. Forestry Science & Technology, 34(6), 11-13. (in Chinese with English abstract) |
[ 李夷平, 孙慧珍, 李海朝 (2009). 移栽兴安落叶松幼树水分饱和亏缺及保水力初步研究. 林业科技, 34(6), 11-13.] | |
[13] | Liu J, Xiao B, Wang LX, Li J, Pu GT, Gao T, Liu W (2013). Influence of AM on the growth of tea plant and tea quality under salt stress. Journal of Tea Science, 33(2), 140-146. (in Chinese with English abstract) |
[ 柳洁, 肖斌, 王丽霞, 李佼, 蒲国涛, 高婷, 刘雯 (2013). 盐胁迫下丛枝菌根(AM)对茶树生长及茶叶品质的影响. 茶叶科学, 33(2), 140-146.] | |
[14] | Luo ZB, Polle A (2009). Wood composition and energy content in a poplar short rotation plantation on fertilized agricul- tural land in a future CO2 atmosphere. Global Change Biology, 15, 38-47. |
[15] |
Marjanović Ž, Uwe N, Hampp R (2005). Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Annals of the New York Academy of Sciences, 1048, 496-499.
URL PMID |
[16] | Muthukumar T, Udaiyan K (2010). Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bioinoculants under tropical nursery conditions. New Forests, 40, 101-118. |
[17] | Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular- arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, 55, 158-161. |
[18] | Plant Physiological and Biochemical Teaching-Research Group of Northwest Agricultural University (1987). Experimental Guide for Plant Physiology. Shaanxi Science and Technology Press, Xi’an. (in Chinese) |
[ 西北农业大学植物生理生化教研组 (1987). 植物生理学实验指导. 陕西科学技术出版社, 西安.] | |
[19] | Quoreshi AM, Khasa DP (2008). Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar. Biomass & Bioenergy, 32, 381-391. |
[20] |
Regier N, Streb S, Cocozza C, Schaub M, Cherubini P, Zeeman SC, Frey B (2009). Drought tolerance of two black poplar (Populus nigra L.) clones: contribution of carbohydrates and oxidative stress defence. Plant, Cell & Environment, 32, 1724-1736.
URL PMID |
[21] | Rooney DC, Prosser JI, Bending GD, Baggs EM, Killham K, Hodge A (2011). Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana c.v. Ghoy. Biomass & Bioenergy, 35, 4605-4612. |
[22] |
Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287-296.
DOI URL PMID |
[23] |
Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490-1500.
DOI URL PMID |
[24] | Tian S, Liu ZK, Tang M (2013). Effects of arbuscular mycor- rhizal fungi on growth and photosynthetic characteristics of Robinia pseudoacacia under different water conditions. Journal of Northwest Forestry University, 28(4), 111-115. (in Chinese with English abstract) |
[ 田帅, 刘振坤, 唐明 (2013). 不同水分条件下丛枝菌根真菌对刺槐生长和光合特性的影响. 西北林学院学报, 28(4), 111-115.] | |
[25] | Wang BX, Zeng YH, Wang DY, Zhao R, Xu X (2010). Responses of leaf stomata to environmental stresses in distribution and physiological characteristics. Agricultural Research in the Arid Areas, 28(2), 122-126. (in Chinese with English abstract) |
[ 王碧霞, 曾永海, 王大勇, 赵蓉, 胥晓 (2010). 叶片气孔分布及生理特征对环境胁迫的响应. 干旱地区农业研究, 28(2), 122-126.] | |
[26] | Weatherley PE (1950). Studies in the water relations of the cotton plant. 1. The field measurement of water deficits in leaves. New Phytologist, 49, 81-87. |
[27] | Wu DQ, Xu F, Guo WH, Wang RQ, Zhang ZG (2007). Inpact factors and model comparison of summer stomatal conductance of six common greening species in cities of Northern China. Acta Ecologica Sinica, 27, 4141-4148. (in Chinese with English abstract) |
[ 吴大千, 徐飞, 郭卫华, 王仁卿, 张治国 (2007). 中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较. 生态学报, 27, 4141-4148.] | |
[28] |
Xiao XW, Yang F, Zhang S, Korpelainen H, Li CY (2009). Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiologia Plantarum, 136, 150-168.
DOI URL PMID |
[29] |
Xu H, Cooke JEK, Zwiazek JJ (2013). Phylogenetic analysis of fungal aquaporins provides insight into their possible role in water transport of mycorrhizal associations. Botany, 91, 495-504.
DOI URL |
[30] | Yao J, Wang MS, Wang TM, Wang F, Ma Y, Qiu ZZ (2013). Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics in leaves of flue-cured tobacco. Chinese Tobacco Science, 34(4), 30-35. (in Chinese with English abstract) |
[ 姚娟, 王茂胜, 王通明, 王丰, 马莹, 邱忠智 (2013). 接种丛枝菌根真菌对烤烟叶片光合特性的影响. 中国烟草科学, 34(4), 30-35.] |
[1] | 杨佳绒 戴冬 陈俊芳 刘娟 吴宪 刘啸林 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 赵小宁 田晓楠 李新 李广德 郭有正 贾黎明 段劼 席本野. Granier原始公式计算树干液流速率的适用性分析—以毛白杨为例[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[4] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[5] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[6] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[7] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[8] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[9] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[10] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[11] | 王俐爽 同小娟 孟平 张劲松 刘沛荣 李俊 张静茹 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤呼吸与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[13] | 林雍 陈智 杨萌 陈世苹 高艳红 刘冉 郝彦宾 辛晓平 周莉 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[14] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[15] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19