植物生态学报 ›› 2009, Vol. 33 ›› Issue (1): 161-170.DOI: 10.3773/j.issn.1005-264x.2009.01.018
聂华丽1,2(), 张元明1,*(
), 吴楠1,2, 张静1,2, 张丙昌1,2
收稿日期:
2007-10-09
接受日期:
2008-01-08
出版日期:
2009-10-09
发布日期:
2009-01-30
通讯作者:
张元明
作者简介:
*E-mail: zhangym@ms.xjb.ac.cn基金资助:
NIE Hua-Li1,2(), ZHANG Yuan-Ming1,*(
), WU Nan1,2, ZHANG Jing1,2, ZHANG Bing-Chang1,2
Received:
2007-10-09
Accepted:
2008-01-08
Online:
2009-10-09
Published:
2009-01-30
Contact:
ZHANG Yuan-Ming
About author:
First author contact:E-mail of the first author: niehuali@163.com
摘要:
生物结皮广泛分布于干旱、半干旱区, 强烈影响着土壤表层理化特性, 进而对种子散布、萌发和定居产生影响。目前关于生物结皮与植物种子萌发关系的研究结论存在争议。该文通过室内人工控制实验, 研究了生物结皮对古尔班通古特沙漠5种具不同种子形态特征的荒漠植物白梭梭(Haloxylon persicum)、蛇麻黄(Ephedra distachya)、角果藜(Ceratocarpus arenaarius)、涩芥(Malcolmia africana)和狭果鹤虱(Lappula semiglabra)的种子萌发的影响。结果表明, 在干燥和湿润两种条件下, 生物结皮对不同形态植物种子萌发均具有不同的作用。在干燥条件下, 生物结皮显著抑制了角果藜和涩芥种子的萌发(p<0.05), 对其它3种植物无显著影响; 而湿润条件下, 生物结皮显著抑制了白梭梭、角果藜和狭果鹤虱种子的萌发(p<0.05), 对蛇麻黄、涩芥则无显著影响。
聂华丽, 张元明, 吴楠, 张静, 张丙昌. 生物结皮对5种不同形态的荒漠植物种子萌发的影响. 植物生态学报, 2009, 33(1): 161-170. DOI: 10.3773/j.issn.1005-264x.2009.01.018
NIE Hua-Li, ZHANG Yuan-Ming, WU Nan, ZHANG Jing, ZHANG Bing-Chang. EFFECTS OF BIOLOGICAL CRUSTS ON THE GERMINATION OF FIVE DESERT VASCULAR PLANTS WITH DIFFERENT SEED MORPHOLOGIES. Chinese Journal of Plant Ecology, 2009, 33(1): 161-170. DOI: 10.3773/j.issn.1005-264x.2009.01.018
图1 5种荒漠植物种子形态结构 a: 白梭梭 Haloxylon persicum b: 角果藜 Ceratocarpus arenaarius c: 狭果鹤虱 Lappula semiglabra d: 蛇麻黄 Ephedra distachya e: 涩芥 Malcolmia Africana 图中比例尺表示种子放大倍数
Fig. 1 Seed morphological characteristics of five desert plants Scales in figures indicate magnified multiple of seeds
图2 5种植物种子在滤纸上的萌发率 图中不同小写字母表示差异显著(p<0.05)
Fig. 2 Seed germination percentage of five desert plants on filter paper Different small letter indicate difference is significant at the 0.05 level
图3 干燥条件下生物结皮对5种植物种子萌发率的影响 *: 表示差异显著(p<0.05) Mean difference is significant at the 0.05 level **: 表示差异极显著(p<0.01) Mean difference is significant at the 0.01 level 下同 The same as below
Fig. 3 Effects of crusts on seed germination percentage of five desert vascular plants under dry condition
变异来源 Source | III型平方和 Type III Sum of Squares | df | 均方 Mean Square | F | P |
---|---|---|---|---|---|
校正模型 Corrected Model | 4.558 | 19 | 0.24 | 39.806 | 0 |
截距 Intercept | 35.085 | 1 | 35.085 | 5 821.268 | 0 |
物种 Species | 0.972 | 4 | 0.243 | 40.324 | 0 |
结皮处理 Crust treatment | 0.303 | 1 | 0.303 | 50.208 | 0 |
水分条件 Water condition | 2.677 | 1 | 2.677 | 444.238 | 0 |
物种×结皮 Species×crust | 0.175 | 4 | 0.044 | 7.265 | 0 |
物种×水分 Species×water | 0.164 | 4 | 0.041 | 6.82 | 0 |
结皮×水分 Crust×water | 0.002 | 1 | 0.002 | 0.413 | 0.522 |
物种×结皮×水分 Species×crust×water | 0.264 | 4 | 0.066 | 10.954 | 0 |
误差 Error | 0.482 | 80 | 0.006 | ||
总和 Total | 40.126 | 100 | |||
校正总和 Corrected Total | 5.041 | 99 |
表1 主效应方差分析表
Table 1 Tests of between subjects effects
变异来源 Source | III型平方和 Type III Sum of Squares | df | 均方 Mean Square | F | P |
---|---|---|---|---|---|
校正模型 Corrected Model | 4.558 | 19 | 0.24 | 39.806 | 0 |
截距 Intercept | 35.085 | 1 | 35.085 | 5 821.268 | 0 |
物种 Species | 0.972 | 4 | 0.243 | 40.324 | 0 |
结皮处理 Crust treatment | 0.303 | 1 | 0.303 | 50.208 | 0 |
水分条件 Water condition | 2.677 | 1 | 2.677 | 444.238 | 0 |
物种×结皮 Species×crust | 0.175 | 4 | 0.044 | 7.265 | 0 |
物种×水分 Species×water | 0.164 | 4 | 0.041 | 6.82 | 0 |
结皮×水分 Crust×water | 0.002 | 1 | 0.002 | 0.413 | 0.522 |
物种×结皮×水分 Species×crust×water | 0.264 | 4 | 0.066 | 10.954 | 0 |
误差 Error | 0.482 | 80 | 0.006 | ||
总和 Total | 40.126 | 100 | |||
校正总和 Corrected Total | 5.041 | 99 |
物种 Species | 萌发速率 Germination rate | |||
---|---|---|---|---|
干燥 Dry | 湿润 Moist | |||
完整结皮 Entire curst | 去结皮 Devoid curst | 完整结皮 Entire curst | 去结皮 Devoid curst | |
白梭梭 Haloxylon persicum | 5.16 | 3.75 | 10.21** | 19.05 |
蛇麻黄 Ephedra distachya | 9.06 | 13.07 | 22.44 | 21.21 |
角果藜 Ceratocarpus arenaarius | 4.12** | 11.10 | 13.2** | 21.16 |
涩芥 Malcolmia africana | 1.65** | 8.64 | 11.99 | 15.80 |
狭果鹤虱 Lappula semiglabra | 2.65 | 1.27 | 13.65** | 19.00 |
表2 5种植物种子在不同水分处理下的萌发速率
Table 2 Germination rate of five desert plants under different water condition
物种 Species | 萌发速率 Germination rate | |||
---|---|---|---|---|
干燥 Dry | 湿润 Moist | |||
完整结皮 Entire curst | 去结皮 Devoid curst | 完整结皮 Entire curst | 去结皮 Devoid curst | |
白梭梭 Haloxylon persicum | 5.16 | 3.75 | 10.21** | 19.05 |
蛇麻黄 Ephedra distachya | 9.06 | 13.07 | 22.44 | 21.21 |
角果藜 Ceratocarpus arenaarius | 4.12** | 11.10 | 13.2** | 21.16 |
涩芥 Malcolmia africana | 1.65** | 8.64 | 11.99 | 15.80 |
狭果鹤虱 Lappula semiglabra | 2.65 | 1.27 | 13.65** | 19.00 |
图5 生物结皮对5种植物种子萌发速率的影响 CD和SD分别代表干燥下的完整结皮和去结皮处理; CM和SM代表湿润下的完整和去结皮处理
Fig. 5 Effects of crusts on seed germination rate of five desert vascular plants CD: Entire crust under dry condition SD: Devoid crust under dry condition CM: Entire crust under moist condition SM: Devoid crust under moist condition
[1] |
Aguilar VR, Alvarez HG, Cacheux IM, Zaragoza SR (2005). Physical effect of biological soil crusts on seed germination of two desert plants under laboratory conditions. Journal of Arid Environment, 63, 344-352.
DOI URL |
[2] |
Batlla D, Kruk BC, Benech-Arnold RL (2002). Very early detection of canopy presence by seeds through perception of subtle modifications in red: far red signals. Functional Ecology, 14, 195-202.
DOI URL |
[3] |
Belnap J (1995). Surface disturbances: their role in accelerating desertification. Environmental Monitoring and Assessment, 37, 39-57.
DOI URL PMID |
[4] |
Belnap J (2002). Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils, 35, 128-135.
DOI URL |
[5] |
Belnap J (2003). The world at your feet: desert biological soil crusts. Frontiers in Ecology and the Environment, 1, 181-189.
DOI URL |
[6] | Belnap J, Harper KT, Warren SD (1994). Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content and chlorophyll degradation. Arid Soil Research and Rehabilitation, 8, 1-8. |
[7] | Belnap J, Lange OL (2003). Biological Soil Crust: Structure, Function and Management. Springer-Verlag, Berlin, 3-30. |
[8] | Crisp MD (1975). Long Term Change in Arid Zone Vegetation at Koonamore, South Australia. PhD thesis, University of South Australia Adelaide, 373. |
[9] | Du GZ (杜国祯), Ma JR (马锦荣) (1994). Study on seed germination ability of 15 wild herbaceous plant species under the different temperatures. Acta Prataculturae Sinica (草业学报), 3, 18-24. (in chinese with English abstract) |
[10] | Eldridge DJ (1993). Cryptogams, vascular plants, and soil hydrological relation: some preliminary results from the semiarid woodlands of eastern Australia. Great Basin Naturalist, 53, 48-58. |
[11] | Eldridge DJ, Greene RSB (1994). Microbiotic crusts: a view of the roles in soil and ecological processes in the rangelands of Australia. Australian Journal of Soil Research, 32, 389-415. |
[12] | Friedmann EI, Galun M (1974). Desert algae, lichens and fungi. In: Brown GW ed. Desert Biology. Academic Press, New York, 165-212. |
[13] |
Guo QF, Brown JH, Valone TJ, Kachman SD (2000). Constrains of seed size on plant distribution and abundance. Ecology, 81, 2149-2155.
DOI URL |
[14] | Harper KT, St Clair LL (1985). Cryptogamic Soil Crusts on Arid and Semiarid Rangelands in Utah: Effect on Seedling Establishment and Soil Stability. Department of Botany Rangeland Science, Brigham Young University, Provo, UT. |
[15] |
Hawkes CV (2004). Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecology, 170, 121-134.
DOI URL |
[16] |
Hawkes CV (2003). Nitrogen cycling mediated by biological soil crusts and arbuscular mycorrhizal fungi. Ecology, 84, 1553-1562.
DOI URL |
[17] |
Huang ZY, Gutterman Y (1998). Artemisia monosperma achene germination in sand: effects of sand depth, sand/water content, cyanobacterial sand crust and temperature. Journal of Arid Environments, 38, 27-43.
DOI URL |
[18] |
Jakobsson A, Eriksson O (2000). A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos, 88, 494-502.
DOI URL |
[19] | Li SZ (李守中), Xiao HL (肖洪浪), Luo F (罗芳), Song YX (宋耀选), Liu LC (刘立超), Li SL (李守丽) (2005). Regulation effect of microbiotic crusts on soil hydrological process in Shapotou vegetated sanddunes. Journal of Desert Research (中国沙漠), 25, 228-233. (in Chinese with English abstract) |
[20] |
Li XR, Jia XH, Long LQ (2005). Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China). Plant and Soil, 277, 375-385.
DOI URL |
[21] | Li XR (李新荣), Jia YK (贾玉奎), Long LQ (龙利群), Wang XP (王新平), Zhang JG (张景光) (2001). Advances in microbiotic soil crust research and its ecological significance in arid and semiarid regions. Journal of Desert Research (中国沙漠), 21, 4-11.(in Chinese with English abstract) |
[22] | Ma J (马骥), Li XR (李新荣), Zhang JQ (张景光), Wen L (温玲) (2005). Progress in research on microstructure features of seeds (Domestic Part). Jounal of Zhejiang Normal University(Natural Science Edition) (浙江师范大学学报(自然科学版)), 28, 121-127. (in Chinese with English abstract) |
[23] |
Prasse R, Bornkamm R (2000). Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecology, 150, 65-75.
DOI URL |
[24] |
Serpe MD, Orm JM, Barkes T, Rosentreter R (2006). Germination and seed water status of four grasses on moss-dominated biological soil crusts from arid lands. Plant Ecology, 185, 163-178.
DOI URL |
[25] |
Shem-Tov S, Zaady E, Groffman PM, Gutterman Y (1999). Soil carbon content along a rainfall gradient and inhibition of germination: a potential mechanism for regulating distribution of Plantago coronopus. Soil Biology and Biochemistry, 31, 1209-1217.
DOI URL |
[26] | Su YG (苏延桂), Li XR (李新荣), Huang G (黄刚), Li XJ (李小军), Zhang JG (郑敬刚) (2007). Effects of two types of biological soil crusts on the desert vascular plants under laboratory conditions. Acta Ecologica Sinica (生态学报), 27, 1845-1851. (in Chinese with English abstract) |
[27] |
Wang XQ (王雪芹), Jiang J (蒋进), Lei JQ (雷加强), Zhang WM (张伟民), Qian YB (钱亦兵) (2003). The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geographica Sinica (地理学报), 58, 598-605. (in Chinese with English abstract)
DOI URL |
[28] | West NE (1990). Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research, 20, 179-223. |
[29] |
Williams JD, Dobrowolski JP, West NE (1995). Microphytic crust influences on interrill erosion and infiltration capacity. Transactions of the American Society of Agricultural Engineers, 38, 139-146.
DOI URL |
[30] |
Zaady E, Gutterman Y, Boeken B (1997). The germination of mucilaginous seeds of Plantago coronopus, Reboudia pinnata, and Carrichtera annua on cyanobacterial soil crust from the Negev Desert. Plant and Soil, 190, 247-252.
DOI URL |
[31] |
Zamfir M (2000). Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos, 88, 603-611.
DOI URL |
[32] | Zhang LY (张立运), Chen CD (陈昌笃) (2002). On the general characteristics of plant diversity of Gurbantunggut Sandy Desert. Acta Ecologica Sinica (生态学报), 22, 1923-1932. (in Chinese with English abstract) |
[33] | Zhang YM (张元明), Cao T (曹同), Pan BR (潘伯荣) (2002). A study on bryophyte associated with formation of soil crust in south fringe of Gurbantunggut Desert in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 22, 18-23. (in Chinese with English abstract) |
[34] | Zhang YM (张元明), Pan HX (潘惠霞), Pan BR (潘伯荣) (2004). Distribution characteristics of biological crust on sand dune surface in Gurbantunggut Desert, Xinjiang. Journal of Soil and Water Conservation (水土保持学报), 18(4), 61-64. (in Chinese with English abstract) |
[35] | Zhang YM (张元明), Yang WK (杨维康), Wang XQ (王雪芹), Zhang DY (张道远) (2005). Influence of cryptogamic soil crusts on accumulation of soil organic matter in Gurbantunggut Desert, northern Xinjiang, China. Acta Ecologica Sinica (生态学报), 25, 3420-3425. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[4] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[5] | 张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响[J]. 植物生态学报, 2022, 46(3): 350-361. |
[6] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[7] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[8] | 侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略[J]. 植物生态学报, 2021, 45(7): 760-770. |
[9] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[10] | 艾沙江•阿不都沙拉木, 迪丽娜尔•阿布拉, 张凯, 买热也木古•吐尔逊, 卡迪尔•阿布都热西提, 李玲. 喀什霸王的结实和种子萌发特性[J]. 植物生态学报, 2019, 43(5): 437-446. |
[11] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
[12] | 管超, 张鹏, 李新荣. 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应[J]. 植物生态学报, 2017, 41(3): 301-310. |
[13] | 尹本丰, 张元明, 娄安如. 灌丛移除对荒漠齿肋赤藓越冬过程中生理生化特性的影响[J]. 植物生态学报, 2016, 40(7): 723-734. |
[14] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
[15] | 刘波, 吕宪国, 姜明, 张文广, 武海涛. 光照、水深交互作用对松嫩湿地芦苇种子萌发的影响[J]. 植物生态学报, 2015, 39(6): 616-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19