植物生态学报 ›› 2016, Vol. 40 ›› Issue (4): 364-373.DOI: 10.17521/cjpe.2015.0235
所属专题: 碳储量
收稿日期:
2015-06-21
接受日期:
2015-11-27
出版日期:
2016-04-29
发布日期:
2016-04-30
通讯作者:
许文强
基金资助:
Wen-Qiang XU1,*(), Liao YANG1, Xi CHEN1, Ya-Qi GAO2, Lei WANG2
Received:
2015-06-21
Accepted:
2015-11-27
Online:
2016-04-29
Published:
2016-04-30
Contact:
Wen-Qiang XU
摘要:
科学地估算亚洲中部天山雪岭杉(Picea schrenkiana)生态系统碳密度与碳储量是评价新疆森林碳汇潜力、评估森林在减缓大气CO2浓度上升、应对气候变化等方面功能的关键, 对干旱区森林生态系统的保育和可持续发展具有重要意义。该文基于在天山雪岭杉林区布设的70个野外样地调查数据, 结合新疆森林资源连续清查数据, 全面估算了天山雪岭杉生态系统的碳密度和碳储量, 分析了其分布格局与影响因素。结果表明: 天山雪岭杉不同龄组叶、枝、干和根的含碳率变化不显著, 其乔木层平均含碳率为49%, 而林下植被(凋落物、草本等)平均含碳率仅为42%。雪岭杉森林生态系统单位面积生物量为187.98 Mg·hm-2, 其中乔木层生物量占生态系统总生物量的98.93%。乔木层各组分生物量大小为: 干>根>枝>叶, 而各龄组生物量排序为: 成熟林>中龄林>近熟林>过熟林>幼龄林。雪岭杉生态系统碳密度为544.57 Mg·hm-2, 碳储量为290.84 Tg C, 其中植被碳密度为92.57 Mg·hm-2, 植被碳储量为53.14 Tg C, 土壤碳密度为452.00 Mg·hm-2, 土壤碳储量为237.70 Tg C。天山雪岭杉生态系统碳密度分异与不同林区林带垂直宽度变化具有很高的相关性, 其生态系统碳密度西高东低的分布格局和它所处的环境因子西优东劣的变异是相一致的, 即不同的环境因素组合是造成天山雪岭杉生态系统碳密度差异的主要原因。
许文强, 杨辽, 陈曦, 高亚琪, 王蕾. 天山森林生态系统碳储量格局及其影响因素. 植物生态学报, 2016, 40(4): 364-373. DOI: 10.17521/cjpe.2015.0235
Wen-Qiang XU, Liao YANG, Xi CHEN, Ya-Qi GAO, Lei WANG. Carbon storage, spatial distribution and the influence factors in Tianshan forests. Chinese Journal of Plant Ecology, 2016, 40(4): 364-373. DOI: 10.17521/cjpe.2015.0235
龄组 Age group | 林龄 Age (a) | 基于面积的统计 Forest area statistics | 基于蓄积的统计 Forest accumulation statistics | 样地数量 No. of sites | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 平均林分密度 Average stand density (plants·hm-2) | |||
---|---|---|---|---|---|---|---|---|---|---|
面积 Area (×104 hm2) | 比重 Proportion (%) | 面积 Area (×104 hm2) | 比重 Proportion (%) | |||||||
幼龄林 Young forest | ≤60 | 2.30 | 4.35 | 288 | 2.39 | 5 | 19.6 | 12.3 | 1 079 | |
中龄林 Middle-aged forest | 61-100 | 10.02 | 18.97 | 1 719 | 14.24 | 14 | 22.2 | 12.7 | 877 | |
近熟林 Near-mature forest | 101-120 | 12.58 | 23.81 | 2 712 | 22.47 | 13 | 21.2 | 13.1 | 750 | |
成熟林 Mature forest | 121-160 | 20.62 | 39.03 | 4 951 | 41.02 | 27 | 28.5 | 14.4 | 627 | |
过熟林 Over-mature forest | ≥161 | 7.32 | 13.84 | 2 400 | 19.88 | 11 | 28.8 | 14.7 | 364 | |
合计 Total | 52.84 | 100.00 | 12 070 | 100.00 | 70 |
表1 基于天山雪岭杉面积和蓄积确定的调查样地数量及其基本信息统计
Table 1 The number of sampling sites was determined based on forest type and the spatial distribution in the region
龄组 Age group | 林龄 Age (a) | 基于面积的统计 Forest area statistics | 基于蓄积的统计 Forest accumulation statistics | 样地数量 No. of sites | 平均胸径 Average DBH (cm) | 平均树高 Average tree height (m) | 平均林分密度 Average stand density (plants·hm-2) | |||
---|---|---|---|---|---|---|---|---|---|---|
面积 Area (×104 hm2) | 比重 Proportion (%) | 面积 Area (×104 hm2) | 比重 Proportion (%) | |||||||
幼龄林 Young forest | ≤60 | 2.30 | 4.35 | 288 | 2.39 | 5 | 19.6 | 12.3 | 1 079 | |
中龄林 Middle-aged forest | 61-100 | 10.02 | 18.97 | 1 719 | 14.24 | 14 | 22.2 | 12.7 | 877 | |
近熟林 Near-mature forest | 101-120 | 12.58 | 23.81 | 2 712 | 22.47 | 13 | 21.2 | 13.1 | 750 | |
成熟林 Mature forest | 121-160 | 20.62 | 39.03 | 4 951 | 41.02 | 27 | 28.5 | 14.4 | 627 | |
过熟林 Over-mature forest | ≥161 | 7.32 | 13.84 | 2 400 | 19.88 | 11 | 28.8 | 14.7 | 364 | |
合计 Total | 52.84 | 100.00 | 12 070 | 100.00 | 70 |
树木器官 Tree organ | 生物量异速生长方程 Biomass allometric equation | R2 | 胸径 Diameter at breast height (cm) |
---|---|---|---|
叶 Leaf | WL = 0.0117(D2H)0.8304 | 0.998 | 5.0-123.5 |
枝 Branch | WB = 0.0014(D2H)1.0972 | 0.998 | 5.0-123.5 |
干 Stem | WS = 0.0375(D2H)0.928 | 0.998 | 5.0-123.5 |
根 Root | WR = 0.0089(D2H)0.9695 | 0.998 | 5.0-123.5 |
表2 雪岭杉生物量方程
Table 2 The allometric equations for estimating biomass of Picea schrenkiana
树木器官 Tree organ | 生物量异速生长方程 Biomass allometric equation | R2 | 胸径 Diameter at breast height (cm) |
---|---|---|---|
叶 Leaf | WL = 0.0117(D2H)0.8304 | 0.998 | 5.0-123.5 |
枝 Branch | WB = 0.0014(D2H)1.0972 | 0.998 | 5.0-123.5 |
干 Stem | WS = 0.0375(D2H)0.928 | 0.998 | 5.0-123.5 |
根 Root | WR = 0.0089(D2H)0.9695 | 0.998 | 5.0-123.5 |
龄组 Age group | 乔木层 Arbor | 草本层 Grass | 凋落物层 Litterfall | ||||
---|---|---|---|---|---|---|---|
干 Trunk | 枝 Branch | 叶 Leaf | 根 Root | ||||
幼龄林 Young forest | 46.56 | 46.57 | 48.69 | 46.87 | 40.40 | 42.14 | |
中龄林 Middle-aged forest | 48.69 | 50.39 | 51.39 | 49.71 | 42.19 | 42.58 | |
近熟林 Near-mature forest | 49.22 | 51.39 | 52.22 | 49.83 | 42.54 | 41.83 | |
成熟林 Mature forest | 48.29 | 49.22 | 50.10 | 49.42 | 42.00 | 42.42 | |
过熟林 Over-mature forest | 48.12 | 48.64 | 49.90 | 49.12 | 41.13 | 42.40 | |
平均值 Mean | 48.17 | 49.24 | 50.46 | 48.99 | 41.65 | 42.27 | |
F值 F value | 0.65 | 0.83 | 0.87 | 0.41 | 0.32 | 0.65 |
表3 天山雪岭杉各组分含碳率统计(%)
Table 3 The carbon content of different organs by age group for Picea schrenkiana
龄组 Age group | 乔木层 Arbor | 草本层 Grass | 凋落物层 Litterfall | ||||
---|---|---|---|---|---|---|---|
干 Trunk | 枝 Branch | 叶 Leaf | 根 Root | ||||
幼龄林 Young forest | 46.56 | 46.57 | 48.69 | 46.87 | 40.40 | 42.14 | |
中龄林 Middle-aged forest | 48.69 | 50.39 | 51.39 | 49.71 | 42.19 | 42.58 | |
近熟林 Near-mature forest | 49.22 | 51.39 | 52.22 | 49.83 | 42.54 | 41.83 | |
成熟林 Mature forest | 48.29 | 49.22 | 50.10 | 49.42 | 42.00 | 42.42 | |
过熟林 Over-mature forest | 48.12 | 48.64 | 49.90 | 49.12 | 41.13 | 42.40 | |
平均值 Mean | 48.17 | 49.24 | 50.46 | 48.99 | 41.65 | 42.27 | |
F值 F value | 0.65 | 0.83 | 0.87 | 0.41 | 0.32 | 0.65 |
龄组 Age group | 乔木层 Arbor | 草本层 Grass | 凋落物层 Litterfall | 生态系统 Ecosystem | |||
---|---|---|---|---|---|---|---|
干 Trunk | 枝 Branch | 叶 Leaf | 根 Root | ||||
幼龄林 Young forest | 86.03 | 17.70 | 10.42 | 30.72 | 0.69 | 1.21 | 146.77 |
中龄林 Middle-aged forest | 116.65 | 25.81 | 13.33 | 42.32 | 0.62 | 0.97 | 199.71 |
近熟林 Near-mature forest | 112.36 | 22.29 | 13.62 | 40.03 | 0.44 | 1.68 | 190.41 |
成熟林 Mature forest | 133.55 | 29.11 | 15.31 | 48.70 | 0.63 | 1.43 | 228.74 |
过熟林 Over-mature forest | 100.47 | 23.17 | 11.11 | 37.18 | 0.75 | 1.59 | 174.27 |
平均值 Mean | 109.81 | 23.62 | 12.76 | 39.79 | 0.63 | 1.38 | 187.98 |
F值 F value | 2.07* | 2.19* | 1.89 | 2.11* | 0.96 | 0.50 |
表4 天山雪岭杉森林生态系统单位面积生物量(Mg·hm-2)
Table 4 Distribution of biomass in Picea schrenkiana forests in Tianshan Mountains (Mg·hm-2)
龄组 Age group | 乔木层 Arbor | 草本层 Grass | 凋落物层 Litterfall | 生态系统 Ecosystem | |||
---|---|---|---|---|---|---|---|
干 Trunk | 枝 Branch | 叶 Leaf | 根 Root | ||||
幼龄林 Young forest | 86.03 | 17.70 | 10.42 | 30.72 | 0.69 | 1.21 | 146.77 |
中龄林 Middle-aged forest | 116.65 | 25.81 | 13.33 | 42.32 | 0.62 | 0.97 | 199.71 |
近熟林 Near-mature forest | 112.36 | 22.29 | 13.62 | 40.03 | 0.44 | 1.68 | 190.41 |
成熟林 Mature forest | 133.55 | 29.11 | 15.31 | 48.70 | 0.63 | 1.43 | 228.74 |
过熟林 Over-mature forest | 100.47 | 23.17 | 11.11 | 37.18 | 0.75 | 1.59 | 174.27 |
平均值 Mean | 109.81 | 23.62 | 12.76 | 39.79 | 0.63 | 1.38 | 187.98 |
F值 F value | 2.07* | 2.19* | 1.89 | 2.11* | 0.96 | 0.50 |
龄组 Age group | 0-10 cm | 10-20 cm | 20-30 cm | 30-50 cm | 50-100 cm | 合计 Total |
---|---|---|---|---|---|---|
幼龄林 Young forest | 111.60 | 73.93 | 54.81 | 89.23 | 120.76 | 450.33 |
中龄林 Middle-aged forest | 93.24 | 68.37 | 74.15 | 73.92 | 107.63 | 417.31 |
近熟林 Near-mature forest | 89.48 | 70.45 | 55.79 | 67.02 | 87.18 | 369.92 |
成熟林 Mature forest | 96.50 | 73.20 | 61.84 | 110.81 | 140.05 | 482.39 |
过熟林 Over-mature forest | 111.30 | 78.80 | 69.88 | 108.00 | 172.07 | 540.05 |
平均值 Mean | 100.42 | 72.95 | 63.29 | 89.80 | 125.54 | 452.00 |
F值 F value | 0.76 | 0.45 | 0.31 | 0.64 | 1.35 |
表5 天山雪岭杉生态系统不同剖面深度土壤碳密度统计(Mg·hm-2)
Table 5 Changes in soil carbon density in different depths of Picea schrenkiana forest (Mg·hm-2)
龄组 Age group | 0-10 cm | 10-20 cm | 20-30 cm | 30-50 cm | 50-100 cm | 合计 Total |
---|---|---|---|---|---|---|
幼龄林 Young forest | 111.60 | 73.93 | 54.81 | 89.23 | 120.76 | 450.33 |
中龄林 Middle-aged forest | 93.24 | 68.37 | 74.15 | 73.92 | 107.63 | 417.31 |
近熟林 Near-mature forest | 89.48 | 70.45 | 55.79 | 67.02 | 87.18 | 369.92 |
成熟林 Mature forest | 96.50 | 73.20 | 61.84 | 110.81 | 140.05 | 482.39 |
过熟林 Over-mature forest | 111.30 | 78.80 | 69.88 | 108.00 | 172.07 | 540.05 |
平均值 Mean | 100.42 | 72.95 | 63.29 | 89.80 | 125.54 | 452.00 |
F值 F value | 0.76 | 0.45 | 0.31 | 0.64 | 1.35 |
龄组 Age group | 碳密度 Carbon density (Mg·hm-2) | 碳储量 Carbon storage (Tg C ) | |||||
---|---|---|---|---|---|---|---|
植被 Vegetation | 土壤 Soil | 生态系统 Ecosystem | 植被 Vegetation | 土壤 Soil | 生态系统 Ecosystem | ||
幼龄林 Young forest | 69.12 | 450.32 | 519.45 | 1.59 | 10.34 | 11.93 | |
中龄林 Middle-aged forest | 99.82 | 417.31 | 517.12 | 10.01 | 41.83 | 51.83 | |
近熟林 Near-mature forest | 96.29 | 369.92 | 466.21 | 12.12 | 46.55 | 58.66 | |
成熟林 Mature forest | 112.53 | 482.39 | 594.91 | 23.20 | 99.47 | 122.68 | |
过熟林 Over-mature forest | 85.12 | 540.04 | 625.16 | 6.23 | 39.51 | 45.73 | |
平均值 Mean | 92.57 | 452.00 | 544.57 | 10.63 | 47.54 | 58.17 | |
合计 Total | 53.14 | 237.70 | 290.84 |
表6 天山雪岭杉生态系统碳密度和碳储量
Table 6 Carbon density and carbon storage of Picea schrenkiana forests in Tianshan Mountains
龄组 Age group | 碳密度 Carbon density (Mg·hm-2) | 碳储量 Carbon storage (Tg C ) | |||||
---|---|---|---|---|---|---|---|
植被 Vegetation | 土壤 Soil | 生态系统 Ecosystem | 植被 Vegetation | 土壤 Soil | 生态系统 Ecosystem | ||
幼龄林 Young forest | 69.12 | 450.32 | 519.45 | 1.59 | 10.34 | 11.93 | |
中龄林 Middle-aged forest | 99.82 | 417.31 | 517.12 | 10.01 | 41.83 | 51.83 | |
近熟林 Near-mature forest | 96.29 | 369.92 | 466.21 | 12.12 | 46.55 | 58.66 | |
成熟林 Mature forest | 112.53 | 482.39 | 594.91 | 23.20 | 99.47 | 122.68 | |
过熟林 Over-mature forest | 85.12 | 540.04 | 625.16 | 6.23 | 39.51 | 45.73 | |
平均值 Mean | 92.57 | 452.00 | 544.57 | 10.63 | 47.54 | 58.17 | |
合计 Total | 53.14 | 237.70 | 290.84 |
林区 Forest district | 植被碳密度 Vegetation carbon density (Mg·hm-2) | 所占比重 Proportion (%) | 土壤碳密度 Soil carbon density (Mg·hm-2) | 所占比重 Proportion (%) | 总碳密度 Total carbon density (Mg·hm-2) |
---|---|---|---|---|---|
伊犁 Ili | 124.61 | 16.74 | 619.98 | 83.26 | 744.59 |
乌苏 Usu | 68.16 | 17.05 | 331.57 | 82.95 | 399.72 |
玛纳斯 Manas | 96.16 | 14.83 | 552.37 | 85.17 | 648.53 |
阜康 Fukang | 85.65 | 18.23 | 384.08 | 81.77 | 469.73 |
奇台 Qitai | 88.32 | 19.19 | 372.01 | 80.81 | 460.32 |
平均值 Mean | 92.58 | 17.21 | 452.00 | 83.79 | 544.57 |
表7 天山从西到东不同林区植被和土壤碳密度分布
Table 7 Vegetation and soil carbon density of the spruce forests from the west to the east in Tianshan Mountains
林区 Forest district | 植被碳密度 Vegetation carbon density (Mg·hm-2) | 所占比重 Proportion (%) | 土壤碳密度 Soil carbon density (Mg·hm-2) | 所占比重 Proportion (%) | 总碳密度 Total carbon density (Mg·hm-2) |
---|---|---|---|---|---|
伊犁 Ili | 124.61 | 16.74 | 619.98 | 83.26 | 744.59 |
乌苏 Usu | 68.16 | 17.05 | 331.57 | 82.95 | 399.72 |
玛纳斯 Manas | 96.16 | 14.83 | 552.37 | 85.17 | 648.53 |
阜康 Fukang | 85.65 | 18.23 | 384.08 | 81.77 | 469.73 |
奇台 Qitai | 88.32 | 19.19 | 372.01 | 80.81 | 460.32 |
平均值 Mean | 92.58 | 17.21 | 452.00 | 83.79 | 544.57 |
图3 天山区域气象要素变化及不同林区森林碳密度与林带垂直宽度的关系。
Fig. 3 The empirical relationship between forest carbon density and vertical belt width of the forest district in Tianshan Mountains.
1 | Chen X, Xu WQ, Luo GP, Lin Q, Xiao LX (2008). Soil properties at the tree limits of Picea schrenkiana forests in response to varying environmental conditions on the northern slope of Tianshan Mountains.Acta Ecologica Sinica, 28, 53-61. (in Chinese with English abstract)[陈曦, 许文强, 罗格平, 蔺卿, 肖鲁湘 (2008). 天山北坡不同环境条件下雪岭云杉(Picea schrenkiana)林限土壤属性. 生态学报, 28, 53-61.] |
2 | Dixon RK, Krankina ON (1993). Forest fires in Russia: Carbon dioxide emissions to the atmosphere.Canadian Journal of Forest Research, 23, 700-705. |
3 | Dixon RK, Solomon AM, Brown S, Houghton RA, Trexler MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems.Science, 263, 185-190. |
4 | Drewnik M (2006). The effect of environmental conditions on the decomposition rate of cellulose in mountain soils.Geoderma, 132, 116-130. |
5 | Fang JY, Chen AP (2001). Dynamic forest biomass carbon pools in China and their significance.Acta Botanica Sinica, 43, 967-973. (in Chinese with English abstract)[方精云, 陈安平 (2001). 中国森林植被碳库的动态变化及其意义. 植物学报, 43, 967-973.] |
6 | Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 292, 2320-2322. |
7 | Fang JY, Liu GH, Xu SL (1996). Biomass and net production of forest vegetation in China.Acta Ecologica Sinica, 16, 497-508. (in Chinese with English abstract)[方精云, 刘国华, 徐嵩龄 (1996). 我国森林植被的生物量和净生产量. 生态学报, 16, 497-508.] |
8 | Gao Y, Jin JW, Cheng JM, Su JS, Zhu RB, Ma ZR, Liu W (2014). Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region.Chinese Journal of Applied Ecology, 25, 639-646. (in Chinese with English abstract)[高阳, 金晶炜, 程积民, 苏纪帅, 朱仁斌, 马正锐, 刘伟 (2014). 宁夏回族自治区森林生态系统固碳现状. 应用生态学报, 25, 639-646.] |
9 | Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests form 1977 to 2008.Science China: Life Sciences, 56, 661-671.[郭兆迪, 胡会峰, 李品, 李怒云, 方精云 (2013). 1977- 2008年中国森林生物量碳汇的时空变化. 中国科学: 生命科学, 43, 421-431.] |
10 | Houghton RA (2005). Aboveground forest biomass and the global carbon balance.Global Change Biology, 11, 945-958. |
11 | Hu HQ, Luo BZ, Wei SJ, Wei SW, Sun L, Luo SS, Ma HB (2015). Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains, China.Chinese Journal of Plant Ecology, 39, 140-158. (in Chinese with English abstract)[胡海清, 罗碧珍, 魏书精, 魏书威, 孙龙, 罗斯生, 马洪斌 (2015). 小兴安岭7种典型林型林分生物量碳密度与固碳能力. 植物生态学报, 39, 140-158.] |
12 | IPCC (Intergovernmental Panel on Climate Change) (2006). Agriculture, forestry and other land use. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K eds. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Kanagawa, Japan. |
13 | Li CF, Zhang C, Luo GP, Chen X, Maisupova B, Madaminov AA, Han QF, Djenbaev B (2015). Carbon stock and its responses to climate change in Central Asia.Global Change Biology, 21, 1951-1967. |
14 | Luo GP, Dai L, Li YZ, Lu L (2011). Prospects on alpine timberline change and its driving mechanism in arid area of Central Asia.Arid Land Geography, 34, 873-879. (in Chinese with English abstract)[罗格平, 戴丽, 李艳忠, 鲁蕾 (2011). 亚洲中部干旱区高山林线变化及其驱动机制研究展望. 干旱区地理, 34, 873-879.] |
15 | Luo TX (1996). Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models. PhD dissertation, Chinese Academy of Sciences, Beijing. (in Chinese)[罗天祥 (1996). 中国主要森林类型生物生产力格局及其数学模型. 博士学位论文, 中国科学院, 北京.] |
16 | Ni J (2004). Forest productivity of the Altay and Tianshan Mountains in the dryland, northwestern China.Forest Ecology and Management, 202, 13-22. |
17 | Pan YD, Birdsey RA, Fang JG, Houghton R, Kauppi PE, Kurz WA, Philips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests.Science, 333, 988-993. |
18 | Pan YD, Luo TX, Birdsey R, Hom J, Melillo J (2004). New estimates of carbon storage and sequestration in China’s forests: Effects of age-class and method on inventory- based carbon estimation.Climatic Change, 67, 211-236. |
19 | Reichstein M, Bednorz F, Broll G, Katterer T (2000). Temperature dependence of carbon mineralisation: Conclusions from a long-term incubation of subalpine soil samples.Soil Biology & Biochemistry, 32, 947-958. |
20 | Research Institute of Forestry, Chinese Academy of Forestry (1986). Forest Soil of China. Science Press, Beijing. 587-642. (in Chinese)[中国林业科学研究院林业研究所 (1986). 中国森林土壤. 科学出版社, 北京. 587-642.] |
21 | Su HX (2005). Analyzing and Simulating the Growth of Picea schrenkiana Forests in Xinjiang Under Global Climate Change. PhD dissertation,Graduate School of Chinese Academy of Sciences, Beijing. 65-68. (in Chinese)[苏宏新 (2005). 全球气候变化条件下新疆天山云杉林生长的分析与模拟. 博士学位论文, 中国科学院研究生院, 北京. 65-68.] |
22 | Su HX, Sang WG, Wang YX, Ma KP (2007). Simulating Picea schrenkiana forest productivity under climatic changes and atmospheric CO2 increase in Tianshan Mountains, Xinjiang Autonomous Region, China.Forest Ecology and Management, 246, 273-284. |
23 | The Forest Department of Xinjiang Uygur Autonomous Region (1995). Forest Soil of Xinjiang Mountain Region. Xinjiang Science Technology and Hygiene Publishing House, Ürümqi. 152-198. (in Chinese)[新疆维吾尔自治区林业厅 (1995). 新疆山地森林土壤. year新疆科技卫生出版社,乌鲁木齐. 152-198.] |
24 | Wang T, Ren GY, Chen F, Yuan YJ (2015). An analysis of precipitation variations in the west-central Tianshan Mountains over the last 300 years.Quaternary International, 358, 48-57. |
25 | Wang XC, Qi G, Yu DP, Zhou L, Dai LM (2011). Carbon storage, density, and distribution in forest ecosystems in Jilin Province of Northeast China.Chinese Journal of Applied Ecology, 22, 2013-2020. (in Chinese with English abstract)[王新闯, 齐光, 于大炮, 周莉, 代力民 (2011). 吉林省森林生态系统的碳储量、碳密度及其分布. 应用生态学报, 22, 2013-2020.] |
26 | Wang XK, Feng ZW, Ouyang ZY (2001). Vegetation carbon storage and density of forest ecosystems in China.Chinese Journal of Applied Ecology, 12, 13-16. (in Chinese with English abstract)[王效科, 冯宗炜, 欧阳志云 (2001). 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 12, 13-16.] |
27 | Wang Y, Zhao SD (1999). Biomass and net productivity of Picea schrenkiana var. tianshanica forest.Chinese Journal of Applied Ecology, 10, 389-391. (in Chinese with English abstract)[王燕, 赵士洞 (1999). 天山云杉林生物量和生产力的研究. 应用生态学报, 10, 389-391.] |
28 | Wu QB, Wang XK, Duan XN, Deng LB, Lu F, Ouyang ZY, Feng ZW (2008). Carbon sequestration and its potential by forest ecosystems in China.Acta Ecologica Sinica, 28, 517-524. (in Chinese with English abstract)[吴庆标, 王效科, 段晓男, 邓立斌, 逯非, 欧阳志云, 冯宗炜 (2008). 中国森林生态系统植被固碳现状和潜力. 生态学报, 28, 517-524.] |
29 | Xu WQ, Chen X, Luo GP, Zhang Q, Lin Q (2011). Soil properties at the tree limits of the coniferous forest in response to varying environmental conditions in the Tianshan Mountains, northwest China.Environmental Earth Sciences, 63, 741-750. |
30 | Yang HX, Wu B, Zhang JT, Lin DR, Chang SL (2005). Progress of research into carbon fixation and storage of forest ecosystems. Journal of Beijing Normal University (Natural Science), 41, 172-177.[杨洪晓, 吴波, 张金屯, 林德荣, 常顺利 (2005). 森林生态系统的固碳功能和碳储量研究进展. 北京师范大学学报(自然科学版), 41, 172-177.] |
31 | Zhang BP, Zhou CH, Chen SP (2003). The geo-info-spectrum of montane altitudinal belts in China.Acta Geographica Sinica, 58(2), 163-171. (in Chinese with English abstract)[张百平, 周成虎, 陈述彭 (2003). 中国山地垂直带信息图谱的探讨. 地理学报, 58(2), 163-171.] |
32 | Zhang YS, Wang XL, Zhou LS (1980). Primary study on biomass of Picea schrenkiana.Journal of Xinjiang August 1st Agriculture College, (3), 19-25. (in Chinese)[张瑛山, 王学兰, 周林生 (1980). 雪岭云杉林生物量测定的初步研究. 新疆八一农学院学报, (3), 19-25.] |
33 | Zhao M, Zhou GS (2004). Carbon storage of forest vegetation and its relationship with climatic factors.Scientia Geographica Sinica, 24, 50-54. (in Chinese with English abstract)[赵敏, 周广胜 (2004). 中国森林生态系统的植物碳贮量及其影响因子分析. 地理科学, 24, 50-54.] |
34 | Zhou GY, Liu SG, Li ZA, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006). Old-growth forests can accumulate carbon in soils.Science, 314, 1417. |
35 | Zhou YR, Yu ZL, Zhao SD (2000). Carbon storage and budget of major Chinese forest types.Acta Phytoecologica Sinica, 24, 518-522. (in Chinese with English abstract)[周玉荣, 于振良, 赵士洞 (2000). 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 24, 518-522.] |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[13] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[14] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[15] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19