植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 990-1000.DOI: 10.3724/SP.J.1258.2014.00093
郭数进1,李玮瑜2,马艳芸1,赵恒1,乔玲1,李贵全1,*()
收稿日期:
2014-01-28
接受日期:
2014-07-02
出版日期:
2014-01-28
发布日期:
2014-09-22
通讯作者:
李贵全
基金资助:
GUO Shu-Jin1,LI Wei-Yu2,MA Yan-Yun1,ZHAO Heng1,QIAO Ling1,LI Gui-Quan1,*()
Received:
2014-01-28
Accepted:
2014-07-02
Online:
2014-01-28
Published:
2014-09-22
Contact:
LI Gui-Quan
摘要:
为探明山西不同生态型大豆(Glycine max)品种对苗期低温胁迫的应答表现, 寻求大豆苗期耐低温性综合评价指标和评价方法, 选取了山西普遍种植的‘晋大53’、‘晋大70’和‘晋豆24’ 3个不同生态型大豆品种, 在苗期将材料分别置于14、17和20 ℃人工气候箱中, 保持昼夜恒温, 进行低温胁迫处理。分别测定了各品种光合与产量性状值, 用基因型主效应及其与环境互作(GGE)双标图分析各性状对品种的效应及性状间的相关性, 应用隶属函数法综合评价各品种的苗期耐低温性。结果显示: 低温胁迫下不同生态型大豆品种苗期延长1-12天; 苗期光合性状值均下降, 其中, 叶片气孔导度(Gs)和蒸腾速率(Tr)下降最明显; 产量性状值均呈下降趋势, 单株生物量和单株荚数下降最明显; 各项性状在不同品种中对低温的应答效应不同, 且性状间存在明显的相关性, 可作为耐低温性的评价指标。品种‘晋大70’的耐低温性最佳。
郭数进,李玮瑜,马艳芸,赵恒,乔玲,李贵全. 山西不同生态型大豆品种苗期耐低温性综合评价. 植物生态学报, 2014, 38(9): 990-1000. DOI: 10.3724/SP.J.1258.2014.00093
GUO Shu-Jin,LI Wei-Yu,MA Yan-Yun,ZHAO Heng,QIAO Ling,LI Gui-Quan. Comprehensive evaluation of low-temperature tolerance in soybean cultivars of different eco-types at seedling stage in Shanxi Province. Chinese Journal of Plant Ecology, 2014, 38(9): 990-1000. DOI: 10.3724/SP.J.1258.2014.00093
品种 Cultivar | 株高 Plant height (cm) | 叶形 Leaf shape | 花色 Flower color | 茸毛色 Fluff color | 种皮色 Seed coat color | 脐色 Hilum color | 生育期时长 Breeding period duration (d) | 结荚习性 Growth habit | 品种类型 Cultivar type |
---|---|---|---|---|---|---|---|---|---|
‘晋大53’ ‘Jinda 53’ | 95-105 | 椭圆 Ellipse | 白色 White | 棕色 Brown | 黄色 Yellow | 褐脐 Brown | 125-135 | 无限 Indeterminate | 高产、晚熟 High yield and late maturity |
‘晋大70’ ‘Jinda 70’ | 75-90 | 椭圆 Ellipse | 白色 White | 棕色 Brown | 黄色 Yellow | 淡白 Light white | 115-128 | 有限 Determinate | 稳产、中熟 Stable yield and medium maturity |
‘晋豆24’ ‘Jindou 24’ | 80-95 | 尖叶 Sharp | 紫色 Purple | 棕色 Brown | 黄色 Yellow | 淡脐 Light | 95-110 | 亚有限 Semi- determinate | 中产、早熟 Medium yield and early maturity |
表1 供试大豆品种生物学性状
Table 1 Biological traits of the soybean cultivars tested
品种 Cultivar | 株高 Plant height (cm) | 叶形 Leaf shape | 花色 Flower color | 茸毛色 Fluff color | 种皮色 Seed coat color | 脐色 Hilum color | 生育期时长 Breeding period duration (d) | 结荚习性 Growth habit | 品种类型 Cultivar type |
---|---|---|---|---|---|---|---|---|---|
‘晋大53’ ‘Jinda 53’ | 95-105 | 椭圆 Ellipse | 白色 White | 棕色 Brown | 黄色 Yellow | 褐脐 Brown | 125-135 | 无限 Indeterminate | 高产、晚熟 High yield and late maturity |
‘晋大70’ ‘Jinda 70’ | 75-90 | 椭圆 Ellipse | 白色 White | 棕色 Brown | 黄色 Yellow | 淡白 Light white | 115-128 | 有限 Determinate | 稳产、中熟 Stable yield and medium maturity |
‘晋豆24’ ‘Jindou 24’ | 80-95 | 尖叶 Sharp | 紫色 Purple | 棕色 Brown | 黄色 Yellow | 淡脐 Light | 95-110 | 亚有限 Semi- determinate | 中产、早熟 Medium yield and early maturity |
图1 胁迫温度处理后各品种苗期延长率(平均值±标准误差)。不同大写字母表示在0.01水平上差异显著。
Fig. 1 Extension of seedling stage of different cultivars following low temperature stress treatments (mean ± SE). Different capital letters indicate significant differences at the level of 0.01.
品种 Cultivar | 温度处理 Treatment (℃) | 开花数 Flower number | 成荚率 Pod-bearing rate | 一粒荚数 1-seed pod number | 二粒荚数 2-seed pod number | 三粒荚数 3-seed pod number | 四粒荚数 4-seed pod number |
---|---|---|---|---|---|---|---|
‘晋大53’ ‘Jinda 53’ | 14 | 28.33 ± 2.517C | 37.67% ± 0.051C | 6.00 ± 2.000B | 3.67 ± 1.528C | 1.00 ± 1.000C | 0C |
17 | 46.00 ± 4.583B | 44.00% ± 0.040BC | 9.33 ± 2.309A | 6.33 ± 0.577C | 3.33 ± 0.577C | 1.33 ± 0.577B | |
20 | 52.00 ± 5.568B | 53.33% ± 0.067B | 4.33 ± 0.577B | 11.67 ± 1.155B | 10.00 ± 2.00B | 1.33 ± 0.577B | |
23 | 63.00 ± 4.359A | 71.33% ± 0.083A | 3.33 ± 0.577B | 17.00 ± 2.646A | 21.33 ± 1.528A | 3.00 ± 0.00A | |
‘晋大70’ ‘Jinda 70’ | 14 | 43.00 ± 2.646D | 44.33% ± 0.032C | 8.67 ± 0.577A | 9.67 ± 0.577C | 0.67 ± 0.577D | 0B |
17 | 58.33 ± 5.132C | 56.33% ± 0.025B | 5.67 ± 0.577B | 15.67 ± 1.154A | 11.00 ± 1.00C | 0.67 ± 0.577AB | |
20 | 67.67 ± 4.509B | 64.00% ± 0.032B | 2.00 ± 0.000C | 11.67 ± 2.081BC | 31.33 ± 1.53B | 1.33 ± 0.577A | |
23 | 77.00 ± 3.606A | 83.00% ± 0.078A | 1.00 ± 0.000D | 13.67 ± 3.055AB | 49.00 ± 1.00A | 1A | |
‘晋豆24’ ‘Jindou 24’ | 14 | 24.33 ± 2.517C | 47.67% ± 0.015B | 4.33 ± 0.577A | 6.67 ± 0.577B | 0.67 ± 0.577C | 0B |
17 | 39.00 ± 0.000B | 54.67% ± 0.015B | 4.67 ± 0.577A | 11.00 ± 1.000A | 4.67 ± 0.577B | 1B | |
20 | 56.33 ± 6.807A | 68.67% ± 0.032A | 3.00 ± 1.000AB | 12.00 ± 1.732A | 17.33 ± 1.154A | 1.33 ± 0.577B | |
23 | 64.33 ± 6.506A | 69.00% ± 0.079A | 1.67 ± 1.154B | 6.00 ± 1.732B | 20.00 ± 3.464A | 17.00 ± 3.605A |
表2 不同温度处理后各品种生长性状比较(平均值±标准误差, n = 3)
Table 2 Comparisons of growth traits of different cultivars subjected to different temperature treatments (mean ± SE, n = 3)
品种 Cultivar | 温度处理 Treatment (℃) | 开花数 Flower number | 成荚率 Pod-bearing rate | 一粒荚数 1-seed pod number | 二粒荚数 2-seed pod number | 三粒荚数 3-seed pod number | 四粒荚数 4-seed pod number |
---|---|---|---|---|---|---|---|
‘晋大53’ ‘Jinda 53’ | 14 | 28.33 ± 2.517C | 37.67% ± 0.051C | 6.00 ± 2.000B | 3.67 ± 1.528C | 1.00 ± 1.000C | 0C |
17 | 46.00 ± 4.583B | 44.00% ± 0.040BC | 9.33 ± 2.309A | 6.33 ± 0.577C | 3.33 ± 0.577C | 1.33 ± 0.577B | |
20 | 52.00 ± 5.568B | 53.33% ± 0.067B | 4.33 ± 0.577B | 11.67 ± 1.155B | 10.00 ± 2.00B | 1.33 ± 0.577B | |
23 | 63.00 ± 4.359A | 71.33% ± 0.083A | 3.33 ± 0.577B | 17.00 ± 2.646A | 21.33 ± 1.528A | 3.00 ± 0.00A | |
‘晋大70’ ‘Jinda 70’ | 14 | 43.00 ± 2.646D | 44.33% ± 0.032C | 8.67 ± 0.577A | 9.67 ± 0.577C | 0.67 ± 0.577D | 0B |
17 | 58.33 ± 5.132C | 56.33% ± 0.025B | 5.67 ± 0.577B | 15.67 ± 1.154A | 11.00 ± 1.00C | 0.67 ± 0.577AB | |
20 | 67.67 ± 4.509B | 64.00% ± 0.032B | 2.00 ± 0.000C | 11.67 ± 2.081BC | 31.33 ± 1.53B | 1.33 ± 0.577A | |
23 | 77.00 ± 3.606A | 83.00% ± 0.078A | 1.00 ± 0.000D | 13.67 ± 3.055AB | 49.00 ± 1.00A | 1A | |
‘晋豆24’ ‘Jindou 24’ | 14 | 24.33 ± 2.517C | 47.67% ± 0.015B | 4.33 ± 0.577A | 6.67 ± 0.577B | 0.67 ± 0.577C | 0B |
17 | 39.00 ± 0.000B | 54.67% ± 0.015B | 4.67 ± 0.577A | 11.00 ± 1.000A | 4.67 ± 0.577B | 1B | |
20 | 56.33 ± 6.807A | 68.67% ± 0.032A | 3.00 ± 1.000AB | 12.00 ± 1.732A | 17.33 ± 1.154A | 1.33 ± 0.577B | |
23 | 64.33 ± 6.506A | 69.00% ± 0.079A | 1.67 ± 1.154B | 6.00 ± 1.732B | 20.00 ± 3.464A | 17.00 ± 3.605A |
图2 胁迫温度下各品种苗期光合性状值下降率(平均值±标准误差)。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。不同大小写字母分别表示在0.01和0.05水平上差异显著。
Fig. 2 Reduction rates in photosynthetic trait values in seed- lings of different cultivars subjected to low temperature treat- ments (mean ± SE). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpire- tion rate. Different capital letters and lower letters indicate sig- nificant differences at the levels of 0.01 and 0.05, respectively.
图3 胁迫温度下各品种光合性状值下降率的比较(平均值±标准误差)。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。不同大小写字母分别表示在0.01和0.05水平上差异显著。
Fig. 3 Comparisons of reduction rates in photosynthetic trait values among cultivars subjected to low temperature treatments (mean ± SE). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate. Different capital letters and lowercase letters indicate signify- cant differences at the levels of 0.01 and 0.05, respectively.
图4 胁迫温度处理后各品种产量性状值下降率(平均值±标准误差)。不同大小写字母分别表示在0.01和0.05水平上差异显著。
Fig. 4 Reduction rates in yield trait values of different cultivars subjected to low temperature treatments (mean ± SE). Different capital letters and lowercase letters indicate significant differences at the levels of 0.01 and 0.05, respectively.
图5 胁迫温度处理后各品种产量性状值下降率的比较(平均值±标准误差)。不同大小写字母分别表示在0.01和0.05水平上差异显著。
Fig. 5 Comparisons of reductions rates in yield trait values among cultivars subjected to low temperature treatments (mean ± SE). Different capital letters and lowercase letters indicate significant differences at the levels of 0.01 and 0.05, respectively.
品种 Cultivar | 14 ℃ | 17 ℃ | 20 ℃ | 23 ℃ |
---|---|---|---|---|
‘晋大53’ ‘Jinda 53’ | 92.09 ± 12.84B | 100.52 ± 20.90B | 215.33 ± 5.51A | 243.67 ± 21.73A |
‘晋大70’ ‘Jinda 70’ | 148.69 ± 37.31C | 196.24 ± 12.38BC | 214.68 ± 19.56AB | 251.67 ± 27.54A |
‘晋豆24’ ‘Jindou 24’ | 104.77 ± 17.61C | 103.67 ± 23.82C | 115.43 ± 13.33B | 233.00 ± 15.87A |
表3 不同温度处理后各品种最终产量比较(g, 平均值±标准误差, n = 3)
Table 3 Comparison of the final yields of different cultivars subjected to different temperature treatments (g, mean ± SE, n = 3)
品种 Cultivar | 14 ℃ | 17 ℃ | 20 ℃ | 23 ℃ |
---|---|---|---|---|
‘晋大53’ ‘Jinda 53’ | 92.09 ± 12.84B | 100.52 ± 20.90B | 215.33 ± 5.51A | 243.67 ± 21.73A |
‘晋大70’ ‘Jinda 70’ | 148.69 ± 37.31C | 196.24 ± 12.38BC | 214.68 ± 19.56AB | 251.67 ± 27.54A |
‘晋豆24’ ‘Jindou 24’ | 104.77 ± 17.61C | 103.67 ± 23.82C | 115.43 ± 13.33B | 233.00 ± 15.87A |
图6 苗期低温胁迫时光合性状对各品种的效应。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。
Fig. 6 Effects of photosynthetic traits on cultivars under low temperature stress at seedling stage. Ci, intercellular CO2 concentration; DR, decline rate; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate.
图7 苗期低温胁迫时光合性状间的相关性。Ci, 胞间CO2浓度; Gs, 气孔导度; Pn, 净光合速率; Tr, 蒸腾速率。
Fig. 7 Correlations among photosynthetic traits under low temperature stress at seedling stage. Ci, intercellular CO2 concentration; DR, decline rate; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate.
图8 苗期低温胁迫后产量性状对各品种的效应。
Fig. 8 Effects of yield traits on cultivars under low temperature stress at seedling stage. DR, decline rate; PH, plant hight; PPP, pods per plant; PM, plant mass; YPP, yield per plant.
图9 苗期低温胁迫后产量性状间的相关性。
Fig. 9 Correlations among yield traits under low temperature stress at seedling stage. DR, decline rate; PH, plant hight; PPP, pods per plant; PM, plant mass; YPP, yield per plant.
性状 Trait | 隶属函数值 Values of subordinate function | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
14 ℃ | 17 ℃ | 20 ℃ | |||||||||
‘晋大53’ ‘Jinda 53’ | ‘晋大70’ ‘Jinda 70’ | ‘晋豆24’ ‘Jindou 24’ | ‘晋大53’ ‘Jinda 53’ | ‘晋大70’ ‘Jinda 70’ | ‘晋豆24’ ‘Jindou 24’ | ‘晋大53’ ‘Jinda 53’ | ‘晋大70’ ‘Jinda 70’ | ‘晋豆24’ ‘Jindou 24’ | |||
苗期延长率 Extension of seedling stage | 0.121 | 1.000 | 0 | 0.170 | 1.000 | 0 | 0.298 | 1.000 | 0 | ||
Pn下降率 Reduction rate of Pn | 1.000 | 0.498 | 0 | 1.000 | 0.941 | 0 | 0.278 | 1.000 | 0 | ||
Ci下降率 Reduction rate of Ci | 1.000 | 0 | 0.268 | 1.000 | 0.254 | 0 | 1.000 | 0.934 | 0 | ||
Gs下降率 Reduction rate of Gs | 1.000 | 0 | 0.437 | 1.000 | 0.309 | 0 | 0.430 | 0 | 1.000 | ||
Tr下降率 Reduction rate of Tr | 1.000 | 0 | 0.437 | 0.872 | 1.000 | 0 | 1.000 | 0 | 0.735 | ||
株高下降率 Reduction rate of plant height | 0 | 1.000 | 0.583 | 0.072 | 1.000 | 0 | 0 | 0.461 | 1.000 | ||
单株生物量下降率 Reduction rate of plant mass | 0 | 0.692 | 1.000 | 0 | 1.000 | 0.411 | 0 | 1.000 | 0.662 | ||
单株荚数下降率 Reduction rate of pods per plant | 0.200 | 1.000 | 0 | 0.270 | 1.000 | 0 | 0 | 1.000 | 0.366 | ||
单株产量下降率 Reduction rate of yield per plant | 0 | 1.000 | 0.317 | 0.270 | 1.000 | 0 | 1.000 | 0.922 | 0 | ||
0.48 | 0.58 | 0.34 | 0.52 | 0.83 | 0.05 | 0.45 | 0.70 | 0.42 | |||
耐低温性 Low-temperature tolerance | ‘晋大70’ > ‘晋大53’ > ‘晋豆24’ ‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’ | ‘晋大70’ > ‘晋大53’ > ‘晋豆24’ ‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’ | ‘晋大70’ > ‘晋大53’ > ‘晋豆24’ ‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’ |
表4 各品种苗期耐低温性综合评价
Table 4 Comprehensive evaluation of low-temperature tolerance in different cultivars at seedling stage
性状 Trait | 隶属函数值 Values of subordinate function | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
14 ℃ | 17 ℃ | 20 ℃ | |||||||||
‘晋大53’ ‘Jinda 53’ | ‘晋大70’ ‘Jinda 70’ | ‘晋豆24’ ‘Jindou 24’ | ‘晋大53’ ‘Jinda 53’ | ‘晋大70’ ‘Jinda 70’ | ‘晋豆24’ ‘Jindou 24’ | ‘晋大53’ ‘Jinda 53’ | ‘晋大70’ ‘Jinda 70’ | ‘晋豆24’ ‘Jindou 24’ | |||
苗期延长率 Extension of seedling stage | 0.121 | 1.000 | 0 | 0.170 | 1.000 | 0 | 0.298 | 1.000 | 0 | ||
Pn下降率 Reduction rate of Pn | 1.000 | 0.498 | 0 | 1.000 | 0.941 | 0 | 0.278 | 1.000 | 0 | ||
Ci下降率 Reduction rate of Ci | 1.000 | 0 | 0.268 | 1.000 | 0.254 | 0 | 1.000 | 0.934 | 0 | ||
Gs下降率 Reduction rate of Gs | 1.000 | 0 | 0.437 | 1.000 | 0.309 | 0 | 0.430 | 0 | 1.000 | ||
Tr下降率 Reduction rate of Tr | 1.000 | 0 | 0.437 | 0.872 | 1.000 | 0 | 1.000 | 0 | 0.735 | ||
株高下降率 Reduction rate of plant height | 0 | 1.000 | 0.583 | 0.072 | 1.000 | 0 | 0 | 0.461 | 1.000 | ||
单株生物量下降率 Reduction rate of plant mass | 0 | 0.692 | 1.000 | 0 | 1.000 | 0.411 | 0 | 1.000 | 0.662 | ||
单株荚数下降率 Reduction rate of pods per plant | 0.200 | 1.000 | 0 | 0.270 | 1.000 | 0 | 0 | 1.000 | 0.366 | ||
单株产量下降率 Reduction rate of yield per plant | 0 | 1.000 | 0.317 | 0.270 | 1.000 | 0 | 1.000 | 0.922 | 0 | ||
0.48 | 0.58 | 0.34 | 0.52 | 0.83 | 0.05 | 0.45 | 0.70 | 0.42 | |||
耐低温性 Low-temperature tolerance | ‘晋大70’ > ‘晋大53’ > ‘晋豆24’ ‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’ | ‘晋大70’ > ‘晋大53’ > ‘晋豆24’ ‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’ | ‘晋大70’ > ‘晋大53’ > ‘晋豆24’ ‘Jinda 70’ > ‘Jinda 53’ > ‘Jindou 24’ |
[1] | Bai SN (2005). Plant Developmental Biology. Beijing University Press, Beijing. 82-83. (in Chinese) |
[ 白书农 (2005). 植物发育生物学. 北京大学出版社, 北京. 82-83.] | |
[2] |
Bartholomew PW, Williams RD (2005). Cool-season grass development response to accumulated temperature under a range of temperature regimes. Crop Science, 45, 529-534.
DOI URL |
[3] | Berger JD, Kumar S, Nayyar H, Street KA, Sandhu JH, Henzell JM, Kaur J, Clarke HC (2012). Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crop Science, 126, 119-129. |
[4] | Board JE, Kang MS, Bodrero ML (2003). Yield components as indirect selection criteria for late-planted soybean cultivars. Agronomy Journal, 95, 420-429. |
[5] | Board JE, Maricherla D (2008). Explanations for decreased harvest index with increased yield in soybean. Crop Science, 48, 1995-2002. |
[6] |
Cornic G (2000). Drought stress inhibits photosynthesis by decreasing stomata aperture―not by affecting ATP synthesis. Trends in Plant Science, 5, 187-188.
DOI URL |
[7] |
da Cruz RP, Golombieski JI, Bazana MT, Cabreira C, Silveira TF, da Silva LP (2010). Alterations in fatty acid composition due to cold exposure at the vegetative stage in rice. Brazilian Journal of Plant Physiology, 22, 199-207.
DOI URL |
[8] |
da Cruz RP, Sperotto RA, Cargnelutti D, Adamski JM, de Freitas Terra T, Fett JP (2013). Avoiding damage and achieving cold tolerance in rice plants. Food and Energy Security, 2, 96-119.
DOI URL |
[9] | Ensminger I, Busch F, Huner NPA (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiologia Plantarum, 126, 28-44. |
[10] | Fehr WR, Caviness CE (1977). Stages of soybean development. Cooperative Extension Service Special Report. Agricultural and Home Economics Experiment Station, Iowa State University. 80, 5-10. |
[11] |
Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 269-279.
URL PMID |
[12] | Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbo M (2006). Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 127, 343-352. |
[13] |
Gendall AR, Levy YY, Wilson A, Dean C (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 107, 525-535.
DOI URL PMID |
[14] | Jiang HW, Li CD, Liu CY, Zhang WB, Qiu PC, Li WF, Gao YL, Hu GH, Chen QS (2009). Genotype analysis and QTL mapping for tolerance to low temperature in germination by introgression lines in soybean. Acta Agronomica Sinica, 35, 1268-1273. (in Chinese with English abstract) |
[ 蒋洪蔚, 李灿东, 刘春燕, 张闻博, 邱鹏程, 李文福, 高运来, 胡国华, 陈庆山 (2009). 大豆导入系群体芽期耐低温位点的基因型分析及QTL定位. 作物学报, 35, 1268-1273.] | |
[15] | Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008). Cold stress injury during the pod-filling phase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. Journal of Agronomy and Crop Science, 194, 457-464. |
[16] | Lam HM, Chang RZ, Shao GH, Liu ZT (2009). Research on Tolerance to Stress in Chinese Soybean. China Agriculture Press, Beijing. 4-6. (in Chinese) |
[ 林汉明, 常汝镇, 邵桂花, 刘忠堂 (2009). 中国大豆耐逆研究. 中国农业出版社, 北京. 4-6.] | |
[17] |
Lane N, Martin WF (2012). The origin of membrane bioenergetics. Cell, 151, 1406-1416.
DOI URL PMID |
[18] | Luo J, Zhang H, Deng ZH, Xu LP, Xu LN, Yuan ZN, Que YX (2013). Analysis of yield and quality traits in sugarcane varieties (lines) with GGE-biplot. Acta Agronomica Sinica, 39, 142-152. (in Chinese with English Abstract) |
[ 罗俊, 张华, 邓祖湖, 许莉萍, 徐良年, 袁照年, 阙友雄 (2013). 应用GGE双标图分析甘蔗品种(系)的产量和品质性状. 作物学报, 39, 142-152.] | |
[19] |
Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozake K, Yamaguchi-Shinozake K (2013). GmDREB2A;2, a Canonical DEHYDRATION-RESPONSIVE ELEMENT- BINDING PROTEIN2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiology, 161, 346-361.
DOI URL PMID |
[20] | Ohnishi S, Miyoshi T, Shirai S (2010). Low temperature stress at different flower development stages affects pollen development, pollination, and pot set in soybean. Environmental and Experimental Botany, 69, 56-62. |
[21] |
Pagter M, Arora R (2013). Winter survival and deacclimation of perennials under warming climate: physiological perspectives. Physiologia Plantarum, 147, 75-87.
URL PMID |
[22] | Qiu PC, Zhang WB, Jiang HW, Liu CY, Li CD, Fan DM, Zeng QL, Han DW, Hu GH, Chen QS (2011). Genetic overlap between salt and low-temperature tolerance loci at germination stage of soybean. Scientia Agricultura Sinica, 44, 1980-1988. (in Chinese with English abstract) |
[ 邱鹏程, 张闻博, 蒋洪蔚, 刘春燕, 李灿东, 范冬梅, 曾庆力, 韩冬伟, 胡国华, 陈庆山 (2011). 大豆芽期耐盐和耐低温位点的遗传重叠. 中国农业科学, 44, 1980-1988.] | |
[23] | Shimono H, Ishii A, Kanda E, Suto M, Nagano K (2011). Genotypic variation in rice cold tolerance responses during reproductive growth as a function of water temperature during vegetative growth. Crop Science, 290-297. |
[24] | Timlin D, Lutfor Rahman SM, Baker J, Reddy VR, Fleisher D, Quebedeaux B (2006). Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agronomy Journal, 98, 1195-1203. |
[25] | Yan WK (2001). GGE biplot—a windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93, 1111-1118. |
[26] |
Yan WK, Rajcan I (2002). Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Science, 42, 11-20.
DOI URL PMID |
[27] |
Yang JW, Zhu JG, Wang SG, Sun DZ, Shi YG, Chen WG (2013). Drought-resistance of local wheat varieties in Shanxi Province of China: a comprehensive evaluation by using GGE biplot and subordinate function. Chinese Journal of Applied Ecology, 24, 1031-1038. (in Chinese with English Abstract)
URL PMID |
[ 杨进文, 朱俊刚, 王曙光, 孙黛珍, 史雨刚, 陈卫国 (2013). 用GGE双标图及隶属函数综合分析山西小麦地方品种抗旱性. 应用生态学报, 24, 1031-1038.]
URL PMID |
|
[28] | Yu ZW (2007). Special Crop Cultivation. China Agriculture Press, Beijing. 274-275. (in Chinese) |
[ 于振文 (2007). 作物栽培学各论. 中国农业出版社, 北京. 274-275.] | |
[29] | Zhai ZH, Wang XZ, Ding MX (2010). Cell Biology. 3rd edn. Higher Education Press, Beijing. 513-514. (in Chinese) |
[ 翟中和, 王喜忠, 丁明孝 (2010). 细胞生物学. 第三版. 高等教育出版社, 北京. 513-514.] | |
[30] | Zhang DW, Du XY, Liu CY, Shan DP, Wu Z, Chen QS, Hu GH (2010). Effect of low-temperature stress on physiological indexes of soybean at germination stage. Soybean Science, 29, 228-232. (in Chinese with English abstract) |
[ 张大伟, 杜翔宇, 刘春燕, 单大鹏, 吴铮, 陈庆山, 胡国华 (2010). 低温胁迫对大豆萌发期生理指标的影响. 大豆科学, 29, 228-232.] | |
[31] | Zhao J (2009). Genetic Analysis to Yield Related Traits in Jinda52 × Jinda57 Cross Offspring Population. Master degree dissertation, Shanxi Agricultural University, Taigu, Shanxi. 55-56. (in Chinese) |
[ 赵晶 (2009). 晋大52×晋大57杂交后代产量相关性状的遗传分析. 硕士学位论文, 山西农业大学, 山西太谷. 55-56.] |
[1] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[2] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[3] | 彭东海,杨建波,李健,邢永秀,覃刘东,杨丽涛,李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响[J]. 植物生态学报, 2014, 38(9): 959-969. |
[4] | 武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超, 阿丽艳·肉孜. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应[J]. 植物生态学报, 2014, 38(10): 1124-1134. |
[5] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[6] | 王芳妹, 蔡妙珍, 张淑娜, 王宁, 李华飞, 胡雪娜, 虞舒航. NO和H2O2诱导大豆根尖和边缘细胞耐铝反应的 作用[J]. 植物生态学报, 2011, 35(9): 981-989. |
[7] | 孙菊, 李秀珍, 王宪伟, 吕久俊, 李宗梅, 胡远满. 大兴安岭冻土湿地植物群落结构的环境梯度分析[J]. 植物生态学报, 2010, 34(10): 1165-1173. |
[8] | 蔡妙珍, 邢承华, 刘鹏, 徐根娣, 吴韶辉, 何璠. 大豆根尖边缘细胞和粘液分泌对铝胁迫解除的响应[J]. 植物生态学报, 2008, 32(5): 1007-1014. |
[9] | 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950. |
[10] | 李荣峰, 蔡妙珍, 刘鹏, 徐根娣, 陈敏燕, 梁和. Al3+对大豆根边缘细胞程序性死亡诱导的生理生态作用[J]. 植物生态学报, 2008, 32(3): 690-697. |
[11] | 苗保河, 李向东, 刘波, 何启平, 朱陶, 刘兴坦, 朱启玉, 乔广法, 樊廷安, 陈成君, 董庆裕, 余松烈. 波浪冠层栽培模式对高油大豆叶片活性氧代谢和膜脂过氧化的影响[J]. 植物生态学报, 2008, 32(3): 673-680. |
[12] | 宋开山, 张柏, 王宗明, 刘殿伟, 刘焕军. 基于小波分析的大豆叶绿素a含量高光谱反演模型[J]. 植物生态学报, 2008, 32(1): 152-160. |
[13] | 胡志昂, 姜国强, 邓馨, 王洪新. 野大豆种群转座子和转录因子的多样性和分子适应[J]. 植物生态学报, 2007, 31(5): 952-959. |
[14] | 周三, 周明, 张硕, 刘占涛, 赵永娟, 余天真, 岳旺. 盐生野大豆的异黄酮积累及其生态学意义[J]. 植物生态学报, 2007, 31(5): 930-936. |
[15] | 汲逢源, 王戈亮, 许亦农. 抗氧化剂对农杆菌介导的大豆下胚轴GUS基因瞬时表达的影响[J]. 植物生态学报, 2006, 30(2): 330-334. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2382
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1413
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La